

NEW RIVER KINEMATICS

NRK METROLOGY INSTITUTE

SPATIALANALYZER USER MANUAL

2016.09.01

NEW RIVER KINEMATICS

NRK METROLOGY INSTITUTE

SPATIALANALYZER USER MANUAL

QNew River Kinematics, Inc.

09/01/2016. New River Kinematics, Inc. (NRK). All rights reserved. Copyright ©1994-2016.

Your rights to the software are governed by the accompanying software license agreement. The owner or authorized user of a valid copy of SpatialAnalyzer software may reproduce this publication for the purpose of learning to use such software. No part of this publication may be reproduced or transmitted for commercial purposes, such as selling copies of this publication or for providing paid-for support services.

Every effort has been made to ensure that the information in this manual is accurate. NRK is not responsible for printing or clerical errors.

Because NRK frequently releases new versions and updates to its applications and Internet sites, images shown in this book may be slightly different from what you see on your screen.

New River Kinematics
436 McLaws Circle
Williamsburg, VA 23185
+1 (757) 565-1500
www.kinematics.com

SpatialAnalyzer is a trademark of New River Kinematics, Inc., registered in the U.S.

Windows is a registered trademark of Microsoft Corporation.

Studio and Qualify are registered trademarks of Geomagic, Inc.
iPhone and iPod are registered trademarks of Apple Inc.

OpenGL is a registered trademark of Silicon Graphics, Inc.

SpaceNavigator, SpaceExplorer, and SpacePilot are registered trademarks of 3DConnexion, Inc.

Other company and product names mentioned herein are trademarks of their respective companies. Mention of third-party products is for informational purposes only and constitutes neither an endorsement nor a recommendation. NRK assumes no responsibility with regard to the performance or use of these products.

TABLE OF CONTENTS

CHAPTER 1: WELCOME 1
About This Manual 2
Conventions 2
CHAPTER 2: GETTING STARTED 5
SA Packages 5
SA Professional. 5
SA Ultimate 6
SA Machine. 7
Feature Summary 8
System Requirements 9
Minimum Requirements. 9
Recommendations for Optimal Performance 9
Supported Auxiliary Input Devices 9
Check My Computer 10
Installation 10
Installing SA 10
Installer Command-Line Options 11
Instrument Drivers 12
Licensing 12
Meta-key File Installation 13
Viewing Your License Information 13
Certification 14
How to Get Help 14
Documentation. 14
Customer Support 15
Context-Sensitive Help. 15
Tutorials \& Sample Files 15
Navigating this Users Manual 15
An overview of fundamental concepts and guiding principles 16
Getting into the details of operation. 16
The core of measurement - Points and feature measurement. 16
Working with Instruments. 17
How to effectively move and align measurements for analysis 18
Live view and build it functionality. 18
Analysis, inspection refined alignment operations 18
Measurement Uncertainty and Unified Spatial Metrology Networks 19
Scripting and Automation 19
Specialized functionality 19
References 20
CHAPTER 3: SA FUNDAMENTALS 21

TABLE OF CONTENTS

Architecture
 21

Host SpatialAnalyzer Session 22
Instrument Interface 22
Instruments 23
Selection Filtering 25
Double Colon Format 26
The Wire Model 27
The Alignment Process 28
Feature Measurement. 29
Offset Compensation 29
Probe Offsets 30
Surface Normal Direction 31
Comparing Measurements to Points and Objects. 33
Measured Points vs. Cloud Points 34
Unbounded Geometry 35
The Working Frame 35
The Default Collection. 36
Traceability 36
CHAPTER 4: EXPLORING THE USER INTERFACE 39
Toolbars 42
Main Toolbar 42
Color/WCF Toolbar 43
Treebar 44
Report Bar 47
Status Bar 47
MP Bar 48
Instrument Docking Bar 48
SA Toolkit 48
UI Themes 49
Custom UI Profiles 50
Customizing Toolbars \& Menus 51
Keyboard Shortcuts 54
Options 55
Language Translation 56
Character Sets 58
Creating a Translation 58
Merging Language Files 60
Using .CSV Files For Translation 60
CHAPTER 5: THE GRAPHICAL VIEW 63
Navigating the Graphical View 63

TABLE OF CONTENTS

Zoom 63
Autoscale. 64
Pan 64
Rotate 64
Center In View 65
Adjust View Components 65
Jumping to Previous/NextViews 66
Set Viewpoint From Frame. 66
Set Viewpoint From Instrument Updates 66
Set Viewpoint From Object 67
Set Viewpoint From Surface Point 67
View Clipping 67
Multiple Graphical Views 69
Heads-Up Display 69
Saved Viewpoints 71
Rendering Modes 72
Surface Backsides 74
Background/Highlight Color 75
Hardware Acceleration. 76
Surface Rendering Options 77
Labels 79
The Hover Window 80
Object-Specific Rendering Modes 82
Visibility 83
Miscellaneous Settings \& Commands 84
View Animation Steps 84
Arrowhead Sizes 84
Scale Indicator 85
Connection Indicator 85
Uncertainty Fields 86
Cloud Display Control 87
Highlighting 88
View Refresh 89
Copying the Graphical View to the Clipboard 89
Creating a Movie Capture of the Screen 89
Controlling Target Icon Size 91
CHAPTER 6: WORKING IN SA 93
Selection 93
Graphical Selection. 94
Treebar Selection 97

TABLE OF CONTENTS

F2 Selection 97
Selection By Color 100
Context Menus 101
Organizing Your Job 102
Folders 103
Collections 104
Relocating Items to Another Collection 105
Rearranging Points 106
Naming \& Renaming Items 109
Deleting Items 113
The Layer Manager 114
Configuring SpatialAnalyzer 116
Job File Settings 117
Machine Settings 121
Security 123
System Diagnostics 125
Memory Monitor 125
Check Job Data Consistency 126
Regenerate References 126
Repeating Commands 126
Working With Items 127
Moving Objects 128
Mirroring Objects 140
Scaling Objects 141
Finding Items In The Tree 142
Network Browser 142
Remote Monitoring 143
Working With The Clipboard 145
Setting the Working Frame 145
About the World Frame 146
Object Color 146
Accessing Item Properties 148
The Calculator 149
User Notes 149
Adding Notes to Items 149
Item History 149
Print Setup 150
Command-Line Arguments. 151
Launching SA with Command-Line Arguments 151
Example Command-Line Arguments 152

TABLE OF CONTENTS

Multiple Instances and Exiting SA 152
CHAPTER 7: WORKING WITH FILES 153
SA Files 153
Creating New Files 153
Opening Files. 154
Saving Files. 154
Save As 155
Backing Up Files 155
Restore Points 157
Password-Protecting SA Files. 157
File Import 158
Auto Import 158
Importing SpatialAnalyzer Job Files 158
Direct CAD Access. 159
Importing Standard CAD Formats 164
Importing Predefined ASCII Formatted Files 165
Importing ASCII Formatted Points With Offsets 167
Importing XML Files 167
Custom Formats 169
Embedding Files 169
Importing Images 170
File Export. 170
Exporting ASCII Formatted Points 170
Exporting Point Clouds 172
Exporting Vector Groups 172
Exporting Object Frames 173
Exporting to CAD Formats 173
Exporting Window Placements. 174
Templates. 174
The Default Template. 175
Screen \& Graphics Capture 176
CHAPTER 8: POINTS 177
About Points 177
Point Groups 177
Constructed Points 178
Measured Points 178
Point Characteristics 179
Point Tolerance 180
Notes 181
Targeting Offsets 181
Accessing A Point's Group Menu From the Graphical View 183

TABLE OF CONTENTS

Measurements 183
How SA Computes a Measured Point's Location 183
About Target Observations. 184
About Target Offsets 186
Characteristics Unique to Measured Points 186
Setting Properties for Multiple Points 191
Working With Point Lists 192
Constructing Points 194
Entering Point Coordinates 194
Constructing a Point at the Center of a Line 195
Constructing Points at the Center of Spheres and Circles 195
Constructing Points at the Center of a Cylinder 196
Projecting to the Closest Point on Objects. 196
Projecting Points Parallel to a Working Coordinate Frame Axis 197
Projecting Points Radially from a Working Coordinate Frame Axis 198
Projecting Points Spherically from a Working Coordinate Frame Origin 199
Projecting Points to a Curve 200
Creating Points at a 3 -Plane Intersection 201
Creating Points at the Intersection of a Plane and Circle 201
Constructing Points at the Intersection of a Line and Plane 202
Constructing a Point at the Intersection of 2 Lines 203
Constructing Points at the Intersection of a Line and Circle 203
Constructing Points at the Intersection of a Line and Cylinder 204
Constructing Points at the Intersection of a Line and Sphere 204
Constructing Points at the Intersection of 2 B-Splines 205
Constructing Points at the Intersection of a B-Spline and Surfaces 206
Constructing Points at the Intersection of Principle Object Axes and Surfaces 207
Shifting Points In a Direction 207
Shifting Points In Cylindric Coordinates 208
Laying Out Points on a Grid By Count 209
Laying Out Points on a Grid By Distance 210
Laying Out Points On a Circle 211
Generating Random Points 212
Laying Out Points On A Surface By Clicking 213
Laying Out Points On An Object Vertex By Clicking 213
Laying Out Points On An Object's Vertices 214
Laying Out Points Evenly On Curves 214
Laying Out Points On Curves With Prescribed Spacing 215
Laying Out Points On Curves by Clicking 215
Laying Out Points On Lines 216
Laying Out Points At The Center of Surface Holes 216
Laying Out Points In The View By Clicking 218

TABLE OF CONTENTS

Copying Existing Points 218
Moving Existing Points Into A New Group 218
Creating a Subset of Points With Greatest Spacing. 219
Auto-Corresponding Two Groups By Proximity 220
Auto-Corresponding 2 Groups by Inter-Point Distance 221
Averaging Points 221
Creating Points at the End of a Line 222
Constructing a Hidden Point 222
Creating Points at a Plane Cross Section: 222
Constructing Points Evenly Spaced on a Surface: 223
Constructing Points From Vectors 223
Constructing a Single Point through Patch Normal Shift 224
Scale Points 225
Copy Groups Excluding Obscured Points 226
Auto Filter to Faces 226
From Surface Faces 228
Closet points between 2 Surfaces 228
CHAPTER 9: CLOUDS 229
Point Clouds 229
Point Cloud Formats 229
Point Cloud Visualization 230
Cloud Display Control. 230
Clipping Planes 232
Meshing Formats 235
Scan Stripe Mesh Operations 235
Point Cloud Construction Options 238
From Existing Clouds 238
From Existing Clouds Uniform Spacing 239
From Existing Cloud Points 239
Random Data. 239
From Existing Point Group 239
Auto Filter to Faces 239
Create Empty Scan Stripe Cloud 239
Building Points from Point Clouds 240
Converting Clouds to Points 240
Filtering Clouds to Points 241
Filtering Clouds to a Plane 242
Filtering Clouds to Vectors by Resolving Points 243
Extracting Center Points From Scanned Spheres 245
CHAPTER 10: OBJECTS 249
Point Groups 249

TABLE OF CONTENTS

Frames 250
Frame Properties 252
Frame Construction 253
Spheres 257
Fit to Points 257
Enter 257
Sphere Section 257
B-Splines 257
Properties 257
Construction 258
Circles 260
Properties 260
Construction 261
Planes 262
Construction 262
Lines 263
Properties 263
Construction 264
Cylinders 265
Properties 265
Construction 266
Ellipses 268
Properties 268
Construction 268
Paraboloids 269
Properties 269
Construction 269
Cones 269
Properties 269
Construction 270
Surfaces 270
Offset Surfaces 270
From a Collection of Surfaces 270
By Dissecting Surfaces 270
Select Faces by Projecting Points 270
From Objects 271
From Plane, Cylinder, Sphere, and Cone 271
Tubular Surface from a B-Spline 271
From Point Groups 271
From B-Splines 271
From Plane and Closed B-Spline 271

TABLE OF CONTENTS

Fit from Bounding Curves and Internal Points. 271
Fit from Nominal Face and Actual Data 272
Polygonized Meshes 272
From Surfaces 272
From Cloud Points and from Selected Cloud Points 272
Colorized Mesh from Point Proximity 273
Perimeters 274
Properties 274
Construction 274
CHAPTER 11: WORKING WITH SURFACES 275
Surface Grouping 275
Merging Surfaces. 276
Dissecting Surfaces. 276
Duplicate Surface Faces 277
Surface Normal Conditioning 277
Indicating Point on Positive Side. 278
Reversing Surface Normals 278
Auto-Reversing Surface Normals 278
CHAPTER 12: INSTRUMENTS 281
Instrument Properties 282
Sensor Control 283
Scale Factor 283
Uncertainty Variables 286
Instrument Graphics (PCMM arms only) 288
Instrument Shots 289
Instrument Shot Modes 289
Shot Colors 290
Angle Only Shots 290
Using Instruments 290
Instrument Options and Properties. 292
The Instrument Interface 293
Starting an Instrument Interface 294
Running Multiple Instrument Interfaces. 296
Connection Configurations 296
IP-Based Instruments 297
IP Address Basics 297
Computer and Instrument Setup 297
Changing a Static IP Address. 298
Multiple IP Setup (Dual IP) 300
Measurement Simulation 300

TABLE OF CONTENTS

CHAPTER 13: INSTRUMENT QUICK-STARTS 303
Laser Trackers 303
Portable Arms 303
Total Stations 303
Photogrammetry 303
Laser Radar Interface 304
Room Scanners 304
Laser Projectors 304
CHAPTER 14: MEASURING WITH LASER TRACKERS 305
Laser Tracker Interface 306
Interface Overview 306
Beam Status 308
Target Naming 309
Measurement Control 310
Additional Controls 311
Targets and Retros 315
Measurement Profiles 321
Settings 333
RMS Monitor. 337
Beam Autoreset Mode 338
Tracker Pointing Behavior 338
Updating Graphics While Not Measuring 338
Running"Watch Update" Automatically 339
Measurement Requests 339
The Weather Station 340
Level Measurement 342
Monitoring Part Temperature 346
Instrument Checks 347
Tracker Utilities 353
Importing Spherical Data 355
Streaming Tracker Data Over The Internet 356
Viewing The Upcoming Group and Target 358
Instrument Toolbar 359
Beam Status 359
Homing the Tracker 360
Driving the Tracker. 360
Toggling Motors 360
Tilt Compensation 360
Active Target 360
Point Naming 361

TABLE OF CONTENTS

Measurement Modes. 361
Alarms 362
Operational Checks 362
Laser Tracker Quick-Start Guides 362
Automated Precision (API) 363
API Radian \& OmniTrack2 363
APIT3 366
APIT2+ 366
Faro Laser Trackers 368
Faro Vantage / Faro Ion / Faro Xi 368
Leica Laser Trackers 371
Leica AT402 / AT401 371
Leica AT960 / AT930 /AT901 374
T-Scan Interface 379
Leica Automation Interface 387
Leica Absolute Scanner (LAS) 20-8 390
CHAPTER 15: MEASURING WITH ARMS 393
Portable CMM Arms interface 394
Target \& Geometry Naming 395
Collection 395
Group Name 395
Target Name 396
Geometry Name 396
Button Control 396
Measurement Modes 396
Instrument Toolbar 426
Setting the Point Name 427
Measurement Modes 427
Measuring In The Toolbar 427
Checks/Utilities 427
Portable CMM Quick-Start Guides 428
API Axxis Arm (6 DOF) 428
API Axxis Scanner Arm (7 DOF) 431
Perceptron Contour Scanner (ScanWorks v4) 434
Perceptron Contour Scanner (ScanWorks v5) 441
Faro Arms 444
Romer/Cimcore Arms. 446
Romer MultiGage 450
Romer Absolute 452
Romer Absolute (SE) with Perceptron ScanWorks v5 Shark 455
Romer Absolute (SE) with Hexagon CMS Scanner 459

TABLE OF CONTENTS

CHAPTER 16: MEASURING WITH TOTAL STATIONS 463
Theodolite Manager 463
Cabling and Power Options 464
Adding a Theodolite to an SA Job 464
Measurement Modes 467
Theodolite Data Observer 472
Using Theodolites in SA 472
Survey Preparation: 472
Measuring Points. 473
Collimation 473
Mirror Cubes 474
Scale Bars 476
Bundle Adjustment 477
Mirror Cube Frame Construction 477
Theodolite and Total Station Quick-Start Guides 479
Leica TCRP, TDRA, and TS-Series 479
Leica Nova (MS60 \& MS50) 488
Sokkia Net1 495
CHAPTER 17: MEASURING WITH PHOTOGRAMMETRY 505
Photogrammetry Quick-Start Guides 505
Aicon Move Inspect 505
Creaform HandyProbe 507
GSIV-STARS 509
GSIV-Stars Photogrammetry Simulation 511
Instrument Properties for Simulation 511
Metronor Solo and Duo Systems 516
Vicon Tracker 521
CHAPTER 18: MEASURING WITH ROOM SCANNERS 523
Room Scanner Quick-Start Guides 523
Faro LS/Focus3D 523
Surphaser 525
Leica Geosystems ScanStation PXX 528
CHAPTER 19: MEASURING WITH LASER RADAR 535
Nikon Laser Radar 535
Toolbar 536
Target Naming 539
Measure/Inspection Location 540
Current Beam Location, SNR and Auto-Focus Limits 540
Measure and Advanced Target Manager 541
Output 542

TABLE OF CONTENTS

LR Operational Tests. 542
Single Point Measurements 542
Scanning Measurements 543
CHAPTER 20: OPERATING LASER PROJECTORS 545
Laser Projector Overview 545
Laser Projector Quick-Start Guides 546
LPT 546
Assembly Guidance 552
LAP CAD-Pro 556
CHAPTER 21: ALIGNMENT \& TRANSFORMATIONS 563
Review of Available Alignment Options 564
Instrument Locate Options: 564
Network Alignments 566
Additional Points Based Alignments. 566
Best-Fit Transformations 566
Point to Point Best-Fit 567
The Best-Fit Transformation Dialog. 568
Instrument-Based Best-Fit 575
General Best-Fit 575
Locate By Measuring Nominal Points 577
Best-Fit Points to Surfaces 579
Basic Operation. 579
Bundle Adjustment 583
Initial Guess 583
Scale-Bar Database 583
Selecting Targets to Bundle 584
Scale-Bar Weight Factors 584
Viewing System Errors 585
Beginning Computation 585
Local Minima 585
Weighting 586
CHAPTER 22: WATCH WINDOWS 587
Watch Window Types 588
Watch Instrument's Point. 589
Watch Point to Point 589
Watch Point to Point With View Zooming 589
Watch Closest Point 589
Watch Point to Objects. 590
Watch Three Point Frame. 590
Watch Two Point Axis Alignment 591
Watch Theodolite Observer Point to Point 592

TABLE OF CONTENTS

Watch Theodolite Observer's Point. 593

Watch Theodolite Observer's Data 593
Watch Window Options 593
Precision 593
Font 594
Text Color. 594
Background Color 595
Highlight Color 595
Arrow Settings 595
Group Name 596
Showing/Hiding Rows 596
Coordinate System 596
Frame of Reference 597
UDP Broadcast 597
Tolerances 598
Projection Options 598
Transparency 600
Transformation Tracking 601
Relationships with Trans-Track. 601
Transform in 6D using Instrument Updates 602
Big Data Window 602
UDP Broadcast 604
SA Remote 605
Setup. 606
Available Status/Commands 609
Google Glass App 609
Troubleshooting 612
CHAPTER 23: ANALYSIS 615
Geometry Fitting 615
About Planar Offset Methods 617
About Measured Side Settings. 619
The Fit Interface 621
Point List 625
Queries 629
Query Basics 629
Best Fit Points to Surfaces. 634
Vector Groups 634
Advanced Surface Fitting 643
Frame Wizard 647
CHAPTER 24: RELATIONSHIPS 651

TABLE OF CONTENTS

What is a Relationship 651
Definition of Relationship Types 652
Points Based Relationships 652
Object Orientation Relationships 652
Special Function Relationships 653
Geometry Relationships 653
General Relationship Properties \& Controls 654
Visual Controls 654
File Management Tools. 655
Projection and Fit Controls 655
Reporting Options and Controls 657
Measurement Associations 659
Measurement Trapping and Trapping Controls. 660
Properties \& Controls - Special Function Relationships 661
Group to Nominal Group 661
Points/Groups to Surface Faces 662
Properties \& Controls - Geometry Relationships 662
Minimizing Relationships 668
Move Objects by Minimizing Relationships. 668
Relationship Fit Settings. 670
Pipe Relationships 672
Using Pipe Relationships 674
Defining Pipe Relationships 674
Working With the Cut 678
CHAPTER 25: TOOLKIT INSPECTION 681
SA Toolkit 681
Relationships Tab 683
Projection Planes 683
Name Field 683
Geometry \& Compare to Nominal Geometry Relationships 684
Repeat Check Box 686
Other Section. 686
Inspection Tab 687
Instrument Alignment 687
Measurement Trapping 688
Sweep and Sweep \& Move 689
Helpful Tools for Inspection 690
Analysis Tab 693
Visualization 693
Construction 694
Fitting. 695

TABLE OF CONTENTS

Uncertainty 695
Scaling. 696
Reporting Tab 696
Reports 696
Dimensions 697
Callouts. 698
CHAPTER 26: GD\&T 701
Importing CAD with GD\&T Annotations 702
Creating GD\&T Annotations 703
Creation Options 703
Notes on Selection 706
Datum Annotations 707
GD\&T Feature Check Annotation Properties 708
GD\&T Dimension Tolerances 709
Graphical Placement of Annotations 710
GD\&T Entities 711
Datums and Feature Checks 711
GD\&T Alignment 715
Surface Alignment. 717
GD\&T Evaluation 717
Decimal Precision 718
Evaluation Zone/Length 718
Cylinder Coverage 718
GD\&T User Options 719
GD\&TWorkflow 721
Guided Inspection - Design 721
Guided Inspection - Rehearse 722
Guided Inspection - Inspect 724
Direct Data Association and Trapping 725
GD\&T Reporting 728
CHAPTER 27: DIMENSIONS \& CALLOUTS 729
Dimensions 729
Types of Dimensions 730
Working With Dimensions 730
Common Properties 731
Dimension Properties 732
Point to Point Dimensions 732
Point to Object Dimensions 734
Object to Object Dimensions. 735
Diameter / Radius Dimensions. 737

TABLE OF CONTENTS

Callouts 738
Creating a Callout View. 739
Types of Callouts 740
Callout View Properties 745
CHAPTER 28: REPORTING 747
SA Reports 747
The Report Designer 747
Creating an SA Report 748
Adding Items to the Dynamic Report 749
Adding Snapshots to the Report. 749
Adding Text to Report 750
Report Fields 750
Tables. 751
Modifying Items in the report 752
Events 752
Object Report Options 753
Quick Report 753
Creating a Quick Report 753
Creating a Composite Quick Report 753
Report Bar 754
Displaying the Report Bar 755
Using the Report Bar 755
Report Templates 756
Creating an SA Report Template 756
Generating the Report 758
CHAPTER 29: MEASUREMENT UNCERTAINTY 759
What is Measurement Uncertainty? 759
Measurement Uncertainty and Visualization in SA 760
Basic Uncertainty Computation Process for a Tracker/Total Station: 765
Basic Uncertainty Computation Process for a PCMM Arm. 767
Uncertainty for Points with Multiple Observations 768
Measurement Analysis with Uncertainty Fields 769
Point to Point Distance Uncertainty 769
Geometry Fit Uncertainty 770
How to Perform a Geometry fit with Uncertainty: 773
CHAPTER 30: UNIFIED SPATIAL METROLOGY NETWORK 777
What is USMN 777
What is USMN? 777
Weighted Bundle. 778
Using USMN 782

TABLE OF CONTENTS

Observations and Point Group Requirements for USMN.
782

USMN Dialog ... 785
Basic USMN Solution Process .. 796
CHAPTER 31: MEASUREMENT PLANS .. 797
About Measurement Plans... 797
Running a Measurement Plan... 798
Quick MPs ... 799
Working With Measurement Plans.. 801
Protecting Scripts ... 803
Generating SDK Code.. 803
The MP Editor ... 804
Overview ... 805
About Commands... 806
Entering Commands ... 810
Editing Commands .. 810
Resizing Columns.. 812
Hard Coding Argument Values .. 812
Referencing Arguments .. 813
Using Variables ... 814
Connections View ... 815
Commenting Out Commands .. 815
Setting Breakpoints ... 816
Locking Commands ... 817
Entering Comments... 818
Indenting Commands .. 818
Setting Command Colors .. 818
Writing Your First Script .. 819
Debugging... 822
Stepping Through a Script ... 822
Debug Mode... 822
MP Watcher .. 823
CHAPTER 32: SA SDK.. 825
SA SDK .. 825
SDK Engine ... 826
Automatic Code Generation... 826
Setting Up an SDK Project.. 827
Sending Commands to SA... 831
CHAPTER 33: THE OPC INTERFACE ... 835
What Is OPC?.. 835
SA \& OPC.. 835

TABLE OF CONTENTS

Prerequisites 836
Configuring the OPC Server 836
Step 1: Creating a DCOM User 836
Step 2: Disable Windows Firewall 837
Step 3: Adjust User Account Control Settings 837
Step 4: Install SA. 838
Step 5: Install OPC Core Components 838
Step 6: Register the NRK OPC DA Server 838
Step 7: Enable the OPC Server in the SA Configuration 838
Step 8: Test the Server with a Local Client 838
Step 9: Configuring System-wide DCOM Settings 839
Step 10: Configure the OPC Server's Specific DCOM Settings 840
Configuring the OPC Client 841
Step 1: Create an OPC User Account \& Install Components 841
Step 2: Configure System-Wide DCOM Settings 841
Step 3: Test the OPC Server Connection 842
Using SA's OPC Server 842
MP Support 843
CHAPTER 34: MACHINE CALIBRATION 845
SA Machine 845
Robots in SA 846
Controlling a Robot from SA 849
Collecting Calibration Measurements 850
Calibration Interface 851
Denavit-Hartenberg Notation 854
CHAPTER 35: TUTORIALS 857
Working With Frames 857
Creating Entities to Work With 857
Creating Frames 862
Activating Frames 864
Conclusion 865
Construct and Modify Objects 866
Creating and Modifying a Sphere 866
Conclusion 868
View Control 869
Changing Render Settings 869
Change Background Color 869
Hide and Show 870
Zoom, Pan and Rotate 872
Conclusion 873
Basic Point Analysis 874

TABLE OF CONTENTS

Creating Entities to Work With 874

Calculating Point to Point Distance .. 874
Calculating Point to Object Distance ... 875
Calculating Multiple Points to Object Distances .. 876
Best Fit Points to Points .. 880
Point Names Are Important .. 880
Fitting the Points .. 882
Reviewing the Fit... 885
Best Fit Geometry from Points .. 886
Best Fit a Plane to Points ... 886
Fit Tolerance .. 887
Controlling Probe Offset... 888
Creating Entities ... 889
Exercise.. 889
Conclusion ... 891
Creating Callouts... 892
Creating A Callout View... 892
Creating Callout Annotations .. 892
Locking the Callout view... 894
Inspection with GD\&T .. 895
Importing CAD with GD\&T annotations ... 895
Creating GD\&T Datums and Feature Checks ... 897
Inspecting GD\&T Datums and Feature Checks... 897
Reporting the Results .. 898
Conclusion .. 899
Reporting With SA Reports .. 900
Creating an SA Report.. 900
Creating Relationships .. 903
Building the Relationships... 903
Conclusion .. 908
Minimizing Relationships .. 909
Relationship Minimization.. 909
Local Minima ... 911
Incorporating the Tabletop and Centerline.. 913
Conclusion... 915
Geometry Relationships... 916
Fit and Compare Relationship... 916
Fit Only Relationship.. 918

Compare Only Relationships .. 919
Conclusion ... 920

TABLE OF CONTENTS

Designing a GD\&T Inspection 922
Importing CAD with GD\&T annotations 922
Creating GD\&T Datums and Feature Checks 923
Designing the Inspection Routine 923
Rehearsing a Designed Routine 924
Conclusion 925
CMM Arm Inspection 926
General Part to Inspect. 926
Adding and running the instrument interface 926
Establishing Control Points 927
Measuring the Bores 928
Measuring the Top and Side Face 929
Fitting Geometry to the measurements 930
Reporting the results. 931
Laser Tracker Inspection 933
General Part to Inspect 933
Adding and running the instrument interface 933
Establishing Control Points. 934
Measuring the Room 936
Analyzing the data 940
Reporting the results. 940
Basic USMN 942
USMN Sample File 942
Conclusion 946
Running Multiple Laser Trackers 947
Configuration Requirements. 947
Adding the Instruments 947
Common Network 948
Working with both instruments simultaneously. 949
APPENDIX A: KEYBOARD SHORTCUTS 953
APPENDIX B: MATH REFERENCE 955
Linear Least Squares Adjustment. 955
Basics of Spatial Transformations 956
The old viewpoint debate: Are we describing or transforming? 957
Unit Rotation Matrices 958
Compound Rotations. 958
APPENDIX C: END USER LICENSE AGREEMENT 961
Definitions 961
License Grant 962
License Fees, Charges and Taxes 963

TABLE OF CONTENTS

Protection of Licensed Product ... 963

Warranty... 965
Negation of Proprietary Rights Indemnity .. 967
Termination/Cancellation ... 967
Limitation of Liability ... 968

Licensee's Acceptance .. 970

Welcome

> Congratulations on your purchase of SpatialAnalyzer, the world's leading portable metrology software platform. SpatialAnalyzer is a traceable, graphical metrology software package that can simultaneously communicate to virtually any number and type of dimensional measurement systems and perform complex analysis tasks with ease.

SA is used in many high-profile applications throughout a wide array of industries, from manufacturing to science and research. Some of these industries include:

- Aerospace (aircraft and spacecraft)
- Shipbuilding
- Particle Accelerators
- Nuclear Energy
- Automotive
- Heavy Equipment
- Machining

You are about to embark on learning how to adeptly use the most powerful portable metrology software ever created. We think this learning period will prove to be remarkably short. Most users are able to confidently acquire and analyze data after only one day. In fact, it's quite possible that you can start using SpatialAnalyzer simply by performing a few trial and error "test drives". The software is robust, and in general, it will politely inform you if you try something impossible.

We suggest that you may ultimately save time and grief by taking the time to read through this manual. Don't be too particular about memorizing anything-after all, this document is available from
within SpatialAnalyzer. We hope you will obtain an understanding of the philosophy behind SpatialAnalyzer by reading this manual. If you are unable to read the manual, it also serves as an excellent reference when you have questions.

Above all else, the goal of our work has been to develop a software package where users of all levels of expertise may actually enjoy taking and analyzing measurements and may have confidence in the numbers they report.

About This Manual

New River Kinematics (NRK) regularly updates this manual to incorporate the most recent updates and changes to SA. However, due to the fact that this manual is currently under development, and due to the rapid pace of NRK's software development, you may encounter out-of-date material. NRK is aware of this and is working to bring content up-to-date.

SpatialAnalyzer comes in several packages. In cases where it may be ambiguous, we try to make it clear if a capability is not available in a specific SA package.

If you have any comments or suggestions for this manual, or if you notice any errata, please report them to support@kinematics.com.

Conventions

Note: An important note that accompanies the text appears in a box like this.

A standard set of conventions have been established to help ensure that this document is easy to read. The established standards are described here:

The titles of windows and dialogs will appear like this: Best Fit Transformation.

Menu choices appear like this: Construct>Points>Enter.
Checkboxes, dropdowns, and other control choices appear like this: Show Scale Indicator in View.

Button titles appear like this: Apply.
Keyboard combinations appear like this: Ctrl+D.
Named fields or boxes that subdivide areas of the user interface will appear like this: Degrees of Freedom.

Filenames appear like this: License10734.met.
Text that you should type in will appear like this: Nominal.
New terms will look like this: Relationship Minimization.

Hyperlinks or links to other locations in this document look like this: support@kinematics.com.

A Closer Look

Additional information that is not critical, but may be of interest to curious readers, is printed in an box like this.

WARNING: UNITED STATES COPYRIGHT LAW PROTECTS THIS MANUAL, ASSOCIATED SOFTWARE, ALGORITHMS, AND VISUAL CONTENT.

This Page Intentionally Left Blank.

Getting Started

You are about to start your journey toward learning the world's most powerful portable metrology software package. But you can't take the first step until the software's installed!

SA Packages

SA is available in three forms: SA Professional, SA Ultimate, and SA Machine. The details of the functionality provided in each of these packages in provided below.

SA Professional

SA Professional with Native CAD is the professional measurement, alignment, inspection, analysis, and reporting software for all portable metrology instruments. In addition to all essential measurement needs, it includes several key inspection features, geometry inspection, and measurement automation.

MEASUREMENT
SA Professional offers 100\% traceability from measurement to reporting. All measurement data is stored alongside time stamps, instrument information, weather data, and other measurement parameters. Log files track user actions, fit results, and more, allowing you to see the entire history of the job file.
measurements to a known coordinate system. SA Professional includes a variety of alignment methods ranging from traditional 3-2-1 alignments to more advanced surface fits.

BUILD
The Relationship functionality offers an easy way to calculate and observe part deviation. Relationships are dynamic in nature and update automatically if part alignment or data changes.

EVALUATION \& ANALYSIS
A user-friendly interface permits both graphical and numerical depiction of measurement uncertainty, enhancing your perspective of measurement quality.

REPORTING

SA Professional offers quick, user-friendly reporting functionality. Quick Reports are ideal for on-location reporting, report templates are perfect for repetitive work, and the Report Designer allows you to drag and drop items to develop custom reports using tables, charts, and graphics.

GD\&T INSPECTION
GD\&T allows you to import CAD with GD\&T annotations, create annotations manually, and inspect to GD\&T standards with real-time reporting.

GEOMETRY INSPECTION

Geometry inspection enables you to define design-based inspection routines from a CAD model or primitive geometry.

NATIVE CAD
Native CAD provides import support for such major applications as CATIA V4, V5, Pro/Engineer, SolidWorks, Unigraphics, and other CAD formats.

SA Ultimate

SA Ultimate is the premier measurement, optimization, analysis, reporting, and automation software suite for all portable instruments. It includes everything contained in SA Professional, plus the following features:

REAL-TIME ALIGNMENT
Transformation Tracking allows you to track moving parts in real-time so that you can monitor a part's position as it is guided into place.

ADVANCED FIT OPTIMIZATION
Relationship minimization provides the power necessary for ad-
vanced alignments and can help bring an out-of-tolerance part back within tolerance. You can also define fit envelopes to satisfy multiple constraints/requirements.

COMPLEX INSTRUMENT NETWORKS

USMN is an extremely powerful feature that leverages the uncertainty characteristics of different instruments to provide a much more accurate instrument network than that of traditional alignment methods. It is used by many metrology groups to solve large-scale networks such as accelerator rings, full submarine surveys, and large machinery analysis.

AUTOMATION
The Measurement Plan and SA SDK functions can add a significant layer of automation to your processes.

Generating simple to complex scripts can greatly improve workflow and productivity, reducing analysis time from days to minutes while eliminating errors and saving significant resources.

PIPE FITTING
The Pipe Fitting function is used in large piping applications when precision cuts must be determined.
Precision measurements and optimization greatly improve accuracy, ultimately reducing the cost of rework.

DATABASE OUTPUT

Database output is an additional reporting feature that gives you the ability to transfer SA data to databases and track projects/data longterm.

SA Machine

SA Machine with Native CAD contains all features of SA Ultimate, but also allows users to interface with robots and CNC machines. This permits calibration and real-time compensation of robots and largevolume CNC machines to high degrees of accuracy. It also enables robotic scripting, teach pendant behavior, and linear or joint space robotic control.

Feature Summary

Features	SA Professional	SA Ultimate	SA Machine
Measurement:			
Traceability	Ω	\checkmark	Ω
Simultaneous Instrument Interfacing	Ω	Ω	Ω
Over 120 Supported Instruments	Ω	\checkmark	\checkmark
Alignment:			
Best Fit	Ω	\checkmark	Ω
Feature Based	Ω	\checkmark	Ω
Points to Surfaces	Ω	\checkmark	\checkmark
Standard Instrument Network Bundle	Ω	Ω	Ω
Relationship Fitting		\checkmark	Ω
Advanced Network Optimization (USMN)		Ω	Ω
Inspection:			
Geometric Dimensioning \& Tolerancing	Ω	Ω	Ω
Geometry Inspection	\checkmark	\checkmark	\checkmark
Build:			
Relationships	Ω	\checkmark	\checkmark
Watch Windows	Ω	Ω	Ω
Transformation Tracking \& Guiding		\checkmark	Ω
Evaluation \& Analysis:			
Queries	Ω	Ω	Ω
Spatial Transformations	Ω	Ω	Ω
Robust Fit Algorithms (NIST \& PTB Certified)	\checkmark	\checkmark	\checkmark
Measurement Uncertainty Analysis	Ω	Ω	Ω
Relationship Optimization (independently moving objects)		\checkmark	Ω
Reverse Engineering		Ω	Ω
CAD Interface:			
Standard CAD Exchange (IGES, STEP, etc.)	Ω	Ω	Ω
Native CAD Access (CATIA, ProE, NX, etc.)	Ω	\checkmark	Ω
Automation:			
Automatic Measurement	Ω	Ω	Ω
Measurement Plan Scripting		Ω	Ω
Software Development Kit (SDK)		Ω	Ω
SA Reporting:			
Standard Output (Excel, Word, PDF, Text)	Ω	\checkmark	\checkmark
Graphical Callout Annotations	\checkmark	\checkmark	\checkmark

Features	SA Professional	SA Ultimate	SA Machine
Quick Reports	Ω	Ω	Ω
Drag \& Drop Reporting	Ω	Ω	Ω
Database Output (ODBC)		\checkmark	Ω
Pipe Fitting:			
Pipe Cut Optimization		Ω	Ω
Robotics:			
Kinematic Modeling			Ω
Kinematic Calibration			Ω
Direct Motion Control			Ω
Graphical Simulation			Ω

System Requirements

SpatialAnalyzer is capable of running on most modern computing platforms, both 32 and 64-bit.

Minimum Requirements

Microsoft Windows 7 or later
4 GB RAM
560 MB free disk space for installation (more for your data files)
1024×768 screen resolution
Microsoft .NET 4.0 Runtime (if using the Laser Radar Interface)

Recommendations for Optimal Performance

3 GHz or faster Dual-Core 64-bit processor
Windows $7^{\text {TM }}$ (64-bit)
8 GB system RAM (64-bit systems)
1280×1024 or higher screen resolution
Hardware-accelerated graphics card supporting OpenGL®
1 GB of free hard disk space

Supported Auxiliary Input Devices

3DConnexion ${ }^{\circledR}$ SpaceNavigator ${ }^{\text {TM }}$ (USB)
3DConnexion ${ }^{\circledR}$ SpaceExplorer ${ }^{\text {TM }}$ (USB)
3DConnexion ${ }^{\circledR}$ SpacePilot ${ }^{\text {TM }}$ (USB)

3DConnexion ${ }^{\circledR}$ SpacePilot ${ }^{\text {TM }}$ PRO (USB)

Check My Computer

SA provides a utility named Check My Computer that detects certain system configuration issues that may result in errors or problems while running SA. While this tool does not detect all issues-and while some checks may fail even though you never experience problems in SA-this is a useful diagnostic tool to use when you do encounter a problem. This tool does the following:

- Checks for certain problematic software known to interfere with certain aspects of SA operation.
- Verifies that a default printer is installed.
- Checks for TCP/IP availability (a network interface).
- Checks firewall settings.
- Ensures that your computer's network interface provides support for UDP broadcasting.
- Ensures that your computer's network interface provides support for socket communication and that it is not blocked.
- Checks your User Account Control settings (Windows 7 and later) to ensure they're not set too high.
- Provides convenient access to system information and network configuration settings.
If you encounter an issue running $S A$, it is recommended to run this utility to check for problems and to contact support if necessary to find a resolution.

To Run the Check My Computer Utility

- From SA, Select Help>Check My Computer, or
- From the Windows Start menu, in the SA install folder, select the Check My Computer entry.
- In the Main toolbar, click the SA Network ${ }^{[\underline{e n}}$ icon.

Installation

Installing SA

The SA Installer will guide you through installing the following:

- SpatialAnalyzer ${ }^{\text {TM }}$ Application
- Documentation (this document)
- Hardware lock driver

The installer is included with your provided USB flash drive and is also available for download at www.kinematics.com/download.
To Install SpatialAnalyzer:

1. Double-click SpatialAnalyzer 2016.XX.XX-Installer.exe.
2. Choose a destination folder (the default folder is usually preferable), then click Next.
3. Leave both components (hardware driver \& SA application) checked unless you have a specific reason to deselect a component. (For instance, if you are an OEM running a software lock, you would not need to install the Sentinel Hardware Driver). Click Next.

Note: Updated SA versions may require a new version of the hardware lock driver, so it is best to leave that option checked. Older drivers will be updated, if necessary.
4. Choose additional install options. The Check My Computer utility will check your system for some common configuration issues that often cause problems with instrument communication in SA. When done selecting options, click Install.

SA is continuously updated with improvements and new features, and new beta releases are posted frequently. If your maintenance supports upgrading, you are encouraged to download the latest version and explore the newest functionality.

Installer Command-Line Options

The SA Installer supports several command-line options. These are typically most useful for IT departments that wish to do a silent or automated install. The most command-line options can be combined and are as follows:

- /?. Lists the command line options.
- /S. Performs a silent install (this must be a CAPTIAL S). The installer will operate in the background with no user intervention.
- /CREATESHORTCUT. Creates a desktop shortcut when run in silent mode.
- /TEMPUNITS=[Celsius, Fahrenheit]. Sets the default temperature units for the install. If omitted, Fahrenheit will be used as a default, unless SA was installed previously, in which the temperature units will not change. Ex. usage: /TEMPUNITS=Celsius.
- /LENGTHUNITS=[Inches, Feet, Millimeters, Centimeters, Meters]. Sets the default length units for the install. If omitted, inches will be used as a default, unless SA was installed previously, in which the length units will not change. Ex. usage: / LENGTHUNITS=Millimeters.

To Install SA with Command-Line Options:

- At the command line, follow the executable name with the options. For instance, the following installs SpatialAnalyzer silently in the background while also creating a desktop shortcut and setting the length units to millimeters: SpatialAnalyzer 2014.XX.XX-Installer.exe /S /CREATESHORTCUT /LENGTHUNITS=Millimeters

To Check for SA Updates:

- Select Help>Check for SA Updates,
- Choose Help>SpatialAnalyzer License Management>View Maintenance Support and Subscription Status, then click the Check for Updates button, or
- Navigate to http://www.kinematics.com/products/spatialana-lyzer/download-software.html.

Instrument Drivers

Most portable measurement devices (instruments) require a driver to be installed in order to properly communicate with SpatialAnalyzer. When configuring a new instrument, it is always best to follow the instrument manufacturer's recommended installation procedure and to install their software components/drivers as provided by the hardware manufacturer. However, the minimum drivers required for communicating with SA for most supported instruments are provided in a single bundled instrument driver installer provided by NRK. This installer is included with the provided USB flash drive and is also available for download at www.kinematics.com/download.

You can also locate drivers for your instrument on NRK's FTP site at ftp://ftp.kinematics.com/pub/SA/Install/Driver Downloads/.

To Install Instrument Drivers using the Bundled Instrument Driver Installer:

1. Double-click SA Instrument Mfg Drivers.exe.
2. Select the desired instrument drivers to install and click Next.
3. You will be guided through the installation for the selected instruments. Note that the installers are usually provided by the hardware manufacturers, and each one is different. Contact NRK if you have problems while installing.

Licensing

Your SpatialAnalyzer license is controlled by a USB hardware lock. The hardware lock and driver must be installed before using SpatialAnalyzer. The driver is installed by default as part of the SA install.

Meta-key File Installation

Meta-key files (extension .met) are used to upgrade or extend a license. They are small encrypted files that the software opens and uses to enable additional capability in your license. Normally, a new user with a hardware lock will have no need for a meta-key. However, if software licensing is extended or renewed, a user may receive a meta-key to extend the license for an additional period of time. By placing this meta-key file in the Analyzer Data\License directory, the hardware lock can be upgraded. When the file is present in the License folder, it supersedes the information that has been hard-coded onto the hardware lock.

Meta-keys have filenames like License12345.met, where the 5-digit number matches the serial number on the key.

To install an SA Meta-key File:

Note: If a hardware lock is moved to a different computer, the meta-key file must be transferred with it by copying the file into the new computer's Analyzer Data\License folder. Failure to do this will result in the hardware lock reverting to its original license settings.

1. Double-click the .mez file you received from NRK and SA will automatically install it.
2. Ensure that the hardware lock with the matching serial number is installed in the USB port.
3. Run SpatialAnalyzer.
4. Choose the Help>SpatialAnalyzer License Management>View Current License Information menu option to verify your license.

Viewing Your License Information

Occasionally-particularly when contacting customer support-it may be necessary to examine the details of your SpatialAnalyzer license, such as the serial number, user and company, upgrade date, and available software components. You can view the details of the current license in use at any time.
To View the Current License Information

1. From the $S A$ menu, select Help $>$ SpatialAnalyzer License Management>View Current License Information.
2. A window will be displayed showing your license details, and this text will be automatically copied to the Windows clipboard.

A Closer Look

When SA starts up, it first looks for a hardware lock. It retrieves the license information and serial number from the hardware lock, then checks your Analyzer Data \License folder to see if there is a meta-key file matching the hardware key's serial number. If found, it uses the meta-key file to update the license information from the lock.

You may also wish to view your maintenance subscription informa-
tion, which will indicate the date software maintenance will expire.
To View Your Maintenance Subscription Information:

- From the menu, select Help > SpatialAnalyzer License Management > View Maintenance and Support Subscription Status.

To Request Renewal for Your Maintenance and Support Subscription:

- Select Help > SpatialAnalyzer License Management > Request Maintenance and Support Renewal, or
- Choose Help > SpatialAnalyzer License Management > View Maintenance and Support Subscription Status, then click the Request Upgrade/ Renewal button.

Certification

SpatialAnalyzer has been certified by the National Institute of Standards and Technology (NIST), the Physikalisch-Technische Bundesanstalt (PTB), and the National Physical Laboratory (NPL).

How to Get Help

Documentation

If you need help, the easiest source of information is the SA User Manual (this document). This document is in PDF format and is fully searchable.

To Access the SpatialAnalyzer User Manual:
Do one of the following:
Click the User Manual icon in Main Toolbar,
Select Help>User Manual, or
In the Windows Start Menu, navigate to the SA install folder, then the Documentation subfolder, and select the SpatialAnalyzer User Manual link.

Every SA Release has a complete Readme file documenting every change to the software, organized by software version. This is often a useful source of information, particularly with determining instrument driver compatibility with a given SA version.

To View the SA Readme File:

- Select Help>View the SA Read Me File, or
- From the Windows Start Menu, navigate to the SA install folder, then the Documentation subfolder, and select the Release

Notes link.

Customer Support

Tip: We recommend against \# contacting support personnel directly via their e-mail address or phone number. Doing so may result in a delayed support response, as the support individual may be out of the office or otherwise unreachable.

If you need help setting up or using SpatialAnalyzer, there are several ways that you can reach customer support:

- E-mail. support@kinematics.com
- Telephone. Dial +1 (757) 565-1500 and choose the support option (option 1). Be aware that this will transfer you directly to a voice mailbox, but your call will be returned promptly.
- Web. Navigate to www.kinematics.com and choose the support link, or from within SA, select Help>Visit NRK Website!

Regardless of how you contact us, we try to respond to all support requests in less than 24 hours.

Context-Sensitive Help

SA has a context-sensitive help system wherein you can click on menu items, interface components, or select dialogs in order to be directed to that topic in this User Manual.

To Initiate Context-Sensitive Help:

1. In SA, press Shift + F1. The mouse cursor icon will change Soto indicate that you are now in context-sensitive help mode.
2. Click on a menu item, toolbar item, or interface item to be directed to the topic in the user manual.

Some dialogs have a question mark in their upper-right corner. Click this question mark to be directed to the appropriate topic in the documentation.

Tutorials \& Sample Files

SA comes with a variety of sample files to demonstrate some of the key features of SA. Most of these sample files are used in the Tutorials chapter toward the end of this manual.

To Open a Sample File:
From the menu, select Help>Open Sample SA Files.

Navigating this Users Manual

This users manual is quite large and detailed and it can be difficult to know where to start. The following is a grouping of chapter headings and a brief synopsis of what is contained within each group. The idea
is to help you know where to go in order to find the information that you need.

An overview of fundamental concepts and guiding principles

SA Fundamentals
This chapter contains a select of fundamental principles that are considered central to the operation of the software. These include subjects such as:

- The architecture of how instruments are connected
- The basic definition of an object
- How measurements are linked to instruments
- How and when measurements are compensated
- Understanding the working frame

Getting into the details of operation

Exploring the User Interface
This chapter provides a review of the basic tool bars and how they are used to manage the data contained in a measurement job.

The Graphical View
As a graphical software, the ability to effectively manage and work with points, objects and surfaces in 3D space is essential. This chapter provides the tools to work effectively and report features contained in the graphical view.

Working in SA
The majority of basic operations can be found in this chapter. Its a catch all for general operation.

Working With Files
A big part of measurement is managing job files. This section includes important subjects such as:

- Creating new files
- Import and export operations
- Backups and restore points
- CAD formats

The core of measurement - Points and feature measurement

Points
Points are the basis from which virtually all analysis is performed in portable metrology. This chapter goes into depth on how points are
architected from observations how their properties are managed, and various ways to build points and use them for comparison.

Objects
While points are the key to measurement those measurements need to be used for analysis of features such as geometric objects. The basic geometry types, their inherent properties and construction is reviewed in this chapter (see Analysis for geometry fitting).

Working with Surfaces

Analysis is typically either a comparison of points to a regular geometric shape or a CAD model or surface. This chapter provides some fundamental concepts necessary for working with CAD models and surfaces.

Working with Instruments

Instruments

An instrument model and the measurements associated with it are saved within an SA Job. The functions essential to managing these instruments are included in this chapter and include:

- Instrument properties
- Scaling an instrument
- Instrument uncertainties

This chapter also provides an overview of how to connect to a live instrument

- Adding Instruments
- Overview of Instrument interfaces
- Connection methods
- Managing IP based instruments
- Measurement simulation

Measuring with Laser Trackers

Details on the laser tracker interface and its operation. Quick-Start information for specific trackers can be found at the end of this chapter.

Measuring with Arms
Details on the PCMM arm interface and its operation. Quick-Start information for specific arms can be found at the end of this chapter.

Measuring with Total Stations
Details on the Theodolite Manager and both theodolite and total station interfaces and their operation. Quick-Start information for spe-
cific theodolites and total stations can be found at the end of this chapter.

Measuring with Photogrammetry
Details on photogrammetry interfaces and their operation. QuickStart information for specific photogrammetry devices can be found at the end of this chapter.

Measuring with the Laser Radar
Details on the Laser Radar interface and its operation.
Measuring with Room Scanners
Details on the room scanner interfaces and their operation. QuickStart information for specific room scanners can be found at the end of this chapter.

Measuring Operating Laser Projectors
Details on the Laser Projector interfaces and their operation. QuickStart information for specific photogrammetry devices can be found at the end of this chapter.

How to effectively move and align measurements for analysis

Alignment and transformations
This chapter provides a list of possible alignment options and the steps to conduct these alignments.

Live view and build it functionality

Watch Windows
Watch windows provide the ability to get a live feedback on a point or objects position relative to any other point or object in a job. This chapter discusses how.

Analysis, inspection refined alignment operations

Analysis
The fundamentals of geometry fitting, point offset compensation, and error visualization are presented here.
Relationships
Relationships are dynamic links between points and objects. They can be used to build dynamic geometry, continually updating vector groups and for the most advanced of alignment operations.

Toolkit Inspection
Geometry Relationships are very powerful tools and have become
the centerpiece for dynamic inspection. The SA Toolkit provides both quick access to important menu features and a streamlined process flow.

GD\&T
Standardized inspection is a separate analysis process intended to be true to the ASME or ISO standard of your choice.

Dimensions \& Callouts
Dimensions and callouts provide the tools you will need to annotate the graphics both for operator feedback and reporting.

Reporting
This chapter is dedicated report creation and editing.

Measurement Uncertainty and Unified Spatial Metrology Networks

Measurement Uncertainty
Review of uncertainty analysis
USMN
Advanced uncertainty based network alignments.

Scripting and Automation

Measurement Plan
SA provides a powerful scripting environment called Measurement Plan for easy automation of just about any task that can be performed.

SA SDK
SDK provides a means by which to write custom applications that utilize Measurement Plan functionality within Visual C++, VB.NET, or other development environments that support ActiveX controls.

Specialized functionality

The OPC Interface
OPC as a communication standard that enables various devices in a manufacturing environment to communicate among themselves. SA Ultimate provides OPC data server functionality.
Machine Calibration
SpatialAnalyzer has the unique ability to integrate portable metrology measurements for the calculation of true metrology-compensated robot and CNC machine calibrations.

References

Tutorials
This chapter contains an assortment of tutorials covering SA's basic functionality.

Keyboard Shortcuts
A printable page of useful keyboard shortcuts.
Math References
A selection of useful references for basic calculation processes carried out within SA.

End Users License Agreement
The SA license agreement.

SA Fundamentals

It is important to have a good understanding of SA's "modus operandi". Having a good fundamental understanding of how SA operates will prove to be extremely useful and will make you a more effective user of the software. In this section, we'll describe some of the fundamental principles surrounding SA and its use.

Architecture

Figure 3-1. The components involved in measuring with an instrument in SA. From left to right: the Host (SpatialAnalyzer itself), the Interface, and the Instrument.

SA has been designed from the ground up with a very decentralized concept of operation. That is, the software's various parts do not necessarily need to be running on the same computer. Because of its network architecture, SA is able to communicate with its various instrument interfaces via the TCP/IP network protocol, which permits a number of interesting capabilities. In addition, instruments themselves can communicate to SA through a wide array of protocols/ interfaces, including TCP/IP, Serial RS-232, Bluetooth, and USB. Each method requires that the settings be configured to allow proper communication between SA and the instrument(s).

There are three main components to an SA configuration: The host

SpatialAnalyzer session, the instrument interface, and the instrument (see Figure 3-1).

Host SpatialAnalyzer Session

The host SpatialAnalyzer session is an instance of SA running on a computer that will be the destination for measured data. While it is usually the same computer as the one running the instrument interface (see Figure 3-2), it can be any computer that is connected via TCP/IP on the local network to the computer running the instrument interface (see Figure 3-3).

The flexibility provided by the separation of host, interface, and instrument means that you can run multiple instruments and interfaces all in the same SA job.

Figure 3-3. A host SA session and an instrument interface running on different computers.

Instrument Interface

The instrument interface is the application that directly connects with an instrument, "speaks the instrument's language", and directs measured data to the host SA session. When starting the instrument interface, you must choose which SA session will be the destination for measured data--if multiple computers on a network are all running SA, any one of them could have measured data sent to it. If not on the same computer, the host SA session should be located on the same network as the instrument interface. You must also define how the interface should connect with the instrument. (For example, which COM port, or using which IP address?)

There are two primary requirements in order to start up an instrument interface:

- In order for a host SA session to be a destination for measured data, you must add the appropriate instrument to the job file on the SA host, and it must be discoverable on the network.
- In order to connect to the instrument, the interface must be able to communicate with it: Either directly via an interface such as USB or Bluetooth, or via a network using TCP/IP.
A single instrument interface can connect to only one SA host session and only one instrument at a time. However, any one computer may run multiple instrument interfaces (connected to different instruments) at the same time.

The instrument interface is the mediator between the SA host and the instrument. The interface sends commands to the instrument to control its behavior, and the instrument sends data and state information back to the interface. The interface then grooms this data as necessary and sends it on to the SA host.

Instruments

Figure 3-4. A single computer connected directly to an instrument via TCP/ IP. This is the most common setup.

Each instrument must be able to communicate with its respective instrument interface, and therefore must be set up correctly to talk to the computer running the interface. This is handled in a number of ways depending on the method that the instrument uses to connect to the computer. Detailed information on the proper setup for instruments using each communication protocol is found in the Instrument Interfaces section.

The following graphics illustrate just a few of the many possible ways to connect instruments with SpatialAnalyzer.

In Figure 3-4, since the instrument is connected directly to the host computer via a network cable and the TCP/IP protocol, no other communication hardware is required. The interface runs on the same computer as the host SA session. This is the most common way to connect in SA.

Figure 3-5. Two computers connected directly to the host computer: One via USB, the other via TCP/IP.

Figure 3-6. Multiple instruments and computers on a local network connected via TCP/IP and an ethernet switch. The interfaces may be running on a different computer than the host.

In Figure 3-5, one instrument is connected via USB, and the other through TCP/IP. The instruments are connected directly to the same computer on which the instrument interfaces and the host SA session are running. Only one instrument might be running at a time, or two instrument interfaces might be running simultaneously in a single session of SA.

With this configuration (Figure 3-6), a connection to the internet is not used. Instead, one or more instruments and one or more computers are connected to a local network through a network hub or switch (and the TCP/IP protocol). One SA host computer may be running instrument interfaces for all instruments, or the interfaces may be run on separate networked computers. Or, three instances of SA might be running on three different computers to control the three different instruments.

While the configuration in Figure 3-7 is rare, it is technically possible. In this case, an instrument is connected via TCP/IP over the internet to an instrument interface, perhaps on the other side of the world. The interface then connects to the SA host via the local network. As long as you can ping the desired instrument from the computer running the instrument interface, you can connect to it.

Figure 3-7. Networked configuration. Instrument and interface connected via TCP/IP over the internet, and the host SA session is connected to the interface via a local network.

As you can see, the networked architecture of SA lends immense flexibility to the way that you measure and operate on data. With this setup, it is possible for an operator in a metrology office to control a laser radar hanging from a gantry crane in a facility on the other side of the world. Or, one workstation might be set up to receive measurement data, and three operators with laptops might measure data with their own instruments and send it to the receiving workstation.

While there are many different configurations and possibilities, most users end up with one of the first three configurations illustrated above.

Selection Filtering

In any SA file, there are four main types of entities. Three of them have a represented position in space (that is-they have a position and, with the exception of points, an orientation), and the fourth encompasses everything else. These entity types are described below:

- Points. This includes measured points (recorded by an instrument) and constructed points (created via any other method).
- Instruments. This includes only measurement instruments.
- Objects. Anything that has a position and orientation in space that is not a point or instrument is an object. This includes entities such as lines, point groups, vector groups, cylinders, spheres, planes, surfaces, and point clouds.
- Other. Anything that is not a point, object, or instrument. For example, relationships, Measurement Plans, scale bars, charts, and vector groups.

Knowing these four entity types is important, because most commands in SA are filtered for the proper entity type. For instance, the Edit>Delete Objects command only allows selection of objects-attempting to select a point will choose its parent point group instead (because a point is not an object, but a point group is).

Double Colon Format

When referring to an entity in your SA file, it is important to know where it is organized in your job file. For instance, in what collection is a specific surface located?

You will notice a specific syntax used in SA in various dialogs to describe the organizational location of an item in SA. A specific point is referred to by listing its containing collection, enclosing point group, and target name separated by pairs of colons, which act as separators:

Measured::Tie-Ins::3
This is an unambiguous reference to the point named 3 in the point group named Tie-Ins, which is inside the collection named Measured.

Objects and other entities have a similar syntax, but only the collection and entity name are used:
Nominal: : Centerline
This name refers to an object named Centerline inside the Nominal collection.
Instruments are referred to by their instrument index number. An instrument index number is a unique number that is assigned to each instrument in a given collection. The first instrument added to a collection becomes instrument index number 0 , the second is 1 , and so on. When an instrument is moved from one collection to another, its index number changes. If the fourth instrument in collection \mathbf{A} is moved to collection \mathbf{B}, and there are already 2 instruments in collection \mathbf{B}, the instrument will change from index number 3 in the old collection to index number $\mathbf{2}$ in the new collection.

The syntax for instruments is similar to that for objects, except instead of using an object name, the instrument index number is used instead:

ThisCollection::1

This name refers to the second instrument in the ThisCollection collection. Sometimes, you will also see this syntax with the instrument name at the end, such as

ThisCollection::1 - Zeiss ETh 2 Theodolite

The double colon syntax is used in several places in SA—for example, when displaying full point names or instrument names in the graphical view, when viewing an instrument interface, or when working in Measurement Plan scripts.

The Wire Model

Figure 3-8. An instrument has measured the surface of this part. Prior to alignment, the measured points are not yet located to the CAD surfaces.

Figure 3-9. After alignment, the points are aligned to the CAD surface. Here, the instrument was moved. The points just "came along for the ride".

One of the most important things to keep in mind when working in SA is that measurements are linked and tied directly to the instrument that measured them. If you move an instrument (using Instrument>Drag Instruments Graphically) from one area of the SA work-

space (Figure 3-8) to another, you will find that all of the targets that were measured by that instrument also move along with it. You can think of each of the measured points as having a straight piece of wire between the instrument and the measurement-the instrument and its measurements move together as a rigid body.

This behavior has a number of important benefits, and if you stop to think about it, the behavior most accurately reflects reality. When a measurement is recorded, the instrument provides to SA the position of the probe relative to the instrument's reference system. For spherical measurement devices such as total stations, laser trackers, and laser radars, this consists of a horizontal and vertical angle and a dis-
tance component. These three values indicate where the point is located relative to the instrument's reference--usually its optical center. The only thing the instrument knows about the measurement is the location of that measurement relative to itself-it (typically) knows nothing about where the measurement is located in the real world.

The link between the position of the instrument and the position of the measurement (relative to the instrument) should really never be broken, because if the two were to become disassociated relative to each other, then the value of the measurement is lost. That is, its position (and therefore the measurement) becomes meaningless to us. Therefore, it makes sense that SA maintains and keeps track of this relationship.

The Alignment Process

Tied to the association between the instrument and its measurements is the idea of alignment. Alignment is really the process of positioning the digital instrument in the SA file until it ends up in the same corresponding position as the instrument in the real world. For example, Figure 3-8 shows an instrument and its measurements prior to alignment, and Figure 3-9 shows that same instrument after alignment. In both cases, the only thing that was moved was the instrument-the measurements merely moved as a result of being rigidly tied to the instrument. Put another way, the measurements "came along for the ride".

As long as a reference system is measured to properly perform an alignment at some later time, alignment is not required to be performed as one of the first steps in the measurement process. If alignment to CAD surfaces or other instruments is not required, then there is no need to perform any alignment at all.

Note: If you are performing a build operation or need on-the-spot comparison of measurements to CAD or to your reference system, then the alignment must be performed at that time.

You can measure features on a part, measure a reference system, move the instrument, measure more features and the reference system, and then measure again from a third perspective, all without once performing an alignment. Only when the analysis is performed are the instruments required to be aligned (so that you can extract meaningful information from the data). As a result, you can measure everything on the shop floor and perform the alignment at your desk at the end of the day.

Feature Measurement

One important general rule to follow in SA is that each feature should be measured into its own point group when possible (see Figure $3-10)$. One intended meaning for the term feature in this case is a specific portion of a measured part. For instance, measurements on the inside of a hole should go into one group, measurements of the top surface of the part should go into another, and measurements of the side of the part should go into a third. But another intended meaning of feature in this context is to refer to any set of related points. So, for instance, all points in a drift check should be measured into their own point group, and the reference points (fiducials) should be measured into another.

Figure 3-10. Proper feature-based organization of point groups. Measurements for each individual feature on this part are organized into separate point groups.

SA is designed around the assumption that features are measured into their own individual point groups. If you follow this rule, you will find that working in SA becomes much easier and more intuitive. The only time when this rule does not apply is when measuring with theodolites. Since theodolite measurement requires at least two observations to calculate a target position, each observation of a given target should be measured under the same point.

Offset Compensation

When storing measurements, SA always records the point representing the center of the probe (SMR, ruby tip, etc). Unless non-contact or zero-offset measurement is being performed (such as measurement with a laser radar, scanner, point probe, or photogrammetry), the recorded point will not represent the point where the probe touched the measured surface, but instead will be at its center (see Figure

Figure 3-11. The recorded point for any measurement is always at the probe center.

Probe Offsets

Figure 3-12. The radial offset is used for shifting measurements inward or outward when using a pin nest.

3-11). (For zero-offset measurement, the recorded point is at the point of contact). What this means, of course, is that the distance between the measured point and the measured surface is not zero, but is instead equal to the probe radius (also known as the planar offset).
In order to properly compensate for probe offsets, two values must be known: the probe offset, and the surface direction. These two properties are discussed in the following sections.

When a measurement is recorded, SA stores not only the probe center point, but also the corresponding offsets. There are actually two offsets used: a planar offset and a radial offset. The planar offset is an offset perpendicular (or normal) to the resulting geometry, whereas the radial offset is an offset in the plane of the geometry.

The planar offset is used to offset the measured point toward a surface, line, or curve. The radial offset is used to offset measurements inward or outward when measuring or fitting circles and ellipses using tooling that introduces a radial offset, such as a pin nest (see Figure 3-12).

If just a spherical probe is used (such as a ruby tip or an SMR), the ra-
dial offset is ignored (it is never used). If additional target tooling is used-such as the pin nest in Figure 3-12, the offsets attributable to the additional tooling are included in the point's offset. For instance, the pin nest pictured introduces $0.25^{\prime \prime}$ of additional planar offset and $0.125^{\prime \prime}$ of radial offset on top of the SMR's $0.75^{\prime \prime}$ planar offset. This yields a total planar offset of $1.0^{\prime \prime}$ and a total radial offset of $0.125^{\prime \prime}$.

Whenever a measured point is compared to an object such as a CAD surface, line, or curve, probe offset compensation is automatically applied, and the reported deviation is actually the deviation between the point of contact and the corresponding closest point on the object of interest. Likewise, whenever geometry is created from measured points, the resulting geometry is automatically offset from the measured points, and the resulting geometry represents the surface actually measured.

Obviously, in order for SA to compensate for offsets correctly, the correct offsets must be stored with the measured points. Offsets should be set in the appropriate instrument interface whenever target tooling is changed, and as a result measured points should have the correct offsets as they are measured. However, if you forget to set the proper offsets when measuring, you can always correct them after the fact by changing the offsets on measured points. (More information on this can be found in the Measurement section).

Surface Normal Direction

In addition to having the proper stored offsets, one additional factor is required to be correct in order to perform a properly compensated analysis: it is critical that the direction of the surface normals being used in any comparison are facing the proper direction. Consider the example in Figure 3-13, in which four measurements were taken with an SMR at four positions on a measured surface (the blue dashed surface in the illustration). Note that, for clarity, the as-built error in the measured surface is greatly exaggerated here.

Figure 3-13. Proper offset compensation is applied when the surface normal faces the side to be measured.

Suppose we wish to compare our measurements to the nominal CAD part in order to determine whether the as-built part is "high" or "low" of the ideal design. When comparing the measured point to the nominal surface, SA first calculates the deviation from the nominal surface

Figure 3-14. Offset compensation applied when a surface's normal is facing the wrong direction. This will result in incorrect results!

4.

Warning: If surface normals are facing the wrong direction, the calculated deviation will typically be in error by exactly the probe diameter.
to the recorded point (the purple vector), and then adds the probe offset in the direction opposite to the surface normal (the red vector in the illustration). The resulting vector (green) indicates the deviation between the measured surface and the nominal surface. In this example, the first three measurements are low of nominal, and the last measurement is high of nominal.

To visualize how an incorrect surface normal direction can result in incorrect results, suppose that the surface normal in Figure 3-13 is accidentally reversed and is now facing the wrong direction (Figure 3-14), with all else being the same. The deviation from the nominal surface to the measured point stays the same (purple vector). Again, SA adds the probe offset in the direction opposite to the surface normal, but since the surface normal is facing the wrong direction, the offset compensation is performed in the wrong direction. As a result (green vectors), the reported deviation is off by exactly the probe di-ameter-a very large error!

This behavior leads to a golden rule in SA—one that is referred to in various places in the SA dialogs. The rule is that in order for deviations to be reported properly, all surface normals must face the side being measured. Put another way, the surface normal direction for the surfaces being compared should point to the side from which you're approaching the part with the probe (the other direction should point into the part's "material").

There is one simple way to ensure that you comply with this rule: When working with surfaces, you want to ensure that the normals all point toward the "outside" of the object-that is, they should point away from the material of the part. If you imagine that your CAD part is submerged in the ocean, the surface normals should point to the side where the water is touching the surface. Upon importing CAD to be used in analysis, one of your first steps should be to ensure that the surface normal directions are all correct, and to correct any normals that point inward.
For information on identifying surfaces whose normals are facing the wrong direction, see the Surface Backsides section in "The Graphical View".

Comparing Measurements to Points and Objects

The fact that SA automatically compensates for probe offsets results in a few rules that should be kept in mind when performing comparisons between measured points, objects, and surfaces:

- When comparisons between points are performed, the comparison is always between centers. Point to point deltas and best-fits, for example, always compare center to center. This leads to a corollary that if two separate points are to represent the same point in space (such as for a reference monument), their centers should be coincident. This might seem obvious, but if the same point is measured twice with probes that have different offsets, a physical target adapter is required to make one of the offsets match the other.
- When comparisons between points and objects or surfaces are performed, the comparison automatically compensates for probe offset.
There are a few cases where you will want to override this behavior and ignore offsets, however.

Figure 3-15. Comparing a measured point with $3 / 4^{\prime \prime}$ offset to a line.

For example, suppose a measured point with a $3 / 4$ " offset lies directly on a line. This would appear in SA as indicated at left in Figure 3-15. A normal comparison between the point and the line will indicate a deviation of $0.75^{\prime \prime}$ as depicted at right, because offset compensation is being applied. That is, you are $0.75^{\prime \prime}$ from touching the line. Typically, however, in this situation you want to compare the center of the probe to the axis. For instance, perhaps you've set the probe in a hole to take a measurement, and you want to compare the measurement to the nominal hole center. In that case, you'll want to ignore the offset so that this situation would indicate a deviation of zero. There are several ways to do this in SA, including overriding target offsets to zero or using commands that specifically ignore offsets.

Measured Points vs. Cloud Points

It is important to understand the distinction between measured points and cloud points, and to know when it is more appropriate to use one instead of the other when taking measurements. Both points and clouds are discussed in more detail in later chapters-however in this section we will discuss the broad differences between the two entities.

Measured points carry with them a relatively large amount of overhead. They are not simply an XYZ coordinate with a name, but actually store quite a bit of information. As described in "Traceability" on page 36, measured points store metadata in addition to the measurement itself and its offsets. Weather parameters (temperature, pressure, and humidity), RMS data, measurement mode information, timestamps, and other information are all stored with a point for traceability and documentation purposes. While this information is useful and great to have, it also means that a measured point puts a relatively large strain on the data processing and computing capabilities of the machine. Storing and handling that wealth of data can become relatively stressful on a computer's resources if there is a very large number of points.

Note: All points in a cloud should be measured with the same offset. If you change probes and the offset changes, put those points into a different cloud.

Tip: For best performance, - measure into a cloud whenever recording a large number of points (>10,000).

Cloud points, on the other hand, are designed for very large quantities of measurements and are optimized to be much more lightweight from a computer resources perspective. Cloud points only store an XYZ value. They have no metadata and no individual names or offsets, and therefore use the smallest possible computer resources. Instead, the point cloud itself (which is the container for the cloud points) stores the offsets for the measurements. Although cloud points (collectively known as a cloud) are typically created from scanning devices, they can be created by discrete measurements from instruments like laser trackers and portable arms as well.

So the question to answer is: when should a measurement be taken as a regular measured point, and when should it be recorded as a cloud point? The general rule of thumb is that if you are performing any type of surface scanning consisting of a large $(>10,000)$ number of points, you should use point clouds. Note that nothing in this rule of thumb refers to the type of instrument being used. That is-whether or not you are using an actual scanner is of no consequence. If you are "scrubbing" a surface with an SMR and scanning with a laser tracker, for instance, that is considered scanning and point clouds should be used.

Unbounded Geometry

There are several primitive geometry types in SA that are unbounded. This means that the geometry extends infinitely without bound. For an example of this, refer to Figure 3-16.

Although a plane in SA is depicted in the graphical view with a boundary (blue line), this is only so that the plane is visible in the graphical view. From an analysis perspective, the plane extends infinitely in two dimensions, just as it might be defined in an academic math class. Keep in mind that any time you compare a point to unbounded primitive geometry, the geometry will behave as if it extends infinitely along its unbounded edges. The following primitive geometry types are unbounded:

Figure 3-16. A plane in $S A$ has a graphical depiction (blue lines) so that it can be seen, but from an analysis perspective it extends infinitely in two dimensions. When compared to a point beyond its graphical depiction, a plane is extended infinitely. The closest point to this measurement on the depicted plane is shown as a red dot above.

- Planes
- Lines
- Cylinders (lengthwise)
- Paraboloids
- Cones

If you would like the geometry to be bounded for analysis purposes, it must be converted to a surface.

The Working Frame

SA has a concept known as the working frame. The working frame is a coordinate frame through which all data is represented or mapped. Put another way, it is the active coordinate frame. Any coordinate frame can be made the working frame, and when a frame is working, all data (point coordinates, delta values, rotations) is represented in SA with respect to that frame unless specified otherwise.

It is important to recognize that changing a coordinate frame does not physically move anything in space-it merely results in a change in the reference system used to represent that same position and orientation. This allows you to take measurements in any arbitrary default coordinate system and represent them in a system that better describes the data.

A Closer Look

You can assign a frame of reference to a watch window in order to see deviations represented in a given frame regardless of the working frame. You can also specify a reporting frame for an object in order to view that object's properties on a report with respect to a specific coordinate frame. (Those values will still be represented outside of reports with respect to the working coordinate frame. That is, if you assign a reporting frame to a point group, the coordinates will be represented in the active coordinate frame unless viewing them in a report).

The Default Collection

Collections are organizational elements used to contain entities in a hierarchy in SA. Just as there is always exactly one working frame, there is always exactly one default collection. The default collection (colloquially referred to as the working collection) is the organizational container inside which all newly created entities are placed, unless specified otherwise. For example, if a circle is created as the result of a geometry fitting operation, that circle will be placed into the default collection.

Traceability

One of the unique features of SA is its traceability. Traceability refers to maintaining an unbroken chain of comparisons relating measurements back to a defined standard (Figure 3-17). National measurement institutes such as the National Institute of Standards and Technology (NIST-USA), the National Physical Laboratory (NPL-UK), and the Physikalisch-Technische Bundesanstalt (PTB-Germany) all maintain national standards for weights and measures for their respective countries. Properly calibrated measurement instruments are evaluated and certified to this standard, which establishes the first link in this chain.

The chain is continued through measurement in SA. Each measured point in SA contains an array of metadata that describes auxiliary information about the measurement, such as the instrument (and serial number) that measured it, the time and date it was measured, who measured it, weather factors such as temperature/pressure/humidity, and more (see Figure 3-17). This information all helps maintain a complete record of the data.

Figure 3-17. Some of the traceability metadata stored with a laser tracker measurement.

In addition, actions performed in a given job file are logged, and entities themselves have historical logs that indicate how they have been modified throughout their existence. Entities even maintain information about how they were created in the first place. All of this information helps provide a complete picture of traceability for your measurements. If a specific instrument begins to show anomalies, you can look at any previous measurements, perhaps from weeks or months earlier, and identify which instrument measured it. This might give you cause to question those measurements as well-but without this traceability metadata, such a correlation may not have been possible.

NIST further maintains that "Traceability of measurement requires the establishment of an unbroken chain of comparisons to stated references, each with a stated uncertainty".1 Measurement uncertainty information can also be calculated for any measurement in SA, providing compliance with this policy but also providing a number of additional benefits as well (such as USMN—Unified Spatial Metrology Network).

[^0]
This Page Intentionally Left Blank.

Exploring The User Interface

SpatialAnalyzer provides a user-friendly interface to access all of your measurement data. There are often several ways to perform a given task, enabling you to choose a preferred method of interacting with the application.

There are several components to the SpatialAnalyzer interface. Each component comes in a separate window which can be docked to the edge of the screen or to the edge of another window. The components can be closed independently to allow you to maximize your screen space and to enable you to customize the user interface for the specific task at hand.
As depicted on the next page, the various components of the SA interface include:

- Menu Bar. A list of menu commands as seen in nearly all Windows applications.
- Toolbars. Strips of icons that provide convenient graphical access to common commands. By default, SA provides the Color/ WCF Toolbar and the Main Toolbar, although you can create additional custom toolbars.
- Treebar. A hierarchical view of all entities in the open job. For brevity this will typically be referred to simply as the tree.
- Graphical View. A three-dimensional rendered view of the current job.
- Report Bar. Displays important information about the selected item and a convenient way to generate reports.
- Status Bar. Displays the software version number, non-critical messages, and includes a few other minor indicators.

As Figure 4-1 indicates, additional components may be visible (but aren't displayed by default):

Figure 4-1. Additional User Interface windows.

- MP Bar. Displays Measurement Plan commands as they execute (requires SA Ultimate or greater).
- Instrument Docking Bar. Houses instrument interfaces when they are docked inside the SA window.
- SA Toolkit. Provides access to Geometric Dimensioning \& Tolerancing as well as convenient access to tools for inspection, relationships, analysis, and reporting.

To Hide an Interface Component:

- Click the X icon in the corner of the window, or
- Right-click on the menu bar, toolbar, or a window title bar and uncheck the component you wish to hide. Check it to show it again.

Interface components can be set to auto-hide, so that they collapse into a tab at the edge of the screen when not active. This provides for more space to work in other interface windows.

To Set an Interface Component to Auto-Hide:

Click the $\underline{\underline{x}}$ icon. When the mouse is moved away from the window, it will collapse into a tab (after a short delay). Roll over the tab and click the ${ }^{\text {a }}$ icon to disable the auto-hide behavior.

Figure 4-2. Docking the MP Bar to the bottom of the tree.

You can rearrange the positioning of the different user interface components using docking. Interface components can be undocked, docked to the edge of the application screen, or docked along the edge of another interface component.

To Undock an Interface Component:

- Click and drag the title bar for the component away from its current position.
To Dock an Interface Component to the Edge of the Screen or Another Component:
- Click and drag the title bar for the component. As you drag, a series of boxes representing locations to dock the window will appear. Drag over an icon to dock to a specific position (see Figure 4-2).
You can customize the user interface, and then save this customiza-
tion to a User Interface Profile. For more information, see "Custom UI Profiles" on page 50.

Toolbars

Toolbars provide icons for quick access to frequently-used functionality and are organized into related groups. There are two factory-default toolbars that ship with SpatialAnalyzer: the Main Toolbar and the Color/WCF Toolbar.

Main Toolbar

Figure 4-3. The Main Toolbar.

User Manual. Opens the manual (this document) for SpatialAnalyzer.

New. Starts a new job file.
1 Open. Opens a saved job file.
4 Auto Import. Imports a file automatically based on its file type.
USave. Saves the current job file.
User Options. Opens the user options dialog.
Object Properties. Displays the properties of an object after clicking the object in the graphical view.

塊 ${ }^{2}$ Add Instrument. Adds an instrument to the current job.
λ° Run Instrument Interface. Starts an instrument's interface.
Tㅓ․ SA Network. Opens the SA Network Browser.
\oplus Rendering Settings. Switches between Wireframe, Hidden Line Removed, Solid+Edges, and Solid rendering modes.
\# Views. Selects, edits, and saves preset views.
Background. Changes the background and highlight colors.
(ᄌ)View Rotation Center. Defines a pivot point for view rotations.
\ddagger Autoscale. Automatically scales the graphical view to fit all visible entities.

国 Callout View. Adds callout views to the active collection.
\checkmark Color Objects. Changes the color of selected objects in the graphical view.
: F2-Select from a List. Opens the F2 selection dialog.
\boxplus Enter - End Multiple Selection. Equivalent to pressing the Enter
key. Ends multiple-select mode.
[-] Graphical Selection Mode. Changes the method for graphically selecting items with the mouse.

ำ Capture Graphics Picture. Captures the current graphics view as an image for use in reports or other documents.

Color/WCF Toolbar

Figure 4-4. The Color/WCF Toolbar.

Figure 4-5. Rearranging a toolbar by grabbing its grip.

Working Color. Changes the working color.
A:world Working Frame. Displays the current working frame and allows you to pick a new one.
(3) User Interface Profiles. Used to define and activate custom user interface profiles. For more information, see "Custom UI Profiles" on page 50.
Toolbars can be rearranged by dragging on their toolbar grips(see Figure 4-5). You can completely undock a toolbar from the menus, or simply rearrange them. To dock a toolbar back into its original location, drag the grip to slide the toolbar back into place.

You can create your own custom toolbars. For more information, see "Custom UI Profiles" on page 50.

Treebar

Database Tab

Figure 4-6. The database tab.

The Database tab of the tree displays a hierarchical view of all entities in the current job (see Figure 4-6). It's called the Database tab because it reveals all of the entities in SA's underlying measurement database. This provides quick access to items of interest and enables simple but effective organization and management of properties. The tree contains items such as instruments, point groups, reports, embedded files, and geometric objects (lines, planes, etc). Headings or parent items within the tree can be expanded by clicking on the \boxplus button to expose child data (on some machines, this appears as an icon). Clicking the \boxminus button will collapse these items again. Right-clicking on an entry will display a context menu of commands that relate to the selected item.

The hierarchical tree displays a number of different entities depending on what is present in the current job file:

Folders. Like folders in Windows Explorer, you can sort collections into folders to organize the SA file.

Collections. An organized collection of entities (objects, instruments, reports, etc) that can be managed as a set in the tree.
\nprec Frames. Coordinate frames.
角 Instruments. Measurement instruments—laser trackers, portable CMMs, etc.

Point Groups. A series of points (measured or constructed) that are conveniently treated as a single object.
/ Lines. Geometric lines with a begin/end point and a defined direction.

ъ-Splines. Curves that have a mathematical definition and a defined direction along the curve.

- Planes. Planar geometry that, while drawn with a finite size in the graphical view, extends infinitely in two dimensions.
\bigcirc Circles. Circular geometry.
Ellipses. Elliptical geometry.
© Cylinders. Cylindrical geometry.
O Spheres. Spherical geometry.
Δ Cones. Conical geometry.
- Paraboloids. Parabolic geometry.

囲 Polygonized Surfaces. Unlike regular surfaces, polygonized surfaces are faceted and have no true mathematical definition for the surface (except for its planar facets).

Surfaces. Surfaces are parametrically defined and have a complete mathematical definition for every point on the surface. They are exact representations of a given surface.
有Vector Groups. Vector groups represent the deviation between two entities as one or more vectors.
\aleph Point Clouds. Groups of points typically gathered from non-contact measurement devices (such as a laser line scanner or coherent laser radar).
mem 1-D Data. One-dimensional (scalar) data that has been measured by an auxiliary device (such as a digital micrometer).

Relationships. Dynamic (continuously updated) comparisons between entities.
Berimeters. Boundaries that are used to define automated scan areas.
(2) Callouts. Callout views enable you to add captions, labels, and callouts in the graphical view.

* Charts. A number of different statistical charts can be created as a result of various operations in SA.

SA Docs. An RTF (Rich-Text File) based reporting format that can be generated in SA.
I SA Report Templates. A template defined for a report in advance, which enables generation of that report with updated data at any time.

Measurement Plans. Scripted programs that can automate measurement, analysis, and reporting operations.
橉 Embedded Files. Any file can be embedded into an SA file for quick access or to conveniently link a file with the SA job.

- Graphical Entities. Geometric shapes (such as boxes and pyramids) that act as purely visual elements and cannot participate in any analysis.

Crib Sheets. Macros to help automate the naming of points and the way in which they're measured.

SA Docs. A legacy reporting format that is no longer used, but may be used in older .xit files.
\& Annotations. Annotations associated with a feature for use with SA's GD\&T functionality.

A Datums. Datums for use with SA's GD\&T functionality.
\ddagger Feature Checks. Analysis results for use with SA's GD\&T functionality.
\square Pictures. Imported images or graphical view screenshots that can be dragged into SA Reports.

SA Reports. One of several types of reports that can be created in SA.

Events. Easily-reportable records of significant events (such as fitting geometry, minimizing relationships, or importing a CAD file) that have taken place in the file.

Robots and Machines. The robots or CNC machines in the current job file.
. Scale Bars. Any defined scale bars.
$\stackrel{d}{d} \mid$ Dimensions. Defined dimensions between any two entities.
囲 Custom Report Tables. Custom tables generated via scripting that can be used in reports.
All of the above items (with the exception of Folders and Collections) are actually categories of items. The tree organizes items in a collection by their category--the individual items of that category are listed under the category. For instance, in the Instruments category, there might be three actual instruments.

The Explorer tab displays the file and directory structure of the local computer. This is a convenient way of navigating the disk to find files to import into the current SA job.

Report Bar

Figure 4-7. The Report Bar showing properties for a coordinate frame.

The Report Bar (Figure 4-7) displays the detailed properties of the currently selected item in the tree. It can also serve as a report generator by allowing multiple tabs of information to be compiled into a single report. For details on the report bar and reporting, refer to the Reporting section.

To Toggle Display of the Report Bar:

- Right-click in the menus, toolbars, or status bar area of the interface and select Report Bar from the context menu, or
- From the menus, select Reports>Report Bar Visible.

Status Bar

The Status Bar (Figure 4-8) is a small bar at the bottom of the interface that has a number of minor, auxiliary displays. The left side of the bar will display any minor, low-importance messages that may arise during the course of your work (for example, when copying data to the clipboard from the Report Bar).

Figure 4-8. The Status Bar.
To the right of this message area is the SA version. In Figure 4-8, SA 2012.07.05 (a beta version) is running. Next to the version number is the current length unit setting. The three slots to the right of the units display indicate whether Caps Lock, Num Lock, or Scroll Lock are active on the keyboard (respectively). Two small processor icons on the right side of the status bar light up when SA is in a multithreaded operation.

MP Bar

Figure 4-9. The MP Bar with an MP loaded.

MP Bar	$4 \times$
	- \triangle Done
Status	Inspection Step
$\Rightarrow 0$	Create Counter
1	Get i-th Collection Name
2	Make a Collection Object $\mathrm{N} \varepsilon$
3	Create Counter
4	Geti-th Point Name From P
5	Make Strings from a Point N
6	Rename Point
7	Make a Point Name from Stı
8	Increment Counter
9	Jump To Step
< III	$\square \geq$
ModifyPoint	s.mp

The MP Bar (Figure 4-9) is normally only visible when a scripted Measurement Plan has been loaded for execution. The main window lists each command of the MP, as well as a pointer indicating the command which will be executed next, and the status (success, partial success, or failure) of each step. The MP Bar has a button to start executing the current MP 의, execute the next step in the MP 베, and terminate/close the current MP Done . The tabs at the bottom of the MP Bar display the primary MP and any MP subroutines currently executing.

Instrument Docking Bar

Figure 4-10. The tracker interface inside the Instrument Docking Bar.

The Instrument Docking Bar (Figure 4-10) is a window that houses the currently docked instrument interface. It enables the instrument interface, which is actually a separate application from SA, to be docked onto one edge of the SpatialAnalyzer interface.

SA Toolkit

The SA Toolkit (Figure 4-11) contains five tabs that provide convenient access to a number of useful SA tools. These tabs include GD\&T, Relationships, Inspection, Analysis, and Reporting.

Figure 4-11. The SA Toolkit.

- GD\&T. Tools for creating GD\&T checks from CAD surfaces, primitive objects, or directly from points.
- Relationships. Tools for quickly creating various types of relationships.
- Inspection. Provides access to a list of inspection-ready items with buttons for advancing through the inspection.
- Analysis. One-click access to many analysis tools.
- Reporting. Buttons for creating reports, dimensions, and callouts.

Ul Themes

A number of standard user interface themes are available to change the look of the SA interface. Three of the 14 interface styles are pictured below:

Figure 4-12. Top to bottom: MS Office XP, MS Office 2007 (black), and MS Office 2003 themes.

To Change the Look of the SA Interface:

Note: The user interface theme is saved as a machine setting.

- In the View $>$ User Interface Features $>$ UI Theme menu, choose a theme from the list. The interface will update immediately.

Custom UI Profiles

A large portion of the SA user interface is customizable. With user interface customization you can:

- Add, rearrange, delete, and rename menu items,
- Create custom toolbars and menus,
- Save menu and toolbar docking locations,
- Create custom keyboard shortcuts, and
- Create custom icons.

This allows you to modify an interface to display only the commands you use while hiding unused features and leaving more room to work.

User interface settings are saved as profiles, with an . saprofile extension in the Analyzer Data \Templates directory. Once saved, they can later be recalled, or easily transferred to another computer by copying the file into the same directory on another machine. The selected profile becomes the default used when SA starts, and is saved as a machine setting.

To Create a Custom User Interface Profile:

1. Do one of the following:

- Click the User Interface Customization button in the Color/WCF Toolbar, or
- Select View>User Interface Customization.

2. Click the Customize Current Profile button (Figure 4-13). This places you into Customize mode, which allows you to edit the properties of toolbar and menu items instead of performing their equivalent operations. (For details on customization, read the following sections). Customize mode ends when you return to the User Interface Profiles dialog.
3. When finished customizing the profile, click the Save Current Profile button. Enter a profile name, and click 0K.

To Delete a Custom User Interface Profile:

1. Do one of the following:

- Click the User Interface Customization button in the Color/WCF Toolbar, or
- Select View>User Interface Customization.

2. Select the profile in the list that you'd like to delete (Figure 4-13).
3. Click the Delete button. The profile will be deleted from the list and from the Analyzer Data \Templates directory.
To Reset to the Factory Default User Interface Profile:

- In the User Interface Profiles dialog (Figure 4-13), choose <Factory Defaults> from the list, or
- From the menus, choose View>User Interface Features>Reset GUI Toolbar Layout.

Customizing Toolbars \& Menus

The Toolbars tab (Figure 4-14) allows you to show and hide toolbars, as well as create your own. Custom toolbars are treated just like standard toolbars and act identically. Checked toolbars are displayed, while unchecked toolbars are hidden. The following assumes you are in customize mode (see "To Create a Custom User Interface Profile:" on page 50).

Figure 4-14. The Toolbars tab of the Customize dialog.

To Create a Custom Toolbar:

1. In the Toolbars tab, click the Create button.
2. Give the toolbar a unique, descriptive name.
3. The new toolbar will appear in the list, and an empty toolbar will appear in the user interface (Figure 4-15).

While in Customize mode (see"To Create a Custom User Interface Profile:" on page 50), you can modify toolbars as well as menu items. You can drag items to create new menus, drag them into current menus, or drag them into toolbars.

To Move an Item:

- Drag a menu, menu item, or toolbar button to the desired position. Drag it back to reverse the process.

To Add a Separator Between Items in a Custom Toolbar or Menu:

- Right-click an item and choose Begin a Group. The separator will be placed before the selected item.

Figure 4-16. A group separator
has been added after the Scripts menu.

MyToolbar	-
Scripts	

To Delete an Item from a Custom Toolbar or Menu:

- Drag the item into an "empty" area of the screen (not over any menu or toolbar). The mouse cursor will change to ${ }_{W_{区}}$, signifying that the item will be deleted, or
- Right-click the item and choose Delete.

To Add a New Item to a Custom Toolbar or Menu:

- From the Commands tab, choose a menu category from the list at left. Then drag a command from the list at right to the toolbar or menu.

The appearance of items in a toolbar or menu can be changed. You can view an item as an icon only, text only, or both. You can even modify the icon for an item.

To Change the Appearance of a Toolbar Item:

- Right-click the item and select from either Default Style, Text Only (Always), Text Only (In Menus), or Image and Text.
- Default Style. This will display the icon if one is available. Otherwise, it will display text.
- Text Only (Always). This will display the item as text, regardless of whether it is on a toolbar or in a menu.
- Text Only (In Menus). This will display the item as an icon when in a toolbar (if an icon is available), and as text when in a menu.
- Image and Text. This will display both the icon (if available) and the text for the item, regardless of whether it is in a menu or a custom toolbar.

Figure 4-17. Two icons displayed with the Image and Text option.

To Change the Text Associated with an Item:

- In Customize mode, right-click the item and click in the Name text field. Enter a new name for the item. Note that this will only be displayed if the current appearance setting displays text.
To Reset an Item to its Default Appearance:
- Right-click the item and choose Reset.

To Change a Toolbar Icon's Appearance:

- In Customize mode, right-click the item and choose Edit But-
ton Image. This will open a simple editor to allow you to modify the icon, as depicted in Figure 4-18:

Figure 4-18. The Button Editor.

To Reset a Button's Image Back to Defaults:

- In Customize mode, right-click the item and choose Reset Button Image.
To Copy or Paste a Button Image:
- In Customize mode, right-click the item and choose Copy Button Image or Paste Button Image.
To Assign a Supplied Image to an Icon:
Ω Note: If a command does 2 not come with a default icon, a custom icon cannot be added.
- In Customize mode, right-click the item and choose Change Button Image, then choose an image from the list.

Keyboard Shortcuts

You can create custom keyboard shortcuts for virtually every command available to you in SA. Keyboard shortcuts are defined in the Keyboard tab of the Customization window. These keyboard shortcuts are saved as part of the custom user interface profile.
To Define a Keyboard Shortcut for a Command:

1. In the Keyboard tab (Figure 4-19), choose the desired category and command from the list.

Figure 4-19. Assigning custom keyboard shortcuts.

2. Click in the Press new shortcut key field, then enter the desired shortcut.
3. If the shortcut is currently assigned to another command, it will appear in the Shortcut currently used by: field as a warning.
4. Click the Assign button to assign the new shortcut.

To Remove a Keyboard Shortcut:

- Select the Category and Command from the Keyboard tab, then choose the shortcut from the Current keys: box and click Remove.

To Reset Keyboard Shortcuts to the Defaults:

- In the Keyboard tab, click the Reset All button.

Options

The Customize dialog provides several additional options for controlling the display and behavior of the interface (Figure 4-20).

- Always Show Full Menus. If disabled, menu items which are used rarely are not displayed. As a result, only an abbreviated menu is displayed. Click the down-arrow in the menu listing to view all commands for that menu.
- Show Full Menus After Short Delay. If selected, the abbreviated menu will be displayed for a moment, followed by the full menu. (Disabled if Always Show Full Menus is selected).
- Animate Menu When Expanding. Animates the menu as it expands from the abbreviated menu to the full menu. (Disabled if Always Show Full Menus is selected).
- Highlight Rarely Used Menu Items. Menu items which are not used often will be highlighted.
- Display Menus With Shadows. Renders a shadow around menus.
- Large Icons in Toolbars. When selected, large icons will be rendered in the toolbars. This is useful for very high resolution displays (or poor resolution eyeballs!)
- Large Icons in Menus. When selected, icons displayed along menu items will be drawn in large size.
- Show Screen Tips on Toolbars. When selected, displays tooltip information for toolbar icons.
- Show Screen Tips on Menus. When selected, displays tooltip information for menu items.
- Show Shortcut Keys in Screen Tips. When selected, displays the assigned shortcut key for a toolbar item as part of its tooltip information.
- Menu Animations. Controls the transition used to display menus as they expand.

Figure 4-20. Changing Ul options in the Options tab.

To Reset the Historical Usage Information for Menus and Toolbars:

- Click the Reset menu and toolbar usage data button.

Language Translation

SpatialAnalyzer comes with seven stock languages:

- English
- Chinese
- French
- German
- Italian
- Portuguese
- Russian
- Spanish

Figure 4-21. The Language Settings dialog.

If you would like to add an additional language, SA has a language translation tool that can be used to translate menu items, dialogs, and other user interface elements. Language translation files are stored as . lan files which can be transferred to different computers and loaded into the interface. Several SA resellers also offer ready-made language translation files to customers.

The language translation interface (Figure 4-21) works by storing translations from English to a specified language. If a certain phrase has not been translated, it will remain in the default English language.

To Make A Stock Language Translation Active:

Note: After changing the active language, you may need to restart any running instrument interfaces for the new language to take effect.

1. Select File>Language Translation.

2. From the Language Translation dialog, select the desired language, then click the Close button. If the window indicates that a custom translation is active, it must be deactivated first before choosing a stock language.

The active stock language will also apply to instrument interfaces unless a specific language has been loaded into that interface.

You cannot modify a stock language—it is read-only. However, you can create a new translation based off of a stock language, as described below.

All custom translation is performed in the Language Settings dialog. To access this dialog, click the User Options icon, and in the Display tab, click the Custom Language File button.

To Create a New Language Translation:

1. In the Language Settings dialog, click the New button.
2. In the dropdown, choose Empty Language File to create a new language file, or Language File based on to create a custom language file based on one of the stock languages.
3. Assign a filename for the translation file and click OK.

SA will build a database of phrases to translate and present the NRK Language Translation Interface. If the translation is based off of a stock language file, you will find that many of the phrases are already translated.

To Load an Existing Language Translation File:

- In the Language Settings dialog, click the Browse button, and select a language translation file. The translations will immediately be applied to the user interface.
To Remove All Translations and Return to the Default Language of English:
- Click the Clear (no translation active) button.

To Edit the Active Translation File:

- Click the Edit Translation File button.

Character Sets

Certain languages (Asian languages in particular) do not use a traditional Latin character set (standard). To account for this, they may require an expanded character set in order to be displayed properly.

To Modify the Character Set Used for Dialogs:

- Click the Standard or Expanded character set (Chinese, Japanese) buttons.

To Modify the Font Type and Size Used for Dialogs:

- Enter a new font name or size into the dialogs.

Creating a Translation

The language translation interface (Figure 4-22) allows any phrase that is used in SA to be selected and translated. Once a translation has been added for a particular phrase, it will appear translated in the interface. The top list contains phrases that have not been translated. The bottom list contains phrases that have been translated, and lists both the original English and the translated phrase.
To Assign a Name for the Language:

- Type a language name in to the Language Name field, then click Apply.

To Search for an Untranslated Phrase:

1. In the top search field, type in a phrase. As you type, the first matching item will be highlighted.
2. To find the next result, click the Next Missing Phrase button again.

To Save the Current State of the Language File and Apply Changes:

- Click the Save button.

Figure 4-22. The Language
Translation Interface.

To Apply a Translation to a Phrase:

1. Select the phrase from the top list of untranslated phrases.
2. Click the Add button.
3. In the Translation Entry window, enter the translated phrase. To automatically assign an ALT keyboard shortcut to a menu item, precede the desired letter with an ampersand. To enter an ampersand in the phrase, use two consecutive ampersands (\&\&).
4. When finished, click OK. The translated phrase will appear in the list at the bottom, and the phrase will disappear from the top list of untranslated phrases.

To Edit or Delete a Translated Phrase:

- Select the phrase in the bottom list of translated phrases and click Edit or Delete.

To Search for an Original Phrase (English):

1. Enter the search text in the lower-left search field. As you type, the first matching phrase will be highlighted. Wildcard char-
acters (* and ?) may be used in this search field.
2. To find the next matching phrase, click the Next English Phrase button.

To Search for a Translated Phrase (Translated Language):

1. Enter the search text in the lower-right search field. As you type, the first matching phrase will be highlighted. Wildcard characters (* and ?) may be used in this search field.
2. To find the next matching phrase, click the Next Foreign Phrase button.

To Clear Untranslated Phrases From The Dialog:

- Click the Clear button. All untranslated phrases will be removed from the list.

Merging Language Files

Multiple language files can be merged into a single language file. Consider translating an instrument interface, which is performed in the instrument interface itself. This translation is saved into a separate translation file. You can merge an instrument interface translation file into the SA translation file so that a separate translation does not need to be applied to the instrument interface. (This is how the stock language files work).

To Merge Language Files:

1. From the NRK Language Translation Interface dialog, click the Import button.
2. In the file filter dropdown, change the file type to Language File (*.Ian).
3. Select the desired language file to merge, then click Open.
4. Confirm the merge procedure. The translated phrases from the language file will be merged into the current file.

Using .CSV Files For Translation

Once translations have been applied, converting one language to another is made easier with the ability to use . CSV files. Translated phrases (those appearing in the bottom list) may be exported to a two-column. CSV format, which allows you to simply change a translation to another language using a spreadsheet program such as Excel. This way, you can avoid having to click the Edit button for each translated phrase.

To Export Translated Phrases to .CSV Format

1. Ensure the desired phrases to translate already have some
sort of translation applied to them (so that they appear in the bottom list).
2. Click the Export button, and choose a file name for the . CSV file.

To Edit an Exported .CSV Translation File

1. In a program capable of working with the CSV format (such as Microsoft Excel or Notepad), open the . CSV file.
2. Leave the first column (English Phrases) alone, but change the second column (Translated phrases) to the desired language.
3. Save the . CSV file without changing its format.

To Import a .CSV Translation File

1. In the Language Translation Interface, click the Import button.
2. Choose the file to import and click OK. The new phrases will load into the translated phrases section of the window.

Figure 4-23. SA with a German language translation active.

This Page Intentionally Left Blank.

The Graphical View

The graphical view is arguably the most important single display in all of SpatialAnalyzer. It allows for graphical selection, provides visual feedback, and allows you to visualize your measurements and data.

The graphical view is drawn as a parallel projection-that is, lines of perspective do not converge in the distance but are instead parallel. This is done for a very good reason: there is no "vanishing point", therefore objects appear the same size regardless of their distance from the viewpoint. From a practical perspective, this allows you to visually estimate size and position differences among objects without worrying about whether their distance from the viewpoint is affecting their apparent size.

Navigating the Graphical View

The graphical view provides a graphics-accelerated, three-dimensional rendered view of everything in your job. It allows you to inspect, select, and operate on objects graphically. In order to take advantage of this realistic view of your data, it's important to be able to navigate the view with ease.

Zoom

To Zoom In and Out:

- Hold down Ctrl and click-drag the mouse up or down, or
- Scroll the mouse wheel up/down, or
- Press the PgUp/PgDn key, or
- From the menus, choose View $>$ View Control $>$ Zoom $>$ In [Out], or
- Use the controls in the Adjust View Components window (see "Adjust View Components" on page 65).

To Zoom Into a Region of the View:

Hold down the left mouse button, drag the mouse to define a rectangle, and release the mouse button. The view will zoom into the defined region.

Autoscale

Autoscale will zoom and center the view so that all visible objects are displayed in the graphical view at once.

To Autoscale the View:

- In the main toolbar, click the \ddagger Autoscale button, or
- In the menu, select View $>$ View Control $>$ Zoom $>$ Autoscale, or
- Press Alt+A, the default keyboard shortcut.

Pan

To Pan the View:

- Hold down the Shift key and drag the mouse in the graphical view, or
- Use the keyboard arrow keys (Up, Down, Left, and Right), or
- Select View>View Control>Pan>Up/Down/Left/Right, or
- Use the controls in the Adjust View Components window (see "Adjust View Components" on page 65).
To Center the View on a Point:
- Middle-click anywhere in the graphical view.

Rotate

To Rotate the View (Freeform):

- Hold down the right mouse button and drag, or
- Use the controls in the Adjust View Components window (see "Adjust View Components" on page 65).
The viewpoint can be rotated about an axis perpendicular to the screen (this is referred to as spinning the view).
To Spin the View:
- Hold down the Ctrl key and right-click-drag the mouse.
- Normally, SA chooses the entity closest to the center of the
graphical view to become the pivot point for rotation. However, if desired you can select a specific point to serve as the rotation pivot point.

To Set a Specific Point as the Rotation Pivot Point:

1. On the Main Toolbar, click the (\triangle)View Rotation Center button.
2. Click a point to set the pivot point.

By default, SA uses the Front of Sphere view rotation mode. When rotating in this mode, the rotation center is considered to be at the center of a sphere, while the cursor is "stuck to" the front of the sphere and spinning it. This rotation sense can be reversed to Back of Sphere mode in the User options Machine Configuration tab.

To Reverse the View Rotation Sense:

In the User options Machine Configuration tab, change the Front of Sphere Mode setting.

Center In View

Tip: Centering the view on a * point is an easy way to make that point the center of rotation.

If you have an item in the tree and are having trouble finding it in the graphical view, you can easily center the view on an object, point, instrument. (Does not apply to point groups, point clouds, vector groups, annotations, datums, feature checks, or dimensions).

To Center the View on an Item:

- Right-click the item in the tree or graphical view and select Center In View from the context menu.

Adjust View Components

If desired, you can control the viewpoint (zoom, rotation, and panning) through the Point of View dialog. To open the Point of View dialog, choose View>View Control>Adjust View Components.

Figure 5-1. The Point of View dialog has controls for zoom, rotation, and panning, as well as transformation dialog increment fields.

Each of these buttons works similar to the manual view operations, except that the rotation buttons rotate about axes that are horizontal, vertical, or perpendicular to the screen.

This dialog also contains fields for controlling how much an object's
position or orientation changes when an up/down arrow is clicked in a transformation dialog.

- Position. Controls the increment applied to positional values.
- Rotation (deg). Controls the angular increment applied to angular values.

Jumping to Previous/Next Views

It is often useful to jump back and forth among various recent views. As you navigate throughout the graphical view, if you remain at a given viewpoint for at least one second, SA will store the viewpoint. You can then quickly navigate back and forth between previous and next views.

These views are not saved with the SA file. If you manually change views while at an earlier view in the list, later views are removed from the list.

To Navigate Among Previous Views:

- To jump to a previous view, press Ctrl+Alt+ \leftarrow or select View $>$ Viewpoint Control>Go to Prev View from the menus.
- To jump to the next view, press Ctrl+Alt+ \rightarrow or select View $>$ Viewpoint Control>Go to Next View from the menus.

Set Viewpoint From Frame

The viewpoint can be set from any existing frame using the View $>$ View Control>Set Viewpoint From Frame command. The resulting view will look down the $+Z$ axis.

To Set a Viewpoint From a Frame:

1. Select View $>$ View Control>Set Viewpoint From Frame.
2. At the prompt, select the frame you'd like to use for orienting the view.

Set Viewpoint From Instrument Updates

The viewpoint can be set by the current probe position/orientation for instruments that provide 6-DOF information, such as portable CMM arms or probes. This enables the capability to "fly around"a part using an instrument, or to update the viewpoint while measuring.

To Set the Viewpoint Based on Instrument Updates:

[^1]1. Select View $>$ View Control>Set Viewpoint From Instrument Updates.
2. At the prompt (if more than one instrument is available), select the instrument to use for establishing the viewpoint.

Set Viewpoint From Object

Any object's orientation can be used as the basis for a viewpoint. The resulting view will look down the $-Z$ axis of the object.

To Set a Viewpoint From an Object:

1. From the menu, select View>View Control>Set Viewpoint From Object.
2. At the prompt, select the object to use for establishing the viewpoint.

Set Viewpoint From Surface Point

You can also set the viewpoint to look at a surface along its normal.

To Set a Viewpoint From a Surface Point:

1. From the menus, select View $>$ View Control $>$ Set Viewpoint From Surface Point.
2. At the prompt, click on the surface where you'd like to look.

View Clipping

Circumstances might arise in which you want to clip portions of the graphical view. Two major examples include:

Figure 5-2. Viewing a model, measurements, and a vector group with an active clipping region.

- Removing data (such as point cloud data) outside of a region in order to simplify the view. This may be done for reporting rea-
sons (to obtain a clear screenshot for a report) or just to be able to more easily work in the view. For example, if you have point cloud scans of the inside and outside of a building, you might clip away the near "wall" so that you can view the data on the inside of the building without also seeing the wall data.
- Displaying a "section cut". You might do this to "cut away" portions of your CAD or data in order to display only a region of interest, as in Figure 5-2.
A clipping region is defined by a box that can be moved or have any of its sides scaled along a coordinate direction. The orientation of the region (its rotation in space) can be defined by any object, and each of the six faces of the box can have clipping enabled or disabled.

To Set A Clipping Region:

1. From the menus, select View $>$ View Control>Clipping Planes or press Alt-X.
2. In the Clipping Entities dialog, click the Add button.

Note: Clipping regions are tied to the object used to define the position and orientation of the clipping cube. If the object moves or rotates, the clipping planes will move or rotate along with it.
3. Select any object to define the initial position and orientation of the clipping box.
4. Mouse over the center of a face (it will turn black) and click it to toggle that face's clipping plane.
5. Mouse over the center of any edge (an icon will appear) and drag to move the clipping region along that edge's direction.
6. Mouse over the end of any edge (an icon will appear) and drag to grow or shrink the region along that edge's direction.
7. When you're happy with your region, click the Close button, or leave the dialog open if desired.

To Assign Numeric Boundaries to a Clipping Region:

1. Create the clipping region as described above in "To Set A Clipping Region:" on page 68.
2. In the Clipping Entities dialog, double-click on a clipping region or select it and click the Edit button.
3. In the resulting Clipping Volume Properties dialog, check the regions you'd like to be active, and enter desired values for each clipping plane.

To Delete a Clipping Region:

- In the Clipping Entities dialog, select the clipping region to delete, then click the Delete button.

You can define as many clipping regions as you'd like. Any of them can be activated or deactivated.

- In the Clipping Entities dialog, check (to activate) or uncheck (to deactivate) the clipping region's checkbox.

Multiple Graphical Views

Figure 5-3. An auxiliary view has been opened to view and interact with this door panel from a different perspective.

Multiple graphical views (see Figure 5-3) can be displayed by selecting View>New Graphical View Window. This allows you to simultaneously view and interact with your job from multiple perspectives.

Auxiliary graphical views can be rotated, positioned, and rendered independent of the primary graphical view, and they also support selection. Hold the Ctrl key while changing the render mode, autoscaling, or creating a snapshot of the screen to have the setting apply across all open graphical view windows.

You can add as many auxiliary views as you'd like, although more than two auxiliary views begins to become unmanageable without multiple computer displays.

Heads-Up Display

The graphical view has a Heads-Up Display (HUD) that displays a variety of measurement information (see Figure 5-4), including:

- Feature Name (if trapping measurements to a feature)
- Current Point Number (if trapping to a feature with a prescribed number of measurements)
- Point coordinates
- Point name (when not trapping)
- RMS error (if the RMS error of a sampled measurement exceeds
the warning threshold)
You can control whether the HUD is displayed, the font, color, translucency, and dwell time for the display all from the user options.
> Top Bore Face
RMS: 0.0019
[2 of 6]
$X=85.9560$
$Y=129.4121$
$Z=-13.3793$

Figure 5-4. The Heads-Up Display.

To Modify Settings for the Heads-Up Display:

1. From the SA Toolbar, click the User Options icon.
2. In the Display tab, click the Heads Up Display Settings button (Figure 5-5).

Figure 5-5. The Heads Up
Display Options dialog.

To Enabled/Disable the Heads-Up Display:

- In the HUD options dialog, enable or disable the Show HUD when a point is measured or trapping is activated checkbox.
To Change the Font used by the Heads-Up Display:
- In the HUD options dialog, click the Font button, then choose a new font from the dialog.
To Change the Color of HUD Text:
- In the HUD options dialog, click the color swatch and choose a
new color.

To Change the Translucency of the Heads-Up Display:

- In the HUD options dialog, set the Translucency (0 to 1) field to a value between 0 (fully transparent) and one (fully opaque).

To Change How Long the HUD Remains On-Screen:

- In the HUD options dialog, set the Dwell Time before removal option (in seconds).

Saved Viewpoints

You can save custom viewpoints in order to quickly return to a preset view orientation.

To Save a Custom Viewpoint:

1. Orient the view to the desired position.
2. Click the Views icon in the Main Toolbar, or select View $>$ View Control>Set Viewpoint.
3. In the View List dialog, click Add Current, as depicted in Figure 5-6.

4. In the Preset View dialog, type a name for your custom view (Figure 5-7).

5. If you would like the view to restore the current zoom settings, select Restore Zoom Settings.
6. To view position and orientation information about the view, click the Show Details button.
7. Click OK. Your custom view will now be available in the View

List:

Figure 5-8. The custom view has been added to the view list.

To Restore a Custom Viewpoint:

- Click the down-arrow next to the π Views icon and pick the view from the list, or
- In the View List dialog, double-click the desired view or select it and choose OK.

To Edit a Custom Viewpoint:

- In the View List dialog, select the view and choose Edit.

To Delete a Custom Viewpoint:

- In the View List dialog, select the view to delete and click Delete.

To Delete All Viewpoints:

- In the View List dialog, click Delete All.

To Restore the Default Viewpoints:
In the View List dialog, click Reset to Defaults.
By default, saved view directions are based on the orientation of the world coordinate frame. For example, if a view is saved looking along the world frame's Z-axis, then when the view is restored, it will again be looking along the Z-axis of the world frame, regardless of the active frame. However, you can choose to restore saved view directions relative to the working frame instead. By doing so, restoring the view described above would look along the Z-axis of the active frame.

To Restore a Viewpoint Based on the Working Frame:

- In the User Options>Display tab, check the View Relative to Working Frame option.

Rendering Modes

SA provides four rendering modes for viewing geometry: Wireframe, Hidden Line Removed, Solid+Edges, and Solid. The rendering modes are selected from the Main Toolbar.

Figure 5-9. Wireframe rendering mode.

Note: By default, silhouette edges are not rendered in Hidden Line Removed mode. To draw silhouettes, in the User Options>Display tab, check Draw Silhouettes in Hidden Line Removed Mode.

Figure 5-10. Hidden Line Removed rendering mode.

Figure 5-11. Silhouettes have been drawn in this hidden line view.

Note: Because of the necessary computation time, each time the view is rotated, you need to click the Hidden Line Removed icon to redraw silhouettes if you want to see them. The Draw Silhouettes in Hidden Line Removed Mode setting is saved with the SA file.

Figure 5-12. Solid+Edges rendering mode.

Note: When a file is first opened, the rendering method always defaults to wireframe mode. This prevents a potentially lengthy rendering process from starting immediately after a file is loaded.

- Wireframe. Geometry is displayed as edges only, and hidden edges are visible, as depicted in Figure 5-9.

- \otimes Hidden Line Removed. Geometry is displayed as edges only, but hidden edges are not displayed, as depicted in Figure 5-10.

Here is the same view with silhouettes turned on:

- Solid+Edges. Solid surfaces are rendered in addition to edges, as shown in Figure 5-12.

- Solid. Solid surfaces are rendered without edges, as depict-
ed in Figure 5-13.

Figure 5-13. Solid rendered mode.

Surface Backsides

Every surface in SA (in addition to other entities, such as planes) has a positive and a negative side (see Figure 5-14). In order to properly account for a probe's target offsets, it is important that all comparisons be performed against the positive side of a surface. In order for you to determine the positive side, SA renders the negative side of surfaces in a special, user-definable color (a light gray by default).

Figure 5-14. The same surface as viewed from the front (left) and back (right) with Highlight Surface Back-sides enabled.

Although the default gray is usually sufficient, you can choose a custom color to denote surface backsides. It is best to choose an unusual color which is not one of the typical working colors.
If desired, you can disable surface backside highlighting so that both the front and back side of surfaces appear in the same color.

To Disable Surface Back-Side Highlighting:

Note: The Highlight Surface
Back-sides setting is saved as a machine setting.

- In the User Options>Display tab, uncheck the Highlight Surface Backsides option.

To Change the Color of Surface Back-sides:

1. Ensure the Highlight Surface Back-sides option is selected.
2. Click the Color button, then choose a new color.

Background/Highlight Color

Figure 5-15. The Background dialog.

The background of the graphical view can be set to a solid color or a gradient, and you can also adjust the highlight color used in SA.

To Adjust Background Color Settings:

- Click the Background icon in the Main Toolbar.

To Change the Background Color to a Solid Color:

- Click the Solid radio button, then click the color swatch to change the color.
- Click the Black button to change the background color to black.
- Click the White button to change the background color to white.

To Change the Background Color to a Gradient:

Tip: For fastest rendering, set \# your background to a solid color. Solid backgrounds redraw faster than gradient backgrounds.

- Click the Gradient radio button, then choose a start and end color. Specify whether you'd like a horizontal or vertical gradient.

The highlight color is used when an object is selected or when it is explicitly highlighted using the Highlight command.

To Change the Highlight Color:

- Under the Highlight Color section, click the color swatch and choose a new color, or
- Click the Auto Set button, which will automatically select a highlight color that has high contrast when compared to the current background color.

To Restore the Factory Default Background/Highlight Colors:

- Click the Restore Defaults button.

Hardware Acceleration

If your graphics card supports it, SpatialAnalyzer provides OpenGL ${ }^{\text {TM }}$ hardware acceleration for the graphical view. This option is enabled by default, and provides a significant performance increase-particularly with complex models and large amounts of geometry.

To Enable or Disable Hardware Acceleration:

1. Open the User Options dialog by clicking the icon.
2. On the Display tab, click the Performance Options button.
3. Check or uncheck the Use Hardware Accelerated Rendering if Available option (Figure 5-16).

Note: Some graphics cards
may cause visual artifacts with hardware-accelerated rendering enabled. If you see these artifacts, first ensure that you have the latest drivers for your graphics card. If the artifacts persist, disable hardware acceleration.

After changing the hardware acceleration option, it is necessary to exit SA and restart for the new setting to take effect.

SA has a built-in Frames-per-second (FPS) monitor that you can use to determine whether hardware acceleration is improving rendering performance in your job (see Figure 5-17). The FPS monitor displays a running average of the rendered frame rate. The progress bar under the frame rate shows how "full" the measurement buffer has become.

For the most accurate value, continue rotating the view until this buffer is nearly full.

To Test the Effectiveness of Hardware Acceleration on Your Machine:

Note: You will not see a
framerate that exceeds the refresh rate of your display--typically around 60 fps .

1. Open the User Options dialog by clicking the icon.
2. On the Display tab, click the Performance Options button.
3. Select the Display Frames-Per-Second (FPS) Monitor option.

Surface Rendering Options

Note: Surface rendering options only affect the depiction of the CAD in the graphical view. In calculations, the exact surface is always used.

Figure 5-18. The Surface Rendering Options dialog.

CAD surfaces (sometimes referred to as B-Reps or NURBS—Non-rational Uniform B-Splines) are mathematically defined and therefore have an "exact" representation. However, curved surfaces must be converted into a series of approximated flat faces in order to be rendered in the graphical view. The quality of this approximation is determined by the Surface Rendering Options (see Figure 5-18).

If you find that your curves and surfaces are not being represented accurately enough for your liking, or if you see "tearing" in your CAD surfaces, you can modify the surface rendering options.

To Change the Surface Rendering Options:

- In the User Options>Display tab, click the Surface Rendering Options button. Choose the desired settings, then click OK.
The adjustable options that affect surface rendering are as follows:
- Max Trimmed Edge Angle. Specifies the maximum length of edge segments for trimmed edges. A lower value gives a higher quality representation. Use a value of 0 to default to a lowquality setting.

Figure 5-19. Max trimmed edge angle: 65 (left) and 15 (right).

Figure 5-20. Max trimmed edge angle: 125 (left) and 5 (right).

Figure 5-21. Max facet chordal deviation of 0.000 (left) and 0.001 (right).

Note that this setting also applies to spline curves:

- Max Facet Chordal Deviation. Specifies the maximum allowable distance between a rendered edge and the surface with which it is associated. Use a value of 0 to default to a low-quality setting.

When laying out points on an object's vertices, this setting affects how many points are constructed.

- Max Facet Edge Length. Specifies the maximum allowable length of each edge segment.
- Max Facet Aspect Ratio. Specifies the maximum aspect ratio (length vs. width) of each rendered facet.
- Force Re-render of all surfaces. Checking this option will force SA to recalculate surfaces using the latest settings in the window. If unchecked, and surfaces have already been rendered, then the settings will not take effect until the file is reopened.

Labels

Figure 5-22. Point and object labels are visible in this view.

Labels can be turned on in the graphical view for displaying names of points, objects, and instruments (see Figure 5-22). This is often useful for visually distinguishing different objects, but can become overwhelming in complicated files-so you can toggle label visibility.

You can specify the font with which to display labels, as well as the text size.

To Change the Font Used for Labels:

1. Click the User Options icon in the toolbar.
2. In the Display tab, click the Font Settings... button in the Labels box.
3. Select the desired font, style, size, and color (the other options will not apply).
Labels can be controlled individually for points (which also displays instrument labels) or objects.

To Toggle the Display of Labels:

Tip: Displaying a large num\Rightarrow ber of labels simultaneously in the graphical view can significantly slow down display performance. Hide items not in use or turn labels off to speed up display speed.

- Points and Instruments. Toggle View>Show Point Labels or press Alt+L (default keyboard shortcut).
- Objects. Toggle View>Show Object Labels.

Point labels can display just the target name (such as STAR_EAST_5 in Figure 5-22) or can display the entire collection, group, and target name (such as Controls: :Network: :STAR_EAST_5).

To Toggle the Display of Full Point Names:

1. Click the User Options icon in the toolbar.
2. In the Display tab, check or uncheck the Use Full Names checkbox.

To Display Instrument Labels Without Point Labels:

1. Click the User Options icon in the toolbar.
2. In the Display tab, uncheck the Display Labels checkbox.
3. Ensure that View $>$ Show Point Labels is turned on.

Note: Hiding obstructed labels is computationally intensive and can slow down the graphical view considerably. For a more efficient method, simply hide the points.

Figure 5-23. Hide obstructed labels disabled (left) and enabled (right).

When point labels are enabled, by default they are displayed even when the corresponding point is hidden behind a surface. To avoid confusion, you can set the graphical view to hide labels for points that are not visible from the current point of view.

To Hide Labels for Hidden (Obstructed) Points:

- Select View>Hide Obstructed Labels.

When point labels are displayed, by default SA will label the axes of coordinate frames as X, Y, and Z. This can be disabled.

To Disable Labeling of Frame Axes:

1. Click the User Options icon in the toolbar.
2. In the Display tab, uncheck the Draw Labels checkbox in the Coordinate Frames box.

The Hover Window

If you are looking at an item in the graphical view, finding that item's name-or where it is located in the tree-can be a difficult task, particularly if the file is complicated and has lots of objects. The Hover window is a floating dialog, so it can be left up and "floating" over the graphical view. When you hover over an item in the graphical view, the Hover window will indicate the collection, name, type, and location of the item in the tree, the coordinates of a point (in Cartesian, Cylindrical, or Spherical coordinates, the deltas for a vector, or the number of measurements associated with an instrument.

To Toggle Display of the Hover Window:

Do one of the following:

- From the menu, select View>Hover (nearest point), or
- Press Ctrl+H (the default keyboard shortcut), or
- From the Toolkit's Analysis tab, click the Hover Window \square

Hover ($\mathrm{CtrI}+\mathrm{H}$ to close)				
- Auto Collection: A Group: Random Target: r16		Objects © Vectors Onstruments		
X	$\begin{array}{r} 8.0477 \\ 94.1527 \\ 0.8040 \end{array}$		(Cartesian ($X / Y / Z$)	
Y:				
		\square Show in Tree	$\bigcirc \mathrm{S}$	

The Hover window has a filter that you can apply to indicate what can be "hovered".

- Auto. No filter is applied-SA will provide information for points, objects, vectors, or instruments-whatever you roll over.
- Points. Information will only be displayed when the cursor is rolled over a point.
- Objects. Information will only be displayed when the cursor is rolled over an object.
- Vectors. Information will only be displayed when the cursor is rolled over a vector.
- Instruments. Information will only be displayed when the cursor is rolled over an instrument.

To Set the Hover Window Filter:

- With the Hover window displayed, choose either the Auto, Points, Objects, Vectors, or Instruments option.

To Find an Item in the Tree:

1. Activate the Hover window and ensure that the Show In Tree option is selected.
2. Hover the mouse cursor of the item of interest. The tree will be expanded and auto-scrolled to reveal the item, and it will be selected.
3. To keep the selection active and the tree expanded, turn off the hover window while hovering over an item by pressing Ctrl+H.

To Change the Coordinate System for Viewing Point Coordinates:

- In the Hover window, choose the Cartesian, Cylindric, or Spherical option.

Object-Specific Rendering Modes

It is often useful to make a specific object or instrument in the graphical view partially transparent (translucent) or to render it differently than other objects. For example, if a measured part has an area of insufficient material, its corresponding vector group will point into the CAD model. As a result, this vector will be nearly invisible when the CAD is rendered in Solid, Solid+Edges, or Hidden Line Removed mode. As another example, depending on viewing angle, sometimes the instrument's graphical representation, a surface, or the active coordinate frame will obstruct the work area that you're most interested in (see Figure 5-25). A third case might involve a surface that you want to see through. While there is always the option of hiding the obstructing items, often times it is desirable to keep them visible. In such circumstances, translucency allows you to avoid hiding the objects, but still be able to see through them to the work area.

Figure 5-25. Viewing the work area through a translucent instrument.

To Toggle Instrument Translucency:

- Select View $>$ Translucent Instruments.

To Toggle Frame Translucency:

- Select View $>$ Translucent Working Frame.

Surfaces and primitive objects can be set to a specific level of translucency or can be independently set to render in solid or wireframe mode.

To Set the Rendering Mode of an Individual Surface or Primitive Object:

1. Right-click the object in the tree or graphical view.
2. Select Translucency.
3. Select a desired rendering mode. If Translucent is selected, choose an opacity level with the slider.

To Set the Rendering Mode of Multiple Surfaces or Primitive Objects:

1. Select View $>$ Object Visibility $>$ Translucency $>$ Individual Objects or $>$ All

Objects as desired.
2. If >Individual Objects was selected, select the objects of interest and press Enter.
3. Select a desired rendering mode. If Trans/ucent is selected, choose an opacity level with the slider.

Visibility

Figure 5-26. The frame named
Frame1 in this collection is hidden.

All of the items listed above can be shown or hidden. Hiding an item will remove it from the graphical view, and (unless it is a folder or collection) will dim the item's name in the tree to gray (see Figure 5-27).
Hiding items not in use has a number of benefits, chief of which are:

- The graphical view becomes less cluttered, and it's easier to work with the items of interest.
- If many items are being displayed at once, hiding those not in use will speed up the graphics considerably.
- Graphical selection becomes easier, because there are less items to pick incorrectly.

To Toggle An Individual Item's Visibility:

- Right-click the item in the tree or graphical view and toggle the Show option.
To Hide or Show All Items In a Container or Category:
- Right-click the container (collection or folder) or category in the tree and select Hide All or Show All.
To Hide or Show Individual Points:
- Right-click the point in the tree or graphical view and toggle the Show setting to toggle visibility of individual points, or
Select View>Show Points or >Hide Points, then select the points to show or hide.

To Hide or Show Multiple Objects:

- Select View>Object Visibility>Hide Objects or >Show Objects.

To Show All Objects:

- Select View>Object Visibility>Display All.

You can also filter the graphical view to display items only from a specific source. This source can be either SA itself, or an imported CAD file. This allows you to immediately hide objects imported from one
or more CAD files, or to immediately hide native SA objects.

To Filter The View By CAD Source:

1. Select View>Object Visibility>Filter By CAD Source.
2. In the Show Selected Sources dialog, select the sources you'd like to show, then click OK.
3. The filter will apply until you change it again.

Miscellaneous Settings \& Commands

View Animation Steps

Sometimes, switching from one saved viewpoint to another can be disorienting. If you find that switching from one saved view to another is too jarring, you can increase the number of animation steps as the view transitions from one saved viewpoint to another. This has the effect of smoothing out (and slowing down) the transition.

To Change the Number of View Animation Steps:

1. Click the User Options icon in the toolbar.
2. In the Display tab, change the View animation steps value. The value is the number of frames used to animate from one view to the other.

Arrowhead Sizes

Figure 5-27. Line arrow size factors of 0.01 (left), 0.05 (middle), and 0.1 (right).

You can change the size of arrowheads on vectors with the Line arrow size factor setting (see Figure 5-27).

To Change the Size of Arrowheads on Vectors:

Note: Vector arrowheads 22 also get larger as the vector gets longer.

1. Click the User Options icon in the toolbar.
2. In the Display tab, change the Line arrow size factor setting to a different value. A small change goes a long way!

Scale Indicator

Figure 5-28. The scale indicator. These points are approximately 100 inches apart.

100.0 in

To get a better grasp on the scale of the current zoom setting, you can display a scale indicator-somewhat like a distance legend on a map-that indicates the size of distances in the graphical view (Figure 5-28). The scale indicator automatically updates and adjusts itself as you zoom in and out in the view.

To Display the Scale Indicator:

1. Click the User Options icon in the toolbar.
2. In the Display tab, check the Show Scale Indicator in View checkbox.

Connection Indicator

If you have more than one instrument in your job file, it may begin to get confusing as to which instrument is currently connected to the instrument interface (that is, which instrument in the SA file is currently live). The connection indicator (Figure 5-29) is designed to highlight the connected instrument and prevent the confusion.

Figure 5-29. The connection indicator.

You can control whether the indicator is displayed, and if so, how large it is drawn.

To Adjust the Connection Indicator:

1. Click the User Options icon in the toolbar.
2. In the Display tab, enable or disable the Connection Indicator checkbox.
3. To change the size of the indicator, change the Radius value.

Uncertainty Fields

Figure 5-30. Viewing uncertainty fields for a set of measurements.

As discussed in "Measurement Uncertainty", uncertainty fields allow you to visualize the uncertainty of a measurement as a cloud of points (Figure 5-30). Uncertainty clouds provide a reference for determining relative uncertainty magnitude, shape, and distribution when comparing measurements.

You can choose to display these uncertainty fields in the graphical view, or to hide them.

To Toggle Display of Uncertainty Fields:

- From the menu, select View $>$ Show Uncertainty Fields.

Uncertainty fields are rendered in the graphical view at a certain magnification level so that they can be easily seen.
To Change the Size of Uncertainty Fields:

1. Click the User Options icon in the toolbar.
2. In the Analysis tab, change the Cloud Magnification value to the desired amount.

By default, uncertainty clouds are drawn as individual dots on the screen, each representing a sample of the overall uncertainty cloud. For ease of viewing, you may prefer to draw the cloud with lines instead of dots (Figure 5-31).

To Draw Uncertainty Clouds as Lines:

1. Click the User Options icon in the toolbar.
2. In the Analysis tab, enable the Draw using lines option.

Figure 5-31. Uncertainty clouds drawn as dots (left) and lines (right).

Cloud Display Control

When working in scan data, it is common to be dealing with tens or hundreds of millions of cloud points. Rendering a large number of cloud points on-screen would lead to very sluggish graphical view performance.

Whenever you rotate/pan/zoom in the graphical view, any displayed point clouds are automatically thinned while the view adjustment operation is in-place. Once complete, the original point cloud is displayed.
You can further limit the number of cloud points rendered on-screen using the Cloud Display Control (Figure 5-32).

Figure 5-32. Viewing a cloud at 1:40 density, with each cloud point drawn as a 1-pixel dot.

To Display the Cloud Display Control:

- From the menu, select View>Cloud Display Control, or
- Press Ctrl+T (default keyboard shortcut).

Figure 5-33. Viewing a cloud at 1:3175 density, with each cloud point drawn as a 3×3 pixel square.

Tip: When working with \Rightarrow large numbers of cloud points, selecting graphically can be a very slow operation. Select a cloud using F2 selection wherever possible.

- Thin. The thinning factor for display. 1 indicates that all cloud points are displayed. 100 indicates that only every hundredth cloud point is displayed.
- Size. The size of the rendered cloud point, in pixels. 2 indicates
the cloud is to be drawn as a 2×2 pixel square.

When cloud thinning is enabled and you graphically select cloud points, all cloud points will be selected-not just those that are rendered.

As a job file grows to hold more objects and measurements, it may become somewhat difficult to distinguish objects in the graphical view. While hiding items not of concern is probably the most common solution to this, often times it is faster to simply select an object by name in the tree and highlight it. Highlighting an item does two things: it changes the item in the graphical view to the current highlight color, and it also colors the item in the tree a bold blue. Doing this enables you to pinpoint the selected object while keeping all objects of interest visible. In addition to individually highlighting objects, you can also highlight points, collections, instruments, and folders. (Highlighting a collection or folder highlights everything inside that collection or folder).

There are also cases in which simply hiding items does not provide sufficient information. For instance, you can right-click a relationship and ask it to highlight its associated points or objects in order to identify which entities are associated with that relationship. This is information that cannot be revealed by simply hiding objects.

To Highlight a Point, Object, Instrument, Collection, or Folder:

- Right-click the item in the tree or graphical view and select Highlight.

To Highlight the Points or Objects Associated With a Relationship:

- Right-click the relationship in the tree and select Highlight Entities.

To Clear Highlights:

- Right-click the item(s) in the tree or graphical view and uncheck the Highlight setting, or
- Select View>Clear all Highlights to clear all highlighted items.

View Refresh

Rarely, you might occasionally find the need to manually refresh the view. If you are uncertain that the view updated after performing an action, you can refresh the view to ensure that you're looking at the latest rendering of the graphical view.

To Refresh the Graphical View:

- Select View $>$ Refresh from the menu, or
- Press F5, the default keyboard shortcut.

Copying the Graphical View to the Clipboard

You can quickly and conveniently copy just the current graphical view to the clipboard for pasting in other applications (such as into an Excel or Word document).
To Copy the Graphical View to the Clipboard:

- From the menus, select Edit>Copy graphics to clipboard.

Creating a Movie Capture of the Screen

SA comes with a tool for capturing video of the screen (or certain windows) to a video file. This may be useful for sharing your work with others or communicating an important feature to a customer.

To Create a Movie Capture of the Screen:

1. From the menus, select View $>$ Create AVI Movie $>$ New File.
2. When prompted, specify a filename for the resulting video.
3. The Image Capture Options dialog appears (Figure 5-34).

Image Capture Options		
Capture Modes	Output Size (pixels)	
- Entire Screen	Widh	1920
O SA Window	Height	1200
- SA Graphics Window		
Capture Method		
- Continuous: Delay between frame captures (sec)		2.0
- Triggered: Capture when Mouse Wheel used		
Triggered: Capture everytime the graphics window redraws		
Frame Rate		
Playback Rate (frames per second)	1	
Create AVI File		Cancel

4. Select the desired settings, then click Create AVI File.

Capture Modes

- Entire Screen. The entire screen will be captured.
- SA Window. Only the boundary of the SA window will be captured.
- SA Graphics Window. Only the graphical view will be captured.

Output Size (pixels)

Controls the resolution of the resulting video file.

Capture Method

- Continuous. Captures frames with a specified delay between frames.
- Triggered: Capture when mouse wheel used. Captures a frame only when the mouse wheel is used.
- Triggered: Capture everytime the graphics window redraws. Captures a new frame whenever the graphical view is redrawn.

Frame Rate

- Playback Rate (frames per second). Indicates the playback rate of the video-the number of video frames displayed per second.

5. If applicable, choose the appropriate video compression settings.
6. Start recording by selecting View $>$ Create AVI Movie $>$ Start Recording or press Alt+1.

To Pause or Resume Video Recording:

- To pause, select View>Create AVI Movie>Stop Recording or press Alt+2.
- To resume, select View>Create AVI Movie>Start Recording or press Alt+1.

To Finish Recording:

1. First stop recording using the View>Create AVI Movie>Stop Recording command or press Alt+2.
2. Select View>Create AVI Movie>Close File.

Controlling Target Icon Size

You can control the size of constructed and measured points (targets) as displayed in the graphical view. Targets can be drawn at a fixed size—which does not change regardless of zoom level—or a varied size, in which the points get larger as you zoom in. The former avoids clutter when multiple points are spaced closely together, whereas the latter gives a visual indication of scale on the current view.

Figure 5-35. Targets displayed at 5 pixel size (top) and 15 pixel size (bottom).

To Use a Fixed Target Size:

1. Click the User Options icon in toolbar.
2. In the Targets area of the Display tab, ensure that Fix size in view us checked, and enter the desired pixel size for the targets.

To Use a Variable Target Size:

1. Click the User Options icon in the toolbar.
2. In the Targets area of the Display tab, ensure that Fix size in view is unchecked. Set the Icon radius to the desired size, in job units.

This Page Intentionally Left Blank.

Working In SA

This chapter will help you to learn the ins and outs of working in SA on a day-to-day basis, which will speed up your workflow and allow you to complete your work as quickly as possible.

Selection

Figure 6-1. A selection prompt displayed in the graphical view.

SA generally follows the Action-Object selection paradigm when it comes to issuing menu commands. This implies that you first choose a command or operation, and then select the items to which the operation should be applied. Depending on the operation, multiple selection steps may be required. When an object is selected, it will change to the selected highlight color and its listing in the tree will become bold blue.

You can select entities visually in the graphical view. When an operation requires a user to make a selection, a selection prompt will ap-
pear as in Figure 6-1.
The entities that you will be prompted to select will depend on the selected command (one of the benefits of the Action-Object paradigm). SA will filter entity types for you, so that if you are prompted to select points, you will only be allowed to select points-not instruments or objects.

To Abort a Command and Exit the Selection Mode:

- Press the Esc key. The selection prompt will disappear and the command will be cancelled.

In many commands, the prompt permits you to select more than one item—usually as many items as desired. You can continue to select items using the selection methods below until satisfied, at which time you must indicate to the prompt that you are finished selecting items.

To Complete Selection:

- Press the Enter key.

There are several ways to make selections in SA:

- Graphically. Pick items directly in the graphical view.
- Treebar Selection. Pick items using the tree.
- F2 Selection. Pick items from a filtered list.
- Wildcard Selection. Pick items based on naming criteria using wildcards.
- By Color. Pick items based on their color.
- By Type. Pick items based on their type.

Each of these selection methods is discussed in more detail in the following sections.

Graphical Selection

One way to graphically select items is to simply click them in the graphical view.

To Graphically Select Items One at a Time:

- With a prompt displayed, single-click the item in the graphical view. The item's selection state will be toggled-once selected, clicking an item again will remove it from the selection.
You can also graphically select multiple items at one time. To do this, SA provides graphical selection modes.

Graphical Selection Modes
There are two graphical selection modes in SA: rectangle and polygon.

Figure 6-2. Selecting a set of points using a rectangular selection marquee.

Tip: If you've started to de-- fine a selection in the wrong place, drag the mouse back over the starting corner of the rectangle. When the cursor changes back to an arrow, release the mouse button. You will remain in the selection mode but nothing will be selected.

Rectangle mode allows you to draw a rectangle around the entities of interest, as illustrated in Figure 6-2. Everything inside the rectangle is either selected (or deselected), whereas the selection states of items outside of the rectangle remain unchanged.

To Select Multiple Items Using Rectangular Selection:

[^2]1. Ensure you are in rectangle graphical selection mode (see "Graphical Selection Options" on page 96).
2. While pressing the Shift key, click and hold the mouse button to define one corner of the rectangle.
3. Drag to the opposite corner of the rectangle, then release the mouse button.

Polygon selection mode allows you to draw a polygon of any shape to define the selection, as depicted in Figure 6-3.

Items inside the polygon are either selected (or deselected), whereas items outside of the polygon are not affected.

To Select Multiple Entities Using Polygon Selection:

1. Ensure you are in polygon graphical selection mode (see "Graphical Selection Options" on page 96).
2. While pressing the Shift key, single-click to define each vertex of the polygon.
3. For the last vertex, locate the mouse cursor where you'd like the vertex to be and release the Shift key.

To Change the Selection Mode During a Selection:

- Press the F3 key.

Graphical Selection Options

The Graphical Selection Mode dialog (Figure 6-4) provides a number of options to allow you to control graphical selection. You can pick the selection mode as well as define whether entities inside, outside, or crossing the selection boundary should be selected.

To Open the Graphical Selection Mode Dialog:

- Choose View>Graphical Selection Mode, or
- Select the Graphical Selection Mode icon $-\square$ from the Main Toolbar.

To Change Graphical Selection Modes:

- Choose the Rectangle or Polygon radio button.

Figure 6-4. The Graphical Selection Mode dialog allows you to define the behavior of the selection marquee.

To Select Whether Entities Inside or Outside the Selection Region Should Be Selected:

- Choose the Select items INSIDE shape or Select items OUTSIDE shape radio button.

To Define Whether Entities Crossing a Selection Region are Selected:

- Check or uncheck the Objects must be entirely in or out checkbox.

Treebar Selection

Any item can also be selected in the tree. Selecting items in the tree provides an advantage over the graphical view in cases where there are many entities overlapping, when the item is not visible, does not have a representation in space, or when the geometry of the view makes it difficult to determine which items are actually selected.

To Select Items in the Tree:

- With a prompt displayed, double-click the item in the tree. Double-click the entity again to toggle its selection state.

F2 Selection

Figure 6-5. The F2 Selection dialog.

The F2 selection window (Figure 6-5) provides significant advantages for selection in cases where multiple items need to be selected. F2 selection filters out entity types that don't apply to the current selection and lists the remaining items in a hierarchical view similar to the treebar.

There are three variants of the F2 selection window: there is a window specific to point selection mode, object selection mode, and instrument selection mode. Each is slightly different and has options particular to the specific mode.

To Use the F2 Selection Window:

1. During selection (while the prompt is displayed), do one of the following:

- Press F2,
- Click the F2 - Select from a list : icon in the toolbar, or
- From the menu, select View>Point Selection Tree-View.

2. Select the desired items, then click the OK button.
3. Continue selecting items using other methods (if desired), then confirm your selection by pressing the Enter key.
To Expand or Collapse the Entire Tree of Items (Point/Object Selection Modes):

- Click the Expand or Collapse button.

To Select All Items in a Folder or Collection:

- Check the box next to the folder or collection name.

To Select an Entire Category or an Entire Point Group (Point/Object Selection Mode):

- Check the box next to the category/point group (for example, Spheres, Point Groups, or Frames).
To Select All But a Few Items in a Category or Point Group (Object/Point Selection Modes):
- Check the box next to the category type, then uncheck individual items within that category.

To Select Contiguous Rows of Items (Object/Point Selection Modes):

1. Check the box next to the first item in the list.
2. Hold down Shift and check the box next to the last item in the list.

To Select All Items in the List:

- Click the All button.

To Deselect All Items in the List:

- Click the None button.

Wildcard Selection
Wildcard selection is a powerful way to select items by name from the F2 window. To use it, click the By name using wildcards button, which opens the dialog in Figure 6-6.

Figure 6-6. The Wildcard Selection dialog.

This dialog may appear slightly different depending on whether the current command allows you to select points or objects. In this dialog, asterisks (*) represent a set of contiguous characters, and question marks (?) represent a single character.
This dialog allows you to enter selection criteria based on collection, object, and point names. In each criteria field, enter a search string. Any entities that match all of the entered criteria will be selected.
Examples (all based on point selection):

To Select:	Enter the following into the fields:		
	Collection	Group	Target
All points in all collections	$*$	$*$	$*$
All points in all collections containing "Survey"	SURVEY	$*$	$*$
All points in the Survey collection from point groups whose names contain "Instrument", followed by any string, fol- lowed by"Measured"	SURVEY	INSTRUMENT*MEASURED	$*$

To select everything except the items selected by the search criteria, check the Inverse Selection Mode option. After completing a wildcard selection, the items are selected (signified by the checked checkbox next to their entry in the list) but the F2 dialog remains open so that you can modify your selection or add to it. You can even add the result of another wildcard selection to your currently selected items.

To Select Based on Wildcards:

1. At a selection prompt, open the F2 Selection Window.
2. Click the By Name Using Wildcards button.
3. Type in your criteria, then click OK.
4. Modify the selection as needed, or perform another wildcard selection.
5. Click OK to select the items.

Selection By Object Type
The F2 selection window enables you to select items by their type (see Figure 6-7). Although this is not particularly useful when select-
ing items in a single collection (because those items are already organized by type and can be easily selected by clicking one checkbox), if you have multiple collections of items that you want to select by type, this can save you some time.

To Select Objects By Type:

1. In an object selection mode, call up the F2 selection dialog.
2. Click on the By Object Type button.
3. In the Select Object Types dialog, select the object types you'd like to select, then click the 0 K button.

Selection By Color

It may be desirable to use object color to characterize different entities in the job file. For instance, you may decide to color all nominal objects yellow, and all as-built or measured objects blue. If you follow this colorization scheme, then you can easily select all nominal or measured objects using selection by color.

There are two ways to select objects by color. You can select graphically by color, or you can F2-select by color. Both color selection modes apply to object selection only, because only objects can be assigned a color. When selecting graphically by color, you choose a single item whose color defines the color to select. SA will then automatically also select all objects that match that color. F2 selection by color allows you to directly pick a color (not an object) and SA selects
all objects of that color.

To Graphically Select Objects By Color

1. While in object selection mode, press the F3 key or click on the Graphical Selection Mode [-] icon.
2. In the Graphical Selection Mode dialog, click the Select Objects by Color (Applies Once) button.
3. Click on an object whose color defines the color you'd like to select.

To F2 Select Objects By Color

1. With a selection prompt displayed, press the F2 key or click the list selection \quad icon.
2. In the resulting Object Selection dialog, click the By Color button.
3. In the Select Color dialog, check one of the colors in the list. (Only the colors in use in the file will be displayed).
4. Click OK. You will be notified how many objects matched the color criteria, and they will be added to your selection.

Context Menus

Context menus play an important part in the SpatialAnalyzer workflow. They allow you to select commands directly related to an item by selecting that item instead of looking for a command in a menu. In some cases, commands are available in context menus and nowhere else. To access a context menu, simply right-click an item or object. If it has a context menu, it will be displayed adjacent to the mouse cursor.

Context menus are frequently used in the graphical view. Right-clicking an entity in the graphical view reveals its context menu, allowing quick access to commands related to that entity (see Figure 6-8). There are several commands that appear in the graphical view context menus that are not found anywhere else.

Figure 6-8. The context menu for this tire contains a command to reveal the surface in the tree.

Figure 6-9. The context menu in the tree.

Right-clicking an entity in the SA tree will also present a context menu and is one of the most common actions performed in the tree (Figure 6-9).

Organizing Your Job

In a typical measurement job, you'll be working with many different types of objects in a file: instruments, coordinate frames, measured points, geometry, CAD data, reports, and more. Without a way to organize this data, it would be easy to quickly get lost amongst the variety of entities in the file. Fortunately, SA provides a flexible way to
organize this data so that it can be accessed conveniently and without confusion. The primary player in all of this organization is the tree, in which the items in your job are displayed in a hierarchical fashion.

Folders and Collections are two primary constructs that enable this organizational capability.

Folders

Figure 6-10. Multiple folders and collections in a hierarchy in the tree.

Folders allow you to sort and arrange your job information in the tree in a way that makes the most sense based on the way you work (Figure 6-10). You can create nested folders and move collections from one folder to another. You can expand and collapse a folder hierarchy, hide folders, rename and move folders, and change their order in the tree. Folders can only contain other folders or collections. You cannot put an instrument, point group, coordinate frame, or any other entity directly inside of a folder.

To Create a New Folder:

- Right-click an empty area of the tree or on any folder and choose New Folder.

To Create a New Sub-Folder:

- Right-click the folder you'd like to be the parent of the new sub-folder, and choose New Sub-Folder.
To Delete a Folder:
- Right-click a folder in the tree and choose Delete. All items within the selected folder will be deleted.
To Delete Multiple Folders by Name:

1. From the menu, select Edit>Delete>Delete Folders By Wildcard...
2. Type a wildcard search criteria (* and ? are allowable wildcard characters) into the Search Criteria field.
3. Click the 0 K button and confirm the deletion action.

To Rename a Folder:

- Right-click the folder and choose Rename.

To Expand or Collapse an Entire Folder Hierarchy:

- Right-click the folder and choose Expand All or Collapse All.

To Change the Order of Folders in the Treebar:

- Right-click a folder and choose Change Order In List>Move Up (Move

Down).

Collections

Note: If you measure

points (through an instrument interface) into a collection that does not already exist, the collection will be created automatically for you.

A collection refers to a group of objects, measured data, reports, and other entities that can be managed as a group from the tree, and as depicted with an open box icon $\mathbb{1}$. This "collection" of objects serves to group related data in a logical manner, making measurement and analysis more intuitive.

A job may have any number of collections. However, only one of these collections may be the active collection at any one time. When a collection is active, it is considered to be the default collection. Any new-ly-created entities (e.g., Points, Instruments, Planes, Lines, Reports, Relationships, etc) are created in the active collection unless a different collection is explicitly specified. The active collection is depicted in the tree by a bold blue font. Notice in Figure 6-10 that any folders enclosing the active collection are also highlighted with a bold blue font so that you can find the active collection if the folder hierarchy is collapsed.

To Create a New Collection:

- Right-click an empty area of the tree, any collection, or any folder and choose New Collection, or
- Measure a point or object into a collection that does not already exist (see Measurement).

To Rename a Collection:

- Right-click the collection in the tree and choose Rename.

To Delete a Collection:

- Right-click a collection in the tree and choose Delete.

To Delete Multiple Collections:

- Right-click a collection in the tree and choose Delete Multiple Collections, or
- Right-click an empty area of the tree and choose Select Collections to Delete.

To Delete Multiple Collections By Name:

1. From the menu, select Edit>Delete>Delete Collections By Wildcard...
2. Type a wildcard search criteria (* and ? are allowable wildcard characters) into the Search Criteria field.
3. Click the OK button and confirm the deletion action.

To Copy a Collection:

- Right-click a collection and choose Copy.

To Change the Order of Collections in the Treebar:

- Right-click the collection and choose Change Order In List>Move Up (Move Down).

To Make a Collection Active:

- Right-click the collection and choose Make active default collection.

To Move a Collection to a Folder:

1. Right-click the collection and choose Move Collection to Folder.
2. Choose the destination folder from the resulting dialog.

Note: A common mistake for new users is to try to dou-ble-click a category in the tree to select it. You must expand the category to reveal the actual items inside it.

When objects are created inside of a collection (either explicitly or as the result of an operation), SA automatically organizes those objects by their type inside what is referred to as a category. A category is simply a container that holds all like items in a given collection. For instance, all point groups in a given collection are placed into the Point Groups category, and all instruments in a collection are placed into the Instruments category. This behavior makes it easy to keep your file's elements organized by type.

Relocating Items to Another Collection

A common use for collections is to organize nominal and measured data separately. Another use is for organizing multiple states of measured data (for instance, measuring an assembly at various stages in the production process). You may occasionally come across the need to move items from one collection to another.

To Relocate an Item to Another Collection:

1. Right-click the item in the tree or graphical view and select Move to Another Collection from the context menu.
2. In the Select Collection dialog, double-click the destination collection (or select it and click OK). The item will be moved into the destination collection.

To Relocate Multiple Objects to Another Collection:

1. From the menu, select Edit>Relocate Objects to another Collection.
2. Select the objects you'd like to relocate.
3. In the Select Collection dialog, double-click the destination collection (or select it and click 0K). The objects will be moved into the destination collection.

To Relocate Multiple Instruments to Another Collection:

1. From the menu, select Edit>Relocate Instruments to another Collection.
2. Select the instruments you'd like to relocate.
3. In the Select Collection dialog, double-click the destination collection (or select it and click OK). The instruments will be moved into the destination collection.

To Relocate Multiple MPs to Another Collection:

1. From the menu, select Edit>Relocate MPs to another Collection.
2. Select the scripts you'd like to relocate.
3. In the Select Collection dialog, double-click the destination collection (or select it and click OK). The MPs will be moved into the destination collection.

Rearranging Points

At some point while working in a file, you will likely want to rearrange your points by moving them from one point group to another. There are several ways to do this.

To Relocate Points into a Separate Group:

1. From the menu, select Construct $>$ Points $>$ From Existing Points $>$ Move.
2. Select the points to relocate.
3. In the dialog, enter a name for a new group into which to place the points. This group must not already exist.
4. The points will be removed from the current group and placed into the new group. The point names will be prepended with the source group name.

To Relocate a Single Point into a Different Group:

Renaming a point and giving the point a different collection or group will move it into that collection/group. If the collection or group does not already exist, it will be created for you.

1. Right-click the point to relocate and choose Rename from the context menu.
2. In the Rename Point dialog, enter a new collection or group name, then click OK.

The Group Manager
You can rearrange points in an intuitive way using the Group Manager. The Group Manager is a Windows Explorer-like dialog that allows you to drag and drop points from one group to another, and also provides the capability for renaming, group creation/deletion, search and replace, sorting, and more.

To Call Up The Group Manager:

- From the menu, select Edit>Group Manager...

The Group Manager is shown in Figure 6-11.

Figure 6-11. The Group Manager.

(1] Group Manager --> Right click for menus				回
■ A Datums_Measurements1 DatumB_Measurements 1 SFM_12-13_Measurements1 SFM_10-11_Measurements1 DatumC_Measurements 1 Geometrical Tolerance.1<GDT-Surface Profile>_Measurements1 Geometrical Tolerance.4<GDT-Surface Profile>_Measurements1 SFM_1-2-14-15-16-17-18-19_Measurements1	Name	X	Y	Z
	() Datum...	0.0591	4.7393	0.0589
	(3) Datum...	0.0590	3.8917	0.0561
	(e) Datum...	0.0596	1.9797	0.0512
	(e) Datum...	-1.6796	-0.0630	0.0484
	(3) Datum...	-3.5101	-0.0631	0.0493
	(\%) Datum...	-5.8961	-0.0626	0.0491
	(e) Datum...	-6.0608	0.2588	0.0527
	(e) Datum...	-6.0608	2.0046	0.0550
	(e) Datum...	-6.0602	4.6651	0.0590
	() Datum...	-5.7498	5.0546	0.0578
	(0) Datum...	-4.2350	5.0545	0.0614
	(\%) Datum...	-2.7264	5.0551	0.0622
	() Datum...	-0.1466	5.0552	0.0624

On the left side of the group manager is a list of all groups in your job, organized by collection. At right is a list of the points in the selected group, as well as their coordinates.

To Create a New Group:

1. Right-click anywhere on the left side of the Group Manager and select New from the context menu.
2. Type a new group name, then click 0 K .

To Delete a Group:

- Right-click a group on the left side of the Group Manager and select Delete from the context menu.

To Rename a Group:

1. Right-click a group on the left side of the Group Manager and select Rename from the context menu.
2. Enter a new name for the group, then click OK.

To Relocate Points to a Different Group:

1. Select the points to relocate from the right side of the window. You can only select points from one group at a time, although multi-selection is allowed.
2. Do one of the following:

- Drag the selected points to the destination group, or
- Right-click the selection and select Cut from the context menu, then right-click the destination group and select Paste from the context menu.

To Copy Points To Another Group:

1. Select the points to copy on the right side of the window. You can only select points from one group at a time, although
multi-selection is allowed.
2. Do one of the following:

- Right-click the selection and choose Copy from the context menu, then right-click the destination group and select Paste from the context menu, or
- Right-click the selection and choose Copy selections into a New Group from the context menu. Type a new group name, then click OK.

To Create New Points:

1. Select the group to contain the new points on the left side of the Group Manager.
2. Right-click the right side of the window and select New from the context menu.
3. Enter the Cartesian coordinates for the point, then click 0K.
4. Enter the name for the new point, then click OK.

To Delete Points:

- Select one or more points, then right-click the selection and choose Delete from the context menu.
To Sort Points by Name or Coordinate Value:
- In the Group Manager, click a column header to sort by that value. Click again to sort in the reverse direction.
To Find Points:

1. Right-click a point or selection (select points to search amongst first, if desired) and select Find... from the context menu.
2. Type a search string, and choose either the Selection option to search the selection, or the Group option to search the entire group.
3. Click the OK button. The list of points will be filtered to show only the matching points. (Click the group name to reset the list).

To Perform Search and Replace in Point Names:

1. Select points (if desired), then right click the selection and choose Replace... from the context menu.
2. In the Replace dialog, enter text to search for, and the text to replace it with. Choose Selection, Group, or All to indicate whether you want to search among the selection, entire group, or all points.
3. Click the OK button. All matching text substrings are replaced.

To Access Point Properties:

- Double-click a point in the Group Manager, or
- Right-click a point and select Properties from the context menu.

To Access Group Properties:

- Right-click a group and select Properties from the context menu.

Naming \& Renaming Items

If you create objects in SA without properly naming them-that is, by using the default names provided by SA-you will soon find that your job file becomes completely unmanageable. In all but the simplest of measurement files, there are enough entities created that you can quickly lose track of what each entity represents. Therefore, best practice is to clearly name all items in your file when you create them. Doing so makes the file easier to work with, keeps it organized, and also allows you (or another person) to look at the file perhaps years later and still understand the data inside it.

Choosing a name is entirely up to you, although there are a few rules that should be followed.

- Names are not case-sensitive. A group named TEST is not distinguishable from a group named test.
- Spaces are allowed, but depending on the letters surrounding the space, it is often difficult to determine if a name contains a space at all (or perhaps multiple spaces). If you're worried about potential confusion, avoid the use of spaces.
- Multiple points in the same point group cannot have the same name. They must be unique.
- Multiple objects may have the same name in a given collection, however this is not recommended if you expect to use scripting (Measurement Plans), as this leads to potential ambiguity within your script as to which object you are referring.
- Avoid long consecutive sequences of numeric digits at the end of a point or group name. Keep them to less than 20 digits. (Otherwise, incrementing and decrementing of point and group names will not function correctly).

To Rename a Group of Points:

Do one of the following:

1. Do one of the following:

- From the menu, select Edit>Rename>Group of Points, or
- Right-click a group in the tree and select Rename from the context menu.

2. At the prompt, enter a new name for the group, then click OK.

To Rename a Point:

1. Right-click a point and select Rename from the context menu, or select Edit>Rename>Single Point.
2. At the prompt, enter a new Collection/Group/Target name (as desired), then click 0K.

To Rename Objects:

- Right-click the object and select Rename from the context menu. (If this menu item is not available, choose the Properties menu item and the name will be found in that dialog).

Renaming Using Unique Names

Figure 6-12. Automatically removing duplicate names.

Occasionally, you will be presented with a file in which several objects have the same name. This is sometimes the case when importing an external CAD file, for instance. You can easily automatically rename a series of objects, ensuring that they all have unique names (Figure $6-12$). SA will rename the objects by appending the type of object with a unique number and using that for the new name.

To Rename Objects Using Unique Names:

1. From the menu, select Edit>Rename>Objects by Assigning Unique Names.
2. At the prompt, select the objects to rename.

SA will rename each of the objects in turn, ensuring that the names are unique.

Renaming Using A Name Pattern
You can rename points and objects using a name pattern. Suppose you wish to rename a set of objects and call them Obj1, Obj2, Obj3, etc. This would use a name pattern that looks like this: Obj\%d. When renaming using a name pattern, you can specify any prefix or suffix for the name, then add the wildcard \%d to the search field. The \%d characters will be replaced by an actual number when the command is performed. By default, the first number is 1, but you can specify your own starting value.
To Rename Objects Using a Name Pattern:

1. From the menu, select Edit>Rename>Objects Using a Name Pattern.
2. Select the objects you'd like to rename.
3. In the Pattern for Rename dialog (Figure 6-13), specify the
pattern and a starting value, then click 0K.

Figure 6-13. Renaming a group of objects using a name pattern.

To Rename Points Using a Name Pattern:

1. From the menu, select Edit>Rename $>$ Points Using a Name Pattern.
2. Select the points to rename.
3. In the Pattern for Rename dialog (Figure 6-13), specify the pattern and a starting value, then click 0K.
Renaming By Proximity

Figure 6-14. Before renaming points by proximity (left) and after (right).

Renaming by auto-corresponding to points uses a group of points as a name reference. A different group of points is then renamed based on the reference group's names.

You can rename points by proximity to a set of reference points. This is extremely useful for quickly renaming points in preparation for a Point to Point Best-Fit operation. When renaming by proximity, SA will search for a point in a reference group that is closest to a point in the group to rename. As long as the reference point is within the specified threshold, the point to rename will be assigned the same name as the reference point (see Figure 6-14). Note that the reference group and group to rename need not have the same number of points. Points that don't have a match will be ignored.

The renaming operation is controlled by a Proximity Distance Match Tolerance. This is the furthest that a reference point can be located relative to the point to rename to be considered a match.

Probably the most common use for this is when remeasuring a set of tie-in points after an instrument has drifted (moved) beyond the desired threshold. After remeasuring the tie-in points, since the instru-
ment has only slightly changed position, they will be relatively close to the nominal tie-ins. In this case, you need not be concerned with the proper naming of the points. Simply measure them, and SA will take care of automatically renaming them for you.

To Automatically Rename Points by Proximity:

1. From the menu, select Edit>Rename $>$ Points by Auto-Corresponding 2 Groups>Proximity.
2. At the prompt, select the reference group-you may need to select it from the tree. This is the group containing the proper point names that you'd like to assign to the other group.

Note: If (due to the thresh-
old) matches are found for some points but not others, points that did not have matches will have Orig. prepended to the point name. This is to ensure uniqueness-another point that did have a match may have been renamed to the unmatched point's name.

Note: If the threshold is very
large, SA will only use the closest reference point to each measured point.

Figure 6-15. A set of points before renaming by inter-point distance (left) and after (right).
3. At the second prompt, select the group to be renamed-you may need to select it from the tree.
4. In the Input dialog, specify the Proximity Distance Match Tolerance.
5. If any matches are found within the specified threshold, you will be presented with the Residuals dialog. This dialog lists the original point names, and their proposed new names. Click the Save to File button to save this list to a text file, or the Accept button to accept the proposed new names.

You will often want two sets of points to have matching corresponding point names. Suppose you have a set of nominal reference points in your SA file that you'd like to use for tie-ins. Assuming your instrument hasn't yet been located to the nominal points (as it typically will not be), the measured points will not be close to the reference points. In order for a Point to Point Best-Fit operation to successfully execute, corresponding point names must match up. If you forget to name the points correctly as you measure them, the fit will not succeed. While you could manually rename each individual point, this command performs that process automatically (Figure 6-15), and is a big timesaver in this situation. The command is governed by an Inter-point distance match tolerance. This tolerance is the maximum allowable difference between the spacing of any proposed pair of renamed points and the corresponding spacing of that same pair of points in the reference group. If the difference exceeds this value, the set is not considered a match.

> Note: If (due to the threshsome points but not others, points that did not have matches will have Orig. prepended to the point name. This is to ensure uniqueness-another point that did have a match may have been renamed to the unmatched point's name.

Note: If the threshold is very
large, SA will only use the closest reference point to each measured point.

Note that the reference group and group to rename need not have the same number of points. Any points that don't match will be ignored.

To Rename Points By Inter-Point Distance:

1. From the menu, select Edit>Rename>Points by Auto-Corresponding 2 Groups>Inter-Point Distance.
2. At the prompt, select the reference group containing the desired point names.
3. Then, select the group containing the points to rename.
4. In the Input dialog, enter the desired Inter-point distance match tolerance.
5. If any matches are found within the specified threshold, you will be presented with the Residuals dialog. This dialog lists the original point names, and their proposed new names. Click the Save to File button to save this list to a text file, or the Accept button to accept the proposed new names.

Deleting Items

To keep your job file clean, you should delete any items that you no longer need. If you are certain that a measurement was erroneous, for instance, it is best to delete it on the spot and remeasure. This minimizes clutter in the job file and helps make the file more understandable. There are numerous ways to delete items in SA.

1. From the menu, select Edit>Delete>Delete Objects, or press the Delete key.
2. Select the objects to delete.

To Delete an Entity:

To Delete Points:

1. Right-click the item in the tree or graphical view.
2. From the context menu, select Delete.
3. From the menu, select Edit>Delete Points, or press Alt+D.
4. Select the points to delete.

To Delete Cloud Points:

1. From the menu, select Edit>Delete Cloud Points>Selected Points.
2. Select the cloud points to delete.

Sometimes you may wish to delete cloud points based on their radial distance from a set of points. For instance, once you've scanned a
set of registration spheres and extracted the sphere centers, you may wish to delete the scan data of the spheres themselves (so they do not interfere with other analysis).

To Delete Cloud Points by Their Radial Distance From Reference Points:

1. From the menu, select Edit>Delete Cloud Points>By Radial Distance from Points.
2. Select the point cloud(s) of interest.
3. When prompted, pick the points to use as the reference points.
4. Specify a radial distance.
5. At the prompt, specify whether the cloud points inside or outside of the radius should be deleted.

To Delete Vectors:

1. From the menu, select Edit>Delete Vectors.
2. Select the vectors to delete.

SA keeps track of the source of objects-whether they were created natively in SA or imported from CAD files. As a result, you can delete objects that were imported from a specific CAD file.
To Delete Objects From a Specific CAD Source:

1. From the menu, select Edit>Delete>Delete CAD Objects By Source.
2. In the Delete Objects by CAD Source dialog, select the source CAD file, then click OK.

To Delete Pictures:

1. From the menu, select Edit>Delete>Delete Pictures.
2. Select the pictures to delete.

To Delete Relationships:

1. From the menu, select Edit>Delete>Delete Pictures.
2. Select the pictures to delete.

The Layer Manager

Often, when working with complex files, you may find yourself showing and hiding sets of related objects in the tree. For instance, if you have a CAD model and measurements of several sub-systems on an assembly, you may wish to view only a given sub-system in the graphical view.

For this purpose, you can create layers. You can assign objects to certain layers, then show or hide layers. This serves as a very quick way to show and hide multiple objects at once.

Every file contains a Default layer that cannot be deleted.

To Show the Layer Manager:

- From the menu, select View>Layer Manager. The Layer Manager dialog appears (Figure 6-16).

Figure 6-16. The Layer Manager.

To Define a New Layer:

1. In the SA file, show only those objects you'd like to appear on the layer.
2. In the Layer Manager, click the Make New Layer button.
3. Type a new name for the layer, then click OK.
4. The Layer Manager will show the new layer and indicate the number of objects on the layer, and the number of objects currently visible.

To Show or Hide Layers:

1. In the Layer Manager, select one or more layers to hide or show.
2. Click one of the following buttons:

- Hide. Hides the selected layer. Objects already hidden remain hidden.
- Hide Only. Hides only the selected layer. Objects on other layers are shown.
- Hide All. Hides all layers. The only remaining visible objects will be those that don't belong on a layer.
- Show. Shows the selected layer in addition to the objects already visible.
- Show Only. Shows only the contents of the layer, hiding all other objects.
- Show All. Shows all layers. The only remaining hidden objects will be those that don't belong on a layer.

To Rename a Layer:

1. In the Layer Manager, select the layer to rename, then click the Rename button.
2. Type a new name for the layer, then click OK.

To Delete a Layer:

1. In the Layer Manager, select one or more layers to delete.
2. Click one of the following buttons:

- Delete Layers and Entities. Deletes the layers and any objects on those layers.
- Delete Layers - Leave Entities. Deletes the layers but any objects on those layers remain.
To Add or Remove an Object From a Layer:

1. Right-click on the object in the tree or graphical view and select Layer Info from the context menu.
2. The Layer List dialog appears, showing the layers that currently contain the object.

3. Do one of the following:

- To remove the object from a layer, select the layer and click Remove From Layer.
- To add the object to one or more layers, click the Add to Layer button. In the Add to Layers dialog, select the layers you'd like to add the object to, then click 0K.

Configuring SpatialAnalyzer

There are a wide variety of settings in SpatialAnalyzer that provide significant control over the application's configuration. These settings can be stored in one of several different ways, depending on the scope of the setting:

- Factory Defaults. Factory default settings are stored as part of SA itself. These are the settings that apply when no other settings override them.
- Job Files. These are settings that are stored as part of the job file because it makes the most sense for them to be a property of a specific job file. Opening up a job file will restore its job file settings, regardless of the computer on which file is opened.
- User Interface Profile. These are settings that are stored as part of a customized user interface profile.
- Machine Settings. These settings are stored in the Windows Registry and apply at the computer level. Machine settings apply on a given computer, regardless of the current job file. (Although a user interface profile is stored in a profile file, the active profile is stored as a machine setting).
- Persistence Files. Persistence files contain configuration information and can easily be transferred from one computer to another.

Job File Settings

A number of the more general job file settings are described belowhowever be aware that this list is not all-inclusive.

Units
Anywhere a number with units is displayed in SA, it is presented in the active unit system, unless indicated otherwise. A job file can be set to one of five different length units: meters, centimeters, millimeters, feet, or inches. Temperature units can be set to either Fahrenheit or Celsius. The active job's length units are displayed in the status bar (Figure 6-18). Angular units are always presented in decimal degrees, but can be specified to present data in $\pm 180^{\circ}$ format or $0-360^{\circ}$ format.

Figure 6-18. The active length units are displayed in the SA Status Bar.

2.02 .20 c	Millimeters	

To Change the Job File Units

1. Click the User Options icon in the Main toolbar.
2. Click to activate the Units tab.
3. Select the desired length or temperature units.

To Change the Representation of Angles

1. Click the User Options icon in the Main toolbar.
2. Click to activate the Units tab.
3. Select the appropriate setting in the Angle Representation box.

To Set the Default Job File Units (No Template File In Use)

1. Click the User Options icon in the Main toolbar.
2. Click to activate the Machine Configuration tab.
3. Click the No Template Default Options button.
4. In the New File Defaults dialog, select the preferred units.

Decimal Precision

Internally, calculations in SA are performed (and numbers are stored) with a high degree of decimal precision. However, when numeric results are displayed in the user interface, they are typically rounded to a preferred decimal precision in order to simplify the display. You can control the number of decimal places used when displaying different categories of values. Specifically, you can independently control decimal precision for length, angle, scale, unit vector, and weight values.

You can change the decimal precision for a given file at any time without incurring any additional internal numerical error.

To Change the Decimal Precision

1. Click the User Options icon in the Main toolbar.
2. In the Decimal Digits for Display box of the Display tab, change the Length, Angle, Scale, Unit Vector, and Weight decimal precision as desired.

To Set the Default Job File Decimal Precision (No Template File In Use)

1. Click the User Options icon in the Main toolbar.
2. Click to activate the Machine Configuration tab.
3. Click the No Template Default Options button.
4. In the New File Defaults dialog, enter the preferred display decimal precision.

A Closer Look
 Having a different decimal precision for different types of numbers is useful, since different types of numbers are expressed in different units. For example, three digits of decimal precision for an angle (eg. 0.001°) is only accurate to 3.6 arcseconds--not enough for some applications. However, three digits of decimal precision in length when working in millimeters is too much precision for most applications (1 micron).

Reporting Tolerances
Reporting tolerances specify the threshold at which pointing errors or uncertainties are flagged in reports.

Angle-Distance Weights

Angle-distance optimization weighting values provide you with control over the weight of angular measurements compared to distance
measurements for bundle adjustments and point calculation. You can weight distance and angular measurement components equally, or you can completely disregard distance or angular measurement components.

To Edit the Angle-Distance Weights

1. Click the User Options icon in the Main toolbar.
2. In the Optimization Parameters box of the Units tab, click the Edit AngleDistance Weights button.
3. In the resulting Optimization Weighting Values dialog, drag the slider to the left to apply more weight to angular components, or to the right to apply more weight to distance components. You can optionally type relative weights for each into the two text fields.

Optimization Parameters

You have control over a number of parameters involved in certain calculations. These are found in the Optimization Parameters section of the Units tab in the User Options.

Convergence Tolerance

Optimizations are involved in many different aspects of SpatialAnalyzer's computations. While these optimizations usually have a single "best" answer in theory, in reality often they can only be found through iterative analysis. As a result, finding the "correct" answer would theoretically take an infinite amount of time.

Consider a best fit optimization: once the computer finds what it perceives as the solution that best fits a series of measurements to a CAD surface, it will stop. However, if you were to increase the internal decimal precision and "jiggle" the points around with even more fine movements and rotations, it could find a better solution than the solution initially proposed.
Continuously increasing the decimal precision and making finer adjustments becomes unwieldy after a short time, and it would most certainly try your patience. While a best fit showing 1×10^{-12} inches of RMS error is better than a best fit showing 1×10^{-11} inches of error, we don't particularly care, because the difference is much less than the accuracy of the measurement in the first place. The additional computation required to reach the better solution is just not worth our time.

As a result, SA follows a set of rules that tell it when an optimization is "good enough". When SA notices that the difference between two iterations in a solution is smaller than these thresholds, the solution terminates, because the result is considered to be "good enough". The default values provided for the convergence tolerances have been
found to work well for a wide array of measurement devices and geometric optimizations.

To Edit the Convergence Tolerance Settings

1. Click the User Options icon in the Main toolbar.
2. In the Optimization Parameters box of the Units tab, specify new length and angular convergence tolerance values.

- Length (object fits). When the RMS error of a fit (such as a geometry fit, surface fit, or relationship fit) does not change by more than this value, the optimization process terminates. Using a smaller value here will theoretically give a better solution, but will increase the computation time required for the fit.
- Angular (bundle adj). When the RMS pointing error in a bundle adjustment does not change by more than this value from one iteration to the next, the bundle adjustment process terminates. Using a smaller value here will theoretically give a better solution, but will increase the computation time required for the fit.

Perturbations/Damping

For many of the numeric optimizations within SA, the partials matrix is computed using numerical differentiation. A value is changed by a delta (referred to as a perturbation), and the result is computed. The deltas used to offset the values in an optimization are set here. At each step, one portion of the partials matrix is populated. If these values are too small, you can experience sensitivity problems. The perturbation may be so small that the change in the objective is negligible and therefore the optimization proceeds without accurate direction. If the values are too large, it is possible to miss nuances in the solution space by moving over the ideal solutions.

To Adjust the Perturbation/Damping Values

1. Click the User Options icon in the Main toolbar.
2. In the Optimization Parameters box of the Units tab, specify new length and angular perturbation values, or specify a new damping factor.

- Length Perturbation. The length perturbation is the amount of perturbation along the X, Y, and Z axes. In the case of a bestfit transformation, for example, the X value is adjusted by the length perturbation. The objective function is recomputed, and this process is repeated with adjustments to the Y and Z values.
- Angular Perturbation. After perturbing X, Y, and Z, the $R x$ value is perturbed by the angular perturbation, then Ry, then Rz.

At each step, one portion of the partials matrix is populated. If these values are too small, you can experience sensitivity problems. The perturbation may be so small that the change in the objective is negligible and therefore the optimization proceeds without accurate direction. If the values are too large, it is possible to miss nuances in the solution space by moving over the ideal solutions.

- Damping. Once the partials matrix is computed for a given step in an optimization, the matrix is inverted, and multiplied by the residual errors. This results in a vector describing how to move the input variables to minimize the objective is the system were truly linear. Since the systems we deal with in coordinate metrology are usually non-linear, the delta vector will most likely not move to the optimal solution. For this reason, we scale the vector by the damping factor to retard its effect. After making the move, the partial determination process repeats until an acceptable solution is reached.

Machine Settings

Although most parameters associated with work in SA are stored as part of the job file, many are instead stored on the computer. These settings are those that are more appropriate to be consistent on a given computer and do not necessarily have anything to do with a given SA file. For instance, the setting defining the file system location for SA backup files is a setting more appropriate to the computer instead of the SA file-regardless of which SA file is opened, it should always be saved to a certain backup folder.

SpatialAnalyzer Directories

SA uses a folder structure for storing certain files, such as measurement backups, templates, and instrument interface settings. You can control where this folder structure is located. By default, the folder structure is placed into the root of the $\mathrm{C}: \backslash$ drive and consists of the following:

- C:\Analyzer Data\. The base of the SA folder structure.
- C:\Analyzer Data\Reports\. The location for generated reports.
- C:\Analyzer Data\Templates\. The location for the default template file, as well as any other template files or custom user interface configuration files.
- C:\Analyzer Data\Scripts\. This folder can be used to store Measurement Plan Scripts, although scripts can be located anywhere on the file system.
- C:\Analyzer Data\Persistence\. This folder contains instrument interface settings files, configuration files, parameter files, and other configuration information.
- C:\Analyzer Data\Backup\. All automatic backup files are saved to this folder. Measurement backups are saved to a subdirectory of this directory named Measurements.

To Change the Location of SA's Entire Folder Structure

1. Click the User Options icon in the Main toolbar.
2. In the Machine Configuration tab, click the Select Root Directory to contain "Analyzer Data" and its subdirectories button.
3. Choose a new folder.

The individual folder locations and names can also be changed directly from this dialog.

To Change the Location of an Individual SA Directory

1. Click the User Options icon in the Main toolbar.
2. In the Machine Configuration tab's SpatialAnalyzer Directories box, select the desired directory.
3. Click the Pick new Directory for Selected Entry button.
4. Select the desired folder from the folder browser.

Parallel Processing

Many operations in SA are multi-threaded, such as USMN calculations, surface queries and projection, and point cloud filtering. However, in order to reap the substantial performance benefit of multi-threading, SA's parallel processing must be enabled (and your computer must support multi-threading).

To Enable Parallel Processing

1. Click the User Options icon in the Main toolbar.
2. In the Machine Configuration tab, check the Use multiple processors if available option.

Fault Handling
Should you ever experience a crash or other serious runtime error while using SA, you can configure SA to automatically collect information on this error and send it on to New River Kinematics for analysis. (This is similar to the Windows error reporting functionality). You can also choose to send a large diagnostic file, which is a more complete record and picture of SA's state at the time of the error.

To Enable Fault Handling

1. Click the User Options icon in the Main toolbar.
2. In the Fault Handling section of the Machine Configuration tab, enable the Collect Diagnostic info from faults option.
3. To also send large diagnostic files, select the Enable large diagnostic file option.

Security

You can place security restrictions on SA in order to restrict the access of different classes of users to SA's functionality. For example, you can prevent a user or class of users from saving a job file, measuring, deleting objects, moving objects, or using Measurement Plans.

To enable security restrictions, you first must create at least two security classes: One that provides administrator privileges, and another to provide restricted access. A security class defines the rights and privileges a group of people belonging to that class will have. The different rights that can be restricted are listed here:

- Edit Security Options. Members can edit security settings (normally this privilege is only granted to an administrator class).
- Save Jobs. Members can save files.
- Print Jobs. Members can print reports.
- Measure. Members can take measurements.
- Delete Objects. Members can delete objects.
- Delete Points. Members can delete individual points.
- Delete Collections. Members can delete entire collections.
- Import Files. Members can import files into the current job file.
- Move Objects. Members can move (transform) objects.
- Copy Objects. Members can make copies of objects.
- Edit Points. Members can change point and target properties.
- Use MP. Members can run Measurement Plan scripts.
- Instrument Properties. Members can modify instrument properties.
- Bundle Adjust. Members can perform bundle adjustments.

To Create a Security Class

1. Click the User Options icon in the Main toolbar.
2. In the Security Classes section of the Security tab, click the New button.
3. Give the class a name, and deselect the privileges you'd like to
restrict. Then click OK.

To Remove a Security Class

- In the Security Classes section of the Security tab, select the class you'd like to delete and click the Remove button.

To Edit a Security Class

1. In the Security Classes section of the Security tab, select the class you'd like to edit and click the Edit button.
2. Change the name of the class and/or the associated privileges, then click 0K.

Once two or more classes have been created, you need to create users. These users need not refer to unique people (although they can)-that is, multiple people can use the same user name.
To Create Users

To Remove Users

- In the Users section of the Security tab, select the user you'd like to delete, then click the Remove button.

To Edit Users

1. In the Users section of the Security tab, select the user you'd like to edit, then click the Edit button.
2. Modify the username and/or the password for the user, then click 0K.

The last step, once classes and users have been created, is to assign users to a class. A single user can belong to one or more classes. When a user belongs to more than one class, the user receives the combined privileges of all classes to which he belongs.

To Assign Classes To a User

1. In the Users section of the Security tab, select the user you'd like to assign to a security class.
2. Next to the Belongs to classes box, click the Add button.
3. Select a class to add to the user, then click OK.

To Remove a Class From a User

1. In the Users section of the Security tab, select the user to modify.
2. In the Belongs to classes box, select the class to remove from the user.
3. Click the Remove button.

Once your users, security classes, and privileges have been set up, you must enable security restrictions in SA, or else no change in behavior will occur.

To Enable Security

1. Click the User Options icon in the Main toolbar.
2. In the Security tab, ensure that all classes and users are set up correctly. Also verify that at least one user has full access to the Edit Security Options privilege, and that the user's username and password is known.
3. Uncheck the Always Auto-login with full access checkbox.
4. Restart SA. A username and password will be required to start the application.

With the Always Auto-login with full access option disabled, you can also use the Login Now button to log in as a different user without restarting SA. This is useful for conveniently testing the privileges of different security classes.

To Disable Security

1. Login to SA using a username that has access to the Edit Security Options privilege (typically the "administrator").
2. Click the User Options icon in the Main toolbar.
3. In the Security tab, enable the Always Auto-login with full access option.

System Diagnostics

SA provides a number of system tools and utilities to monitor configuration and diagnose potential issues with your system or file setup. These tools are listed below.

Memory Monitor

Large files (particularly those containing dense scan data or complex CAD files) can easily consume the available RAM on your system. To monitor your available/used RAM, SA provides a convenient memory monitor utility, which displays SA's memory usage, total system memory usage, total RAM, and operating system information.

To View the Memory Monitor

- From the menu, select Help>Diagnostics>Memory Monitor.

Check Job Data Consistency

You can verify the integrity and consistency of any SA file. This tool will examine an SA file and verify that there are no corrupt internal references.

To Verify the Integrity of an SA File

1. Open the SA file.
2. Select Help>Diagnostics $>$ Advanced $>$ Check Job Data Consistency.
3. A dialog will be displayed indicating whether any errors were found, and a log of the findings will be saved to the Analyzer Data\Reports _SAJobFileConsistencyReport. txt file.

Regenerate References

If any issues are found with the Check Job Data Consistency tool, you can attempt to repair them by regenerating references. This will walk through the measurements and ensure that each measured point has the proper references to its targets.

To Re-Generate Target References

> 1. Open the SA file.
2. From the menu, select Help>Diagnostics $>$ Advanced $>$ Re-Generate Measurement to Target References.

Repeating Commands

Occasionally, the need comes up to repeat a command, perhaps several times. While you could search through the menus to find the desired command and select it again, such an approach is not efficient. Instead, you can use a keyboard shortcut to repeat the last executed command.

To Repeat the Last Executed Command:

- Press Ctrl+Tab, or select Scripts>Repeat Command.

In other cases, you may need to repeat a series of non-consecutive commands several times. In such a situation, the Repeat Command menu option will not help you, since it only executes the most recent command. Instead, you can ask SA to display a command history of the most recently executed commands (Figure 6-19), with the most recent at the top.

Figure 6-19. The command history.

To Select a Recent Command From the Command History:

- Press Ctrl+Shift+Tab or select Scripts>Command History, then select the desired command from the resulting list.

Working With Items

Many items in an SA job have some sort of representation in space. In a few cases in which the items are containers (collections, folders, point groups, and categories), the position and orientation of an item is not clearly defined, but still exists. For example, a collection can be moved and rotated (that is-a relative movement can be applied to it), but you would have a difficult time determining where that collection is specifically located in space. The list below indicates the defined positions and orientations of the various items in SA that have a representation in space:

- Folders. The specific position and orientation is undefined.
- Collections. The specific position and orientation is undefined.
- Coordinate Frames. The position is defined by its origin, and its orientation is defined by its axes. The primary direction of a coordinate frame is its Z axis.
- Point Groups. The specific position and orientation is undefined.
- Lines. The position is defined by its "begin" point. The line itself describes its Z direction.
- Instruments. The position is determined by the base, optical center, or other defined origin of the instrument. The standing axis of an instrument is its Z axis, and typically the X axis is defined by the "front" of the instrument (although this is not always the case).
- B-Splines. The specific position and orientation is undefined.
- Planes. The position is defined by its centroid. The Z axis is defined by its normal, and its X axis is typically defined by the first defined point in the plane.
- Circles. The position is defined by its center. The Z axis is defined by its normal, but the X and Y axes are undefined.
- Ellipses. The position is defined by its center and the Z axis is defined by its normal. The X axis is defined by its major axis, and the Y axis is defined by its minor axis.
- Cylinders. The position is defined by the center of its "begin" end. The Z axis is defined by its axis. The X and Y axes are undefined.
- Spheres. The position is defined by its center, and the X axis passes through its poles. The Y and Z axes are undefined.
- Cones. The position is defined by its apex, and the Z axis is defined by its axis. The X and Y axes are undefined.
- Paraboloids. The position is defined by its focal point, and the Z axis by its axis. The X and Y axes are undefined.
- Polygonized Surfaces, Surfaces, Vector Groups, Point Clouds, and Perimeters. The specific positions and orientations are undefined.
- Graphical Entities. Each has a defined position and orientation, but graphical entities are only for graphical purposes and are not useful in analysis.

If you're wondering why this is important, it's because many different operations in SA that require you to define a position or orientation allow you select most of the items above to describe that position or orientation. For instance, if in the process of constructing a new coordinate frame you're prompted to specify the X direction for the frame, selecting a circle is a valid selection for that prompt-SA will use the normal direction of the circle to define the X direction.

All of the objects listed above have a number of common characteristics, discussed below.

Moving Objects

While there are many commands to automatically apply transformations to objects based on special alignments and fits, all of the items mentioned in "Working With Items" above can be moved manually through any of several methods. These methods are described below.

Entering a Transform

Figure 6-20. The Move Objects dialog.

The Move Objects dialog (Figure 6-20) provides the ability to apply a relative movement to an object by typing in values, expressed in the active coordinate frame. In this dialog, you can explicitly type in the positional and rotational deltas-these values are initially zero because they are relative movements from a starting position. Positional deltas can be entered in Cartesian (xyz), Cylindrical (rӨz), or Spherical ($\mathrm{r} \theta \phi$) values. Rotational deltas can be entered in Fixed notation, Euler notation, Equivalent Angle Axis notation, or as Euler Parameters.

To Move One or More Objects by Typing In Values:

1. Right-click an object in the tree or graphical view and select Move. Or, to move multiple objects simultaneously, select Edit>Move Objects>Enter Transformation and select the objects you wish to move.
2. In the Move Objects dialog (Figure 6-20), select the proper format in which to enter the values from the dropdowns in the Position and Orientation boxes. Usually, Cartesian XYZ and Fixed XYZ is the intended format.
3. Type in the appropriate values, then press Enter or click the Update button.
To Reset an Object Back To Its Original Position:

- Click the Reset button, or
- Manually type zeroes into all numeric fields, then press Enter.

Transforms can be copied from one dialog and pasted in another. This allows you to manually transform an object in the Move Objects dialog, then apply that same transform to another object.

To Copy and Paste Transforms Between Instruments:

1. In the Move Objects dialog, ensure the transform you want to copy is entered.
2. Click the Copy button.
3. Call up the Move Objects dialog for the destination object (see "To Move One or More Objects by Typing In Values:" above).

4. Click Paste.

If you are performing an analysis of your own, you can copy and paste raw 4×4 transform matrices between objects, and also export transforms to a comma-delimited. CSV file.

To Copy and Paste Transform Matrices Between Objects:

1. In the Move Objects dialog, click the View Matrix button.
2. In the Transformation Matrix dialog, click the Copy button to copy the current matrix to the clipboard, or click Export .csv to send it to a comma-delimited file.
3. Call up the Transformation Matrix dialog for the destination object.
4. Check the Allow Editing checkbox, which enables manual editing of an object's 4×4 transform matrix.
5. Click the Paste button, or choose Import .csv to import the matrix from a comma-delimited file.

To Edit An Object's Transformation Matrix Directly:

1. In the Move Objects dialog, click the View Matrix button.
2. Enable the Allow Editing checkbox.
3. Type the desired values into the 4×4 matrix.

Graphical Dragging

You may wish to move objects by dragging them graphically in the view. This is a great way to visually position objects in an approximate way without being concerned with exact transformation values.

To Drag Objects Graphically:

Tip: To rotate the object about different axes, use saved viewpoints to switch to different views without cancelling out of the command.

1. From the menus, select Edit>Move Objects>Drag Graphically.
2. At the prompt, select the objects you wish to move, then press Enter.
3. Use the left mouse button to move the object, and the right mouse button to rotate it about an axis perpendicular to the view orientation. When finished, press Enter.

Frame to Frame Transformations
Frame to frame transformations make note of the transformation required to go from one coordinate frame (the source frame) to another (the destination frame), and then applies that transformation to selected objects (Figure 6-21).

Figure 6-21. An object prior to (top) and after (bottom) a frame to frame transformation.

An interesting characteristic about coordinate frames is that they store complete information on position and orientation. As a result, they can be used to keep a record of an object's position. As an extension to that idea, two different coordinate frames store a positional and rotational delta (a transformation). Frame to frame transformations take advantage of this fact. If you plan on applying a transformation to an object, you can store the object's initial position by creating a coordinate frame at its location (the Construct>Frames>On an Object command is very handy for this). If, after moving the object, you change your mind and would like to put it back to its original position, you can create a frame on the object's current position, then use a frame to frame transformation to move the object back to it's original location.

To Apply a Frame to Frame Transformation:

1. From the menu, select Edit>Move Objects>Frame to Frame Transformation.
2. At the prompt, select the source frame. This is the coordinate frame that the transformation will be calculated from.
3. Select the destination frame. This is the coordinate frame that the transformation will be calculated to.
4. Now that the positional and rotational deltas have been calculated, select the objects to which you'd like to apply the transform. You may choose the source or destination frame, if desired.
5. Confirm or reject the transformation at the prompt.

Point to Point Delta Translations

Figure 6-22. A circle is being moved to a nominal position through the use of a point to point translation. In this example, Measured Center is the source point, and Nominal Center is the destination point.

Often, you will want to apply a pure translation (movement in XYZ but no rotation) to one or more objects. Point to point delta transformations use a source point and a destination point to calculate a positional delta to apply to one or more objects (Figure 6-22). A point to point delta transformation is the 3 degree of freedom analog to a frame to frame transformation (which involves movement in 6 degrees of freedom). Just as frames can record an object's position and orientation in space, points can record an object's position in space. As such, point to point translations are reversible and can be used to "undo" a translation applied to an object-simply reverse the source and destination points.

To Move Objects Using a Point to Point Translation:

1. Select Edit>Move Objects>Translate by Point to Point Delta.
2. At the prompt, select the first (source) point.
3. Select the second (destination) point.
4. Choose the objects to translate.

Translating Using Instrument Updates

Updates from a 3 degree-of-freedom device such as a laser tracker can be used to translate one or more objects. Note that this is a pure translation--no rotations are applied.

When the command is initiated, the initial target position is recorded. As the target moves from this initial position, the translation is applied to the selected objects.

To Translate Objects Using Instrument Updates:

1. Select Edit>Move Objects>Translate Using Instrument Updates.

Figure 6-23. Translating objects using an instrument's 3 degree-offreedom updates.
2. At the prompt, select the instruments (if more than one exists in the file) and the objects you'd like to move. These objects will move together as a rigid body.
3. The Translate Objects - by Instrument dialog will appear (see Figure 6-23).

4. When measurement updates are received from the instrument, the objects will be translated.
5. When finished, you can either click Cancel: Restore Original Position, which will put the objects back in their original location, or click OK: Leave Objects in Current Position, which will accept the transformation and apply it to the objects.

Transforming in 6D Using Instrument Updates

Updates from a 6 degree-of-freedom device (such as a T-Probe, portable arm, T-Mac, or STS) can be used to transform one or more objects. The positional and rotational delta experienced by the device is applied to the objects involved in the transformation.

When the command is initiated, the position and orientation of the device is recorded. As the device moves and rotates from this initial position, the transformation is applied to the selected objects.

To Transform Objects in 6 Degrees of Freedom Using an Instrument's Updates:

1. Select Edit>Move Objects>Transform in 6D Using Instrument Updates.
2. At the prompt, select the instruments (if more than one exists in the file) and the objects you'd like to transform. These objects will move and rotate together as a rigid body.
3. The Transform (6D) Objects - by Instrument dialog will appear (Figure 6-24).

Figure 6-24. Transforming objects using an instrument's 6 degree-offreedom updates.

4. When 6-DOF measurement updates are received from the instrument, the object position and orientation will be updated automatically.
5. When finished, you can either click Cancel: Leave Objects in Current Position to accept the transformation, or Cancel: Restore Original Position to move the objects back to their original position.

Transforming in 6D Using Multiple Instrument Updates

SA has the capability of synchronizing three degree-of-freedom measurements from 3 or more instruments and combining them to calculate a six degree-of-freedom transformation. This is commonly referred to as Trans-Track. For Trans-Track to function correctly, three or more instruments must first be tied to a common coordinate system. This can be achieved using any accepted technique, such as USMN, bundling, or best-fit. Once the instruments are tied together, each instrument must measure a single point, which becomes the reference point for that instrument.

The Trans-Track operation is then started, and the instruments are simultaneously polled for updates. A real-time transformation is then calculated, and that transformation is applied to any objects of choice.

To Transform in 6D Using Multiple Instrument Updates:

Tip: Spread reference points - apart as far as possible to minimize angular errors in TransTrack.

[^3]1. Ensure that you have three or more instruments tied together to the same reference system (usually a set of common points), and that their interfaces are all running in SA.
2. Affix three targets to the moving object, with one instrument watching each target--these will be your reference points.
3. Measure a single reference point from each of the instruments.
4. From the menus, select Edit>Move Objects>Transform in 6D Using Multiple Instrument Updates.
5. When prompted, select the instruments that will be part of

Tip: Measurements cannot \Rightarrow be perfectly synced, therefore slower movement will result in more accurate real-time transformations due to a smaller time delay among the instrument measurements. Allowing the targets to become stationary for a moment will remove sync-based error from the transformation.
the operation. You must be explicit about the order in which you pick the instruments.
6. Now select the earlier-measured reference points that correspond with the instruments. The points must be selected in the same order as the instruments. (That is, select the first instrument's reference point first, then the second instrument's point, etc.)
7. When prompted, select the object or objects to which you'd like the transformation applied.
8. The Transform Using Multiple Instrument Updates dialog will appear (see Figure 6-25).
9. Click the Query Instruments button, and SA will begin polling the instruments and calculating the transformation. The dialog will list the fit error between the live set of points and the reference set. The time lapse among the measurements is also displayed.
10. When finished, press Done: Leave Objects in Current Position to accept the transformation, or Cancel: Restore Original Position to undo any movement.

The Trans-Track dialog also has a few settings that can be modified (see Figure 6-26):

- Point Best-Fit Error Tolerance. If a point's best fit error to the corresponding reference point exceeds this threshold, the point will be highlighted as a warning.
- Time Lapse Tolerance (sec.). If the time difference between the first point and another point exceeds this threshold, the point will be highlighted as a warning, indicating that the measurement sync was not acceptable. This can be ignored whenever the targets are stationary.
- Delay after update (sec.). The time delay between one set of measurements and the next.

Figure 6-25. Performing a Trans-Track operation with three laser trackers.

Figure 6-26. Trans-Track settings.

Transforming in 6D Using a Batch of Points from an Instrument
Some instrument systems, such as photogrammetry systems, are capable of tracking several points simultaneously. SA is capable of watching this batch of points and updating the transformation of one or more objects as the updates arrive. Since this command only involves one instrument, alignment among multiple instruments is not required as it is with Transform in 6D Using Multiple Instrument Updates.

To Transform Objects in 6D Using a Batch of Points From An Instrument:

1. From the menus, select Edit>Move Objects>Transform in 6D Using a Batch of Points from an Instrument.
2. Select the object(s) that you would like to transform.
3. The Trans-Track a Point Set dialog appears (Figure 6-27).
4. Before moving anything, measure a set of points. This will be used as the reference for the initial position.
(27. The Trans-Track
a Point Set dialog appears.

5. As each set of measurements are taken, the position of the selected objects will be updated, and the fit error will be reported in the dialog.
6. When finished, click Done: Leave Objects in Current Position to accept the transformation, or Cancel: Restore Object Positions to cancel the command and put all objects back into their original positions.

Guiding Objects in 6D Using Point Measurements

If you would like to apply 6 degree-of-freedom transformations to one or more objects, but only have a 3 degree-of-freedom device available, then you can measure a set of reference points to serve as the controls for a 6 degree-of-freedom transformation.

The process involves measuring a set of reference points affixed to the moving object, and creating a corresponding set of "goal" points which represent these reference points transformed to the desired final location. You then repeatedly measure the reference points on the moving object, and SA will update the position of the moving objects and also display a watch window indicating the required motion to transform from the current position to the final position (Figure 6-28).

Figure 6-28. Guiding objects using point measurements.

Figure 6-29. The Translate Objects using Instrument
Point Measurements dialog.

The controls for guiding in 6D are shown in Figure 6-29.

- Measurement Group. Defines the name of the point group containing the measured points. If you change this, you must click the Apply button.
- Cycle All Points. When clicked, this button cycles through all reference points, points at their last measured position, searches, locks, and measures each point (applies to steerable, targeted instruments only).
- Measure Selected Point. Measures a point and associates it with the selected point in the table.
- 3D Translate in Real-Time. Select a point in the table, then click this button. SA will track the target as this point and translate the moving objects. This is useful for getting real-time feedback on movement, without considering rotational information. Once you dial in the position, you can switch back to full 6 degree-of-freedom measurement of your reference
points by toggling this mode back off.
- Watch. Click this button to open a watch window showing the transformation, in the active frame, required to get from the current position to the goal position.

To Guide Objects in 6D Using Point Measurements:

Tip: Just as with a best fit or ョ trans-track operation, spread your reference points out to improve your baseline and reduce angular errors in the solution.

Note: When using "Cycle All Points", movements must be small enough relative to the previously measured position to ensure that the instrument can still find the targets.

1. Locate into a coordinate system as necessary.
2. Measure a set of reference points on the moving object. Three are required at a bare minimum, more are better.
3. Create a set of corresponding goal points in the destination position. This is usually accomplished by copying the reference group and applying an appropriate transformation to the copy.
4. From the menu, select Edit>Move Objects>Guide Objects in 6D using Point Measurements.
5. At the prompt, select the destination (goal) group.
6. Select the reference group on the moving object.
7. Select any additional objects you'd like to transform.
8. When the dialog appears, select the appropriate point in the table and click Measure Selected Point to measure it. Or, ensure targets exist at each reference location and click Cycle All Points to measure them all automatically.
9. Using the reported transform, apply the desired movement to the moving objects, then repeat the measurement.
10. When satisfied with the final position, click Done: Leave Objects in Current Position to accept the transformation.

Copying Objects

Objects can be copied. The copy is always placed into the active collection. If the collection containing the copied object is the active collection, the object will be renamed as necessary to maintain uniqueness. There are two main methods for copying an object: Copying and then applying a transform (which can be unity to leave the object unmoved), or copying and then applying a point to point translation. Keep in mind that since point groups are objects, copying a point group will duplicate that group of points. However, since the copied points were not actual measured points (after all, they are copies) they will be depicted as constructed points.

It is probably most common for copies to be made without applying any transformation so that the copy is in the same position as the original.

Copy, Then Transform
This method first creates a copy of one or more objects, then permits you to optionally type in a transformation to move the copies.

To Copy then Transform:

1. Right-click an object in the tree or graphical view and select Copy; or, to copy multiple objects, select Edit>Copy Objects>Copy Then Transform or press Ctrl+C.
2. If copying multiple objects, select the objects.
3. The Copy Objects dialog will appear, which is identical to the Move Objects dialog. Enter the desired transformation to apply, or leave the values zeroed out to leave the copy in place.

Copy, Then Translate Point to Point
If you'd just like to translate the copies only, you can create a copy and apply a point to point translation to them. This is the copy-based version of moving objects using a point to point translation.

To Copy Using Translation Only:

1. In the menus, select Edit>Copy Objects>Translate by Point to Point Delta.
2. At the prompt, select the first (source) point.
3. Select the second (destination) point.
4. Specify the objects you'd like to copy, then press Enter.

Mirroring Objects

Objects can be mirrored (reflected) about any of a frame's three planes (XY, XZ, or YZ). This is most often used with symmetric parts. For example, if certain nominal features of an aircraft model are only available on the left side, it will need to be mirrored to the right side when it comes time to work on the right side of the aircraft.

You can either create a mirrored copy of selected objects (creates a duplicate, then reflects the duplicate), or you can mirror the objects directly without creating any copies. Mirrored copies are placed into the active collection and are renamed as necessary to ensure uniqueness. An object moved via a mirroring operation will not be renamed at all. Always use care when mirroring-depending on the object being reflected and the plane being mirrored about, the object's normal may flip directions.

To Mirror One or More Objects:

1. Select Edit>Mirror Objects>Move (to mirror the source objects) or $>$ Copy (to mirror copies of the source objects).
2. Select the frame about which to mirror.
3. Select the objects to mirror, then press Enter.
4. In the Select Mirror Plane dialog, choose the plane about which to mirror, then click the Mirror button.

Scaling Objects

Note: The list of materials in the CTE Editor is stored in the SA file. If you'd like a modification to appear in all files, save your SA file as a default template.

Any object may be scaled by an arbitrary amount. This yields an object that has grown or shrunk by the corresponding scale factor relative to the active coordinate frame. Since the scaling is applied relative to the active coordinate frame, scaling generally also results in object translation (except for a point on the origin of the active frame).
Two different methods can be used for scaling:

- Calculate Scale Based on CTE. With this option, you select a material and an initial and final temperature, and SA calculates the scale factor automatically using the linear thermal expansion equation. The material entered should be the material of the objects being scaled. For example, if you are scaling measurements of a steel plate, steel should be used for the material.
- Enter Scale Manually. You can enter your own scale factor. As an example, a scale factor of 2.0 will double the size of the object.

To Scale One or More Objects:

1. From the menus, choose Edit>Scale Objects.

Figure 6-30. The Scaling dialog.

2. At the prompt, select the objects to scale, then press Enter. The Scaling dialog will be displayed (see Figure 6-30).
3. Choose the scaling method (either Calculate Scale Based on CTE or Enter Scale Manually).
4. If scaling manually, enter the desired scale factor. If scaling using CTE, choose the appropriate material and initial/final temperature. Then click 0K.

If the default list of materials is not sufficient for your needs, you may wish to enter your own material with a custom coefficient of thermal expansion.

To Enter a Custom Material and CTE:

1. In the Scaling dialog, click the Edit button.
2. In the CTE Editor, use the Add, Edit, and Remove buttons to modify the list of materials, then click Done.

Finding Items In The Tree

While working in the graphical view (particularly if the job file is complex and has many entities), you may need to find an item in the tree. Searching for the item through the tree is cumbersome in complex files, so SA provides the ability to find any item in the tree.

To Find an Item In the Tree:

- In the graphical view, right-click the item and select Show In Tree from the context menu. SA will expand, autoscroll, and select the item in the tree for you.

Network Browser

SA is a very network-capable application. You may be viewing an SA instance running on another computer on your network, or you may be connecting an instrument interface to another computer on the network. The SA Network Browser allows you to view the network and perform a few network-related diagnostic operations.

To Access the SA Network Browser:

- Click the SA Network 置icon in the Main Toolbar.

The SA Network Browser dialog (Figure 6-31) displays at the root level all computers running $S A$ that are visibile on the network, along with their IP address. In Figure 6-31, there are four computers running SA on the network.

Figure 6-31. This SA Network Browser lists a number of instances of SA running on four different computers.

Below the computer name will be listed all open SA files on each computer, and below that all unconnected instruments or other connections that can be made. In Figure 6-31, the computer named T-SCAN has two possible connections: A connection to the Remote Monitor and the Remote Window Viewer.

To Refresh the Network Browser List:

- Click the Refresh button.

To Run the Check My Computer Tool:

- Click the Check My Computer button.

To View the IP Settings of Your Computer:

- Click the IP Config button.

To Ping an IP Address:

- Type an IP address into the text field, then click the Ping button.

Remote Monitoring

SA provides the capability to pull an open SA file from any computer reachable on the network and work with it. You can also remotely view the SA application, graphical view, or HUD windows from another computer (if applicable).

For privacy and security reasons, both of these remote viewing capabilities require the computer being monitored to have its Remote Viewable option set.

To Make a Computer Viewable Via Remote Monitoring:

1. Visit the User Options by clicking the User Options icon on the toolbar.
2. Navigate to the Machine Configuration tab and check the Remote Viewable option.

Figure 6-32. The Remote
Viewable option.

To Work With the Current File From Another Network Computer:

Note: Computers with the
Remote Viewable option turned off will not be visible in this list.

Note: When remote monitoring, SA essentially saves the file from the remote computer and loads it on the local computer. No link is maintained between the two files after that point.

Figure 6-33. Remotely monitoring another instance of SA on the network.

1. From the menu, select File>Remote Monitor another SpatialAnalyzer.
2. When the Remote Monitor Options dialog appears, doubleclick any SA file's Remote Monitor option. Or, select the Use manual entry of IP (or computer) and port option and manually enter the IP address or computer name and port number to connect to, then click OK.

The file will be pulled from the other computer and opened. A timestamp will appear in the corner of the graphical view to indicate the time when the file was pulled (Figure 6-33).

To View an Active Window From a Remote Instance of SA:

1. From the menu, select File $>$ Remote Window Viewer.
2. In the resulting Remote Window Monitor Options dialog, dou-ble-click the Remote Window Viewer entry that you'd like to
connect to, or select the Use manual entry of IP (or computer) and port option and enter an IP address/computer name and port number, then click OK.
3. When the Select Remote Window dialog appears, select the desired option, then click OK. A separate window will appear, which will periodically get updated. You are now watching the other computer's SA instance, live.

Working With The Clipboard

The Windows clipboard is the fastest way for transferring data within or among applications. It is far better than manually typing data into a different program, and it faster and "cleaner" then exporting data to a file and re-importing in the other application.

You can copy the graphical view to the clipboard as an image for pasting into any program that supports standard image formats.
To Copy the Graphical View to the Clipboard:

- From the menu, select Edit>Copy graphics to clipboard.

If you've copied point data from another source-perhaps an Excel file or Notepad text file, you can paste it directly into SA.
To Paste Points From the Clipboard:

1. In the source application (Notepad, Excel, etc.), select the data and copy it to the clipboard.
2. From the SA menu, select Edit>Paste Points from Clipboard.
3. Select the appropriate ASCll import options (see the chapter on File Import for detailed information on these options), then click Import.

Setting the Working Frame

While working in SpatialAnalyzer, all data is represented relative to the active (working) coordinate frame, unless you have specified otherwise. When you examine a point's coordinates, for instance, you are seeing those coordinates relative to the working frame. When moving an object, you are entering positional and rotational deltas with respect to the working frame. When performing a best-fit and restricting rotation about the X or Y axis, the X and Y axes are defined by the working frame. As a result, staying mindful of the active frame while working in SA is very important.

You can create as many coordinate frames in your job file as you want or need. You can also freely switch from one active frame to another
at any time. This allows you to view deltas, specify rotational values, or look at coordinates with respect to any frame of reference.

To Change the Working Frame:

Do one of the following:

- Click the Working Frame button A:WORLD , then select the new desired working frame from the list, or
- From the menu, select Edit>Pick Working Frame, and select the new frame, or
- Press Alt+W (the default keyboard shortcut), and select the new frame, or
- Right-click any coordinate frame you'd like to activate and select Make Working Frame.

About the World Frame

The WORLD frame exists in every SA file and cannot be removed. This frame serves as the reference or base coordinate system for everything in your file. While you can move the world frame, there is usually no reason to do so. Deleting a world frame which has been moved from its original location will result in automatic creation of a new world frame in the original location (which explains why moving a world frame could cause confusion if you are not careful).

Object Color

Objects can be given any color, or painted, which you can use for any purpose. You can use the color of an object for organizational purposes, to assign special meaning to an object, or simply to make it look good. It's up to you to decide.

SA uses the concept of a working color. Every time a new object is created, it is given a color. The color that is assigned is the current-or working-color. Think of the working color as an open can of painteach object you create is painted, and the working color is used for that painting job.

By default, the working color is set to automatically increment. That is, when an object is created and assigned a color, the next color in a list of 13 random colors is automatically made the working color. The result of this is that repeated object creation results in objects of different colors so that they are more clearly distinguishable in the graphical view.

Figure 6-34. Toggling the Automatically increment color option in the Working Color dialog.

Successive creation of multiple objects in different colors may be a behavior that you like-or, depending on what you're doing, it may not. For instance, you may wish to create a number of nominal objects all of the same color, using the assigned color as a cue that the objects are in their nominal configuration. In this situation, the automatically incrementing working color is not desirable. You can disable working color auto-increment so that the current color remains the working color until you explicitly change it.

To Set the Working Color:

1. Do one of the following:

Note: Selecting Edit>Change
Working Color does not allow selection from a list of existing working colors. On the other hand, selecting the toolbar button does.

- In the Color/WCF toolbar, click the color swatch button which dispays the working color, or
- From the menu, select Edit>Change Working Color.

2. Select a new working color, then click OK. The next object created will be assigned the working color.

To Turn Working Color Auto-Increment On or Off:

1. In the Color/WCF toolbar, click the color swatch button \square.
2. In the Working Color dialog (Figure 6-34), toggle the Automatically increment color option.

To Change the Color of One or More Objects:

1. Choose the desired working color as described above in "To Set the Working Color:" on page 147.
2. From the toolbar, click the Color Objects button \downarrow, or select Edit>Set Objects to Working Color.
3. Select the objects to paint.

You can also change the color of an object directly through its properties.

To Change the Color of an Object Through Its Properties:

1. Right-click the object in the tree or graphical view and select Properties from the context menu.

2. In the dialog (Figure 6-35), click the Color button. Select a new color, then click 0K.

Accessing Item Properties

Nearly every item in your job has properties associated with it. Some properties are general—such as the name of the item and any notes associated with it-and other properties are more specific and depend on the object type. These more specific properties are discussed in detail later.

To Access the Properties of an Item:

Do one of the following:

- Right-click the item in the tree or graphical view and select Properties from the context menu, or
- From the toolbar, click the Object Properties button , then select the object to examine (applies to objects only), or
- From the menu, select Edit>Object Properties, then select the object to examine (applies to objects only), or
- Press Alt+Q (default keyboard shortcut), then select the object to examine (applies to objects only).

The Calculator

Since you may find the need to perform a quick calculation fairly frequently in SA , a shortcut is provided for calling up the Windows calculator utility.

To Start the Windows Calculator Utility:

- From the menu, select Edit>Calculator.

User Notes

Occasionally you may be interested in recording some field notes. You can add user notes to an SA job for later reference or for adding to a report. A user note will be added to the tree under the Events category, and can optionally be added to the job's log file as well.

To Add a User Note:

1. From the menu, select Edit>Add User Note, or press Ctrl+N (default keyboard shortcut).
2. In the Enter User Note field, type a summary and details for the note.
3. If you'd like the note to also be logged in the job's log file, select the Log File option.
4. Click OK.

Adding Notes to Items

You can also add notes and associate them with specific items. For instance, if you're measuring a cylindrical tank to check for deformation when it's filled, you might want to add a note that a best-fit cylinder was created when the tank was filled, and add the quantity of fluid in the tank for later analysis.
To Add a Note to an Item:

[^4]1. Right-click the item in the tree or graphical view and select Properties from the context menu.
2. In the Notes field, enter the desired note, then close the dialog.

Item History

Many different items in your job have a history associated with them. An item's history shows significant events related to the item's creation or manipulation. For instance, all item histories indicate when the item was added to the job,. A circle's history may indicate the de-
tails of the geometry fit used to create that circle.

To View an Item's Historical Log:

- Right-click the item in the tree or graphical view and select History from the context menu.

To Expand or Collapse all Entries in an Item's History:

- In the item's history dialog, click the + or - button.

To Change the Chronological Order in Which an Item's History is Displaye:

- In the item's history dialog, choose the Ascending or Descending option.

To Copy an Item's History to the Clipboard:

- In the item's history dialog, select the entries to copy (or select none to copy them all), then click the Copy to Clipboard button.
To Export an Item's History to a Text File:
- In the item's history dialog, click the Export Entire Log as Text File button. Choose a filename, then click Save.
To Search an Item's Historical Log:
- In the item's history dialog, click the Search button. In the resulting Search dialog, type a string to search for, then click Find Next.
To Trim an Item's Historical Log:
- In the item's history dialog, click the Trim Log button. Confirm the action, then specify the number of log entries to keep and click the 0 K button.

Print Setup

Figure 6-36. The Print Setup dialog.

Default printing options can be setup through the Print Setup dialog (Figure 6-36).

This standard dialog's options depend on the selected printer but define how output from printed reports is handled by the printer. For
more information, refer to your printer's documentation.

To Modify Print Settings:

1. From the menu, select File $>$ Print Setup...
2. Choose the desired settings, then click OK.

Command-Line Arguments

SpatialAnalyzer has a series of command-line arguments that allow you to automate some tasks when launching the program:

Argument	Description
$/$?	Displays a help window showing all of the available command-line arguments.
\{FILENAME.XIT\}	Automatically opens the specified SA job file upon launch. Replace \{filename.xit\} with the path to the desired file.
/MP \{FILENAME .MP\}	Runs the specified Measurement Plan file upon launch. Replace \{filename.mp\} with the path to the desired mea- surement plan file.
/MPE \{COLLECTION\}: : \{MP NAME\}	Runs the specified embedded Measurement Plan upon launch. Replace \{COLLECTION\} with the collection name, and \{MP Name\} with the name of the embedded MP in the SA tree.
/QUICK \{INSTRUMENT NAME \}	Launches SA, starts a new file, adds the entered instrument name, and starts its interface. Replace \{Instrument Name\} with the name of the instrument (as specified in the Add Instrument to SA dialog).
-MINIMIZE	Starts SA in a minimized window state.

Combinations of these arguments may be executed at the same time. Quotes are required around the elements (filenames, instrument names, and object names) if they contain spaces.

Launching SA with Command-Line Arguments

Command-line arguments were traditionally used when running a program from the DOS (command prompt) window. Now that graphical operating systems like Windows have become standard, com-mand-line arguments are usually entered by use of a shortcut icon. Regardless, they can still be executed from the Windows command prompt.

To Use Command-Line Arguments from the Windows Command Prompt:

1. Windows XP: From the Windows Start menu, choose Run. In the dialog, type cmd and press Enter. Windows Vista/7: From the Windows Start menu, click in the text box labeled Search programs and files. In the box, type cmd and press Enter.
2. In the resulting window, navigate to the SpatialAnalyzer install directory by typing cd \{PATH\}, where \{PATH\} is the
path to the SA install directory. For example, cd
C: \Program Files\New River Kinematics\SpatialAnalyzer 2011.01.24. Press Enter.
3. Type "Spatial Analyzer" \{ARGUMENTS\}, where \{ARGUMENTS $\}$ includes one or more of the arguments listed above. Press Enter.
4. SA should launch, using the parameters that you specified in the arguments.

To Use Command-Line Arguments via a Shortcut Icon:

1. Create a shortcut for the SpatialAnalyzer program. (See Microsoft Windows help if you are unsure how to do this).
2. Right-click on the icon and choose Properties.
3. In the Properties dialog, locate the Target field.
4. Add a space at the end of the text in this field, then add the arguments as specified above. When finished, click the OK button.
5. Double-click the icon to start SA with the specified parameters.

Example Command-Line Arguments

To:	Command
Start SA With A File	"Spatial Analyzer" "C: \MyFolder\My Template File.xit"
	"Spatial Analyzer" FileInThisFolder.xit
View the Command-Line Argument Help	"Spatial Analyzer" /?
Start an External MP in a Specified File	"Spatial Analyzer" /MP C:\MyScripts\} MyMP.mp MyFile.xit
Start an Embedded MP in a Specified File	"Spatial Analyzer" /MPE Nominal::MyEmbeddedMP MyFile.xit
Add/Startup a Leica Tracker in a New File	"Spatial Analyzer" /QUICK "Leica emScon Absolute Tracker (AT901 Series)"
Add/Startup an API AXXIS Arm in a Specified File	"Spatial Analyzer" /QUICK "AXXIS 6-200 Arm (3.2m 6 dof)" myFile.xit

Multiple Instances and Exiting SA

SA does not have a "tabbed" interface. If you would like to have multiple copies of SA open on a single computer, simply open the application again.

To Exit SA:

- From the menu, select File>Exit, click the "X" in the top-right corner of the application window, or double-click the application icon in the top-left corner of the window.

Working With Files

While working in SA you will likely be working with many types of files-SA job (.XIT) files, CAD files containing nominal designs, and text files containing point coordinates, for example. This chapter explains how to work with external files in SpatialAnalyzer.

SA Files

Creating New Files

Creating a"new" file in SA does not necessarily mean that you're working with a blank slate, as you would be in some applications. Even a completely new file has at the very least a collection, a coordinate frame, and myriads of settings for anything from colors and units to decimal precision.

When a new file is created without the existence of a default template, SA opens a factory default file-that is, a file that has default settings hardcoded by NRK.

To Create A New File:

- From the menu, select File>New, or click the \square icon on the toolbar. If you currently have an SA file open, you will be asked if you would like to save it.
If you have an existing file open, you can restore it to the factory default settings (colors, decimal precision settings, etc).

To Revert a File's Settings to the Factory Default:

- With the file open, select File>Restore Default Settings. The set-
tings will return to the defaults. You will of course need to save the file to store the changes.

Opening Files

The Open File command permits opening native SpatialAnalyzer files. These are commonly referred to as job files and come in one of two formats:

- xit. This is a standard 32-bit .xit file. It can be opened by both 32- and 64-bit versions of SA, but cannot have extremely large data sets. It is limited to storing data that will fit in a 32-bit software environment.
- xit64. This is a 64-bit SA file. It can only be opened in the 64-bit version of SA, but is able to store very large data sets (such as extremely dense scan sets).
SpatialAnalyzer job files are backward compatible-you can open an .xit or .xit64 file saved in an older version of SA in a newer version. However, the reverse is not true-attempts to open a job file saved in a newer version of SA into an older version will fail.

To Open an Existing File:

To Open a Recent File:

- From the menu, select File>0pen, or
- Click the icon on the toolbar, or
- Press the default keyboard shortcut of Ctrl+0, or
- Double-click an SA file in Windows Explorer.
- From the menu, select File>[Filename] toward the bottom of the file menu.

Saving Files

You can save a SpatialAnalyzer job file in one of two formats, as described in "Opening Files" on page 154. Any current job file can be saved in either format, however it's important to keep a few things in mind:

- If you want to be able to open the file in either the 32-bit or 64-bit version of SA, you must save the file in the 32-bit (.xit) format.
- If the file contains a very large dataset, and you want to preserve the integrity of the data, it must be saved in the 64-bit (.xit64) format and cannot be opened in the 32-bit version of SA.
- A very large file can be saved in the 32-bit (.xit) format if you'd like, however there will likely be loss of data. You will be
warned if this occurs.
File Checksums
To protect against data integrity issues, SA can perform a checksum of your SA file immediately after a save operation. This essentially verifies that the file on disk matches the currently opened file, assuring that the save was successful.

To Verify File Checksums After Saving:

1. In the User Options dialog, navigate to the Machine Configuration tab.
2. Enable the Verify File Checksums After Saving option.

To Save an SA file:

1. From the menu, select File>Save, click the - icon on the toolbar, or use the default keyboard shortcut (Ctrl+S).
2. In the Save As dialog, select the desired format from the Save as type: dropdown, then click Save.

The first time you save a file, you will be prompted to choose a name and format. Subsequent saves will simply save the file and not prompt you for a file name or format.

Save As

If you choose to save the current file under a different filename or format, you can select the Save As command at any time. This permits you to specify a new filename or format, even if you've already saved the current file.

To Save the File With a New Name or Format:

1. From the menu, select File>Save As.
2. In the Save As dialog, specify a new filename and format, then click Save.

Backing Up Files

SA can be configured to capture periodic, automatic backups of your working file which requires no user intervention. However, you can also automatically save a backup copy of your current file. This backup will be saved to the current backup folder and the filename will be appended with a timestamp.

To Force A Backup File To Be Saved:

- From the menu, select File>Backup Now. After a short delay, the file will be saved to the backup folder.

Automatic Backups
Losing measurement data or your job progress can be a critical and expensive problem. To mitigate this risk, you can set your machine to make automatic SA file backups while SA is running. There are two types of backups that can be made:

- Job File Backups. These backup files save the same information as a standard job file. (In fact, job file backups are simply regular SA files that are saved automatically for you).
- Measurement Backups. These backups only store instruments and measurements.

So why are there two types? The main reason is to save space. You might be working in a file with a very large complex nominal CAD file. There is simply no reason why all of this information should be saved in a backup, because the CAD surfaces are typically not modified. As a result, they mostly just waste hard disk space. Measurement backups, on the other hand, only store instrument and measurement data which is much more critical and significantly smaller in file size. As a result, frequent measurement backups can be made without wasting hard drive space or causing performance delays, whereas frequent job file backups would cause a much bigger hit to performance and available drive space. Measurement backups are also regular SA files, and can easily be re-merged into the SA file containing the nominal CAD data using the File>Import command.

Sometimes, you might open a file, make a few changes, and accidentally overwrite your original file, which could be disastrous without a backup. To help prevent this type of mistake, you can optionally ask SA to create a file backup automatically upon opening the file, so you have a pristine, untouched backup in place.
You can also ask SA to automatically create Measurement Plan backup files while making changes in the MP Editor. If the specified time has elapsed and changes have occurred to your MP, SA will store a backup of your script to the Backups folder.

To Enable Automatic Backups:

1. Click the User Options icon in the Main toolbar.
2. In the Automatic Backups section of the Machine Configuration tab, click the Enabled checkbox for the appropriate backup type.
3. Select a time interval at which enabled backups should occur.
4. If desired, enable the Automatically Create on File Open option to store a backup upon opening a file.

- To quickly toggle automatic backups without changing other
backup settings, toggle the Edit>Automatic File Backup setting in the menus (this does not apply to MP Backups).

To Restore a Job File Backup

- Select Edit>Undo to Restore Point from the menus. Select a desired restore point from the list, or
- Select File>Open and select the desired file in your backup folder.

To Restore a Measurement Backup

- Select File>Open and select the desired file in your backup folder.

To Restore a Measurement Plan Backup

- In the MP Editor, select File>Open and select the desired .MP file in the backup folder.

Restore Points

Restore points can be thought of as "quicksaves". At any time, you can create a quick backup of your current files by creating a restore point. You can then revert back to the restore point to continue from that point. They are not a complete alternative to an undo system (which is not available in $S A$) as they require you to consciously create a restore point. However, they are very useful as quicksaves of your working job file.

To Create a Restore Point:
Do one of the following:

- From the menu, select Edit>Create Restore Point, or
- Press Alt+Space (the default keyboard shortcut).

To Undo to a Restore Point:
Do one of the following:

- From the menu, select Edit>Undo to Restore Point, or
- Press Ctrl+Z (the default keyboard shortcut).

Password-Protecting SA Files

For safety purposes, you may choose to password-protect your SA file to prevent accidental or malicious modification. This involves assign-

Warning: The password
 protection scheme is not intended to be a secure method of data storage. Password protection can be circumvented by a hacker relatively easily. If you need high security, you should use a tool designed for secure data storage.

ing a password to the current job file, then saving it. When the file is opened in the future, it requires a password to access the data.

Job File:

1. From the menu, select File $>$ Password Protection $>$ Set Password.
2. In the Set Password dialog, enter your password into both
fields.
3. When prompted, confirm that you wish to apply a password to the file.
4. Save the file. It will now require a password to open.

To Remove a Password From a Job File:

1. From the menu, select File $>$ Password Protection $>$ Remove Password.
2. At the prompt, confirm that you would like to remove the password.
3. Save the file. A password will no longer be required to open it.

File Import

SA supports a wide variety of common file formats, making data sharing easy. You can work with various CAD formats, text-based point formats, custom formats and embedded formats. The act of importing a file will always merge it into the existing job file.

When a file is imported, the data is transformed by aligning the working frame or active coordinate system of the imported file to the working frame of the current file.

Auto Import

You can let SA choose the proper import method for a file based on its file extension. You do this using the Auto Import (by file extension) command. Be aware that this depends on the file extension to match the format of the file. If there is a mismatch, the import will fail.

To Auto-Import a File by Type:

1. Do one of the following:

- From the menu, select File>Auto Import (by file extension), or
- In the toolbar, click the Auto Import ${ }^{\text {to }}$ icon, or
- Drag the file from Windows Explorer into the graphical view, or
- In the tree, switch to the Explorer tab, find the file to import, then double-click it.

2. The appropriate file import command will be triggered.

Importing SpatialAnalyzer Job Files

It is often desirable to merge another SA job (.xit file) into the current SA file. This is particularly useful when portions of measurement have been accomplished on various computers and files. You can choose which collections should be imported.

To Import Another SA File Into the Current Job Using the Menus:

Note: If any imported col-
lections have the same name as existing collections, they will be automatically renamed.

1. Choose File>Import>SpatialAnalyzer Job File (.xit). Choose the file to import.
2. From the SA File Import Filter dialog, check the collections you'd like to import.
3. Click Import Selected Collections.

Direct CAD Access

The Direct CAD Access import option allows a user to import native CAD files directly into SpatialAnalyzer. The following is a list of supported formats:

Manufacturer	Format	Version	Polygonized Surfaces	Surfaces	Annotations
Standard	$\begin{gathered} \text { PRC } \\ \text { (.PRC) } \end{gathered}$	All Versions	\checkmark	\checkmark	\checkmark
	$\begin{gathered} \text { IGES } \\ \text { (.IGS, .IGES) } \end{gathered}$	5.1, 5.2, 5.3	\checkmark	\square	N/A
	Industry Foundation Classes (.IFC, IFCZIP)	$\begin{gathered} \text { IFC2x Editions 2, } \\ 3 \text { \& } 4 \end{gathered}$	\checkmark	N/A	N/A
	$\begin{aligned} & \text { STEP } \\ & \text { (.STP, .STEP) } \end{aligned}$	AP 203 E1/E2, AP 214, AP 242	Ω	\checkmark	\checkmark
	Stereo Lithography (.STL)	All Versions	\checkmark	N/A	N/A
	VDA-FS (.VDA)	v1.0 \& v2.0	\checkmark	\checkmark	N/A
	VRML (.WRL, .VRML)	v1.0, v2.0	\checkmark	N/A	N/A
Adobe	Adobe 3D PDF (.PRC)	All Versions	\checkmark	Ω	\checkmark
McNeel North America	Rhinoceros (.3DM)	v4, v5	\checkmark	\checkmark	N/A
$\overbrace{\substack{\text { DASSAULT } \\ \text { SYSTEMES }}}$	CATIA V4 (.MODEL, .SESSION, .DLV, .EXP)	Up to 4.2.5	Ω	Ω	\checkmark
	CATIA V5 (.CATPRODUCT, .CATPART, .CATSHAPE, .CGR)	$\begin{aligned} & \text { R4 to R25, V5- } \\ & \text { 6R2015 } \end{aligned}$	Ω	Ω	\checkmark
	CATIA V6 (.3DXML)	2011 to 2013	\checkmark		\checkmark
	SolidWorks (.SLDASM, .SLDPRT)	Up to 2015	Ω	\checkmark	
	ACIS (.SAT, . SAB)	Up to v23	\checkmark	\checkmark	N/A

Manufacturer	Format	Version	Polygonized Surfaces	Surfaces	Annotations
SIEMENS	$\begin{gathered} \text { NX } \\ \text { (.PRT) } \end{gathered}$	Unigraphics v11.0 to NX 10.0	Ω	Ω	Ω
	$\begin{gathered} \mathrm{JT} \\ (. \mathrm{JT}) \end{gathered}$	Up to v10.0	\checkmark	\checkmark	\checkmark
	Parasolid (.X_T, .X_B, .XMT, .XMT_TXT)	Up to v27.0	\checkmark	\checkmark	N/A
	Solid Edge (.ASM, .PAR, .PWD, .PSM)	V19-20, ST-ST8	Ω	\checkmark	
	$\begin{gathered} \text { I-DEAS } \\ \text { (.MF1, .ARC, .UNV, .PKG) } \end{gathered}$	$\begin{gathered} \text { Up to } 13 . x(N X 5) \\ \& N X 6 \end{gathered}$	Ω	Ω	Ω
$\text { 民 } \mathrm{PTC}^{\circ}$	Pro/ENGINEER (.ASM, .NEU, .PRT, .XAS, .XPR)	Up to Wildfire 5	Ω	Ω	\checkmark
	Creo Elements/Pro/Parametric (.ASM, .NEU, .PRT, .XAS, .XPR)	v5.0 (Pro) Up to v3.0 (Parametric)	Ω	Ω	\checkmark
Autodesk	Inventor (.IPT, IAM)	Up to 2016	Ω	\checkmark	N/A

To Natively Import a CAD File:

1. From the menu, select File>Import>Direct CAD Access.
2. Select the file you'd like to import.
3. In the Direct CAD Access dialog (if you've chosen to show this dialog), choose the desired import options.
4. If the Selective Import option is checked in the Direct CAD Access dialog, the Choose CAD Features dialog will be shown (Figure 7-1). Choose the desired features to import, then click OK. For more on this dialog, see "Selective CAD Import" on page 161.

Figure 7-1. The selective CAD import dialog.

The Choose CAD Features dialog (Figure 7-1) is only displayed when the Selective Import (Choose which Components to Import) option in the Direct CAD Access Settings dialog is enabled (see "Direct CAD Access Settings" on page 161). It lists all components of the CAD model or assembly in a tree-like view on the left, and a legend at right indicates the type and quantity of all of the entities to be imported. In this dialog you can choose to deselect entities from the source CAD file that you do not wish to import. This provides several benefits:

- It saves you the effort of having to clean up the CAD file of unwanted items after import.
- It makes the import process shorter.
- It allows you to circumvent portions of a CAD file that may be causing import errors.
Direct CAD Access Settings
The Direct CAD Access Settings control a number of options related to import via Direct CAD Access.

To Open the Direct CAD Access Settings:

- From the menu, select File>Import>Direct CAD Access Settings, or
- From the User Options Machine Configuration tab, click the Direct CAD Access Settings button.

Figure 7-2. The Direct CAD Access Settings dialog.

The options for this dialog are explained below.

- Entity Types to Import. These checkboxes give you control over which types of entities to import. Any unchecked entities will not be imported.
- Group Name. All points from the CAD file will be imported into a group with this name.
- Import Construction Geometry. For CAD formats that support it, unchecking this box will exclude construction geometry from the import.
- Import Hidden Entities. For CAD formats that support it, unchecking this box will exclude hidden entities from the import.
- Import all surfaces as Mesh Graphical Entities. When checked, surfaces from the CAD file are imported as Mesh Graphical Entities instead of true surfaces. Mesh Graphical Entities are useful for visualizing surfaces and have a significantly lower requirement for computing resources than surfaces, but you cannot analyze against them.

Tip: Importing while match* ing CAD hierarchy can result in a somewhat cumbersome, cluttered SA job file. Use this option sparingly, and only when needed.

- Do not import fillets. Usually, CAD surfaces contain minor features that may not be important to a metrology inspection. Fillets or modeled weld beads are one example of this. To keep your imported model as efficient as possible, check this option to exclude fillets from the import (if the file type supports marking the features as such).
- Do not import Dittos (repeated items). Some file formats support "dittos", which are efficient memory copies of surfaces that are repeated over and over in a CAD file. For instance, hardware such as bolts, nuts, and screws are often modeled as dittos to save memory in the CAD application. These are features that are rarely inspected by metrology-check this option to exclude them from the import.
- Ditto Threshold. Some formats support multiple levels of dittos (dittos of dittos, for instance). If necessary, you can modify this number to indicate the threshold below which dittos are not imported. Higher numbers import less dittos.
- Selective Import (Choose which Components to Import). When enabled, the Choose CAD Features dialog is displayed to allow you to more finely control which entities are imported from the CAD file (see "Selective CAD Import" on page 161).
- Center View on Imported Objects. When enabled, the graphical view will be centered on the imported objects after import.
- Import Into Folders Matching CAD File Hierarchy. When enabled, if the source CAD format supports a hierarchy, that hierarchy will be preserved in the SA tree using a hierarchy of folders and collections.
- Remove Empty Folders. Importing a CAD file into folders maching the CAD file hierarchy (see previous option) can sometimes result in empty folders in the tree. Enabling this option removes these empty folders after the import operation.
- Prompt if One or More Components Are Missing. Several CAD formats support the idea of a product or assembly file, which is a master file that has several supporting component CAD files. When importing these master files, this option will warn you if any subcomponent CAD files that are part of the master assembly are not found.
- Do Not Show This Dialog Each Time. When enabled, the Direct CAD Access Settings dialog will not display on import, but will use the previous settings. If you want to access the settings again, follow the steps in "To Create A New File:" on page 153.
- Surface Normals Mode. This setting has two possible options:

Mode 1 or Mode 2. Some CAD formats or CAD packages do not consistently define or store the direction of surface normals. Incorrectly oriented CAD surface normals will cause incorrect analysis in SA. While surface normals can always be corrected manually, if you find that one mode is importing surfaces in the wrong direction, trying Mode 2 might solve the problem.

Importing Standard CAD Formats

SA can import several standard CAD formats using a "classic" importer. These formats include:

- STEP. Import via File>Import>Standard CAD Formats>STEP.
- IGES. Import via File>Import>Standard CAD Formats>IGES.
- VDA. Import via File>Import>Standard CAD Formats>VDA.
- SAT. Import via File>Import>Standard CAD Formats>SAT.

In addition to providing additional import formats, you can also use this classic import method if you encounter problems attempting to import using Direct CAD Access. During the CAD import you can select from a variety of import options (Figure 7-3):

Figure 7-3. The Classic CAD Import Options dialog.

- Import into Group. Points from the CAD file will be imported into a group with the specified name.
- Use Point Color Information if available (1 group per color). Upon importing points from the CAD file, this option will set the group color to match the current point color from the source file, if that color exists. Each point will be organized into a group by its color.
- Lines/Circles/Curves/Planes/Surfaces/Coordinate Frames. Choose which types of entities to import.
- Ignore ‘No Shows'. When selected, items hidden or on a "no show" layer in the file (if supported) will not be imported.
- Surface Normals Mode. Equivalent to the same option in the Direct CAD Access Settings dialog (see "Direct CAD Access Settings" on page 161).

To Import a Standard CAD Format Using the Classic Importer:

1. Choose File>Import>Classic CAD Importers>(Format).
2. Select the file to import from the dialog, and click OK.
3. Choose the desired CAD import options, then click OK.
4. A summary of the file information will be displayed. To save it to file, click Save to File. Otherwise, click Accept.
\int Note: If units between files differ, the units are converted (if you choose). The CAD data is not physically scaled at all.
5. If the current file's units do not match the source units, you will be prompted whether you'd like to convert the units. Click Yes or No.

Importing Predefined ASCII Formatted Files

ASCII text files are common in coordinate metrology. They provide a standard, human-readable format that many software packages can easily import. SpatialAnalyzer supports many formats of ASCII data. Figure 7-1 shows an example of a file in "Point Name, X, Y, Z" format.

When a file is selected, you will be presented with several options to define how SA will import the file (Figure 7-5):

Figure 7-5. The ASCII Import dialog.

- Select ASCII Import Format. Choose the format of the ASCII file. SA will automatically delimit using commas, tabs, or spaces (depending on how the ASCII file is set up). The format types can be filtered in the selection view based upon type, name, and number of fields represented by the ASCII line.
- File Units. Define the units used in the ASCII file.
- Group Name. Specify the name to import the points into (only applicable if not specified already by the format).
- Ensure new group. Select this option to ensure that points are placed into a new point group if the specified group already exists.
- Ensure unique names. Verifies that imported point names are unique. If there is a naming conflict, the offending point will have an asterisk appended.
- Make Point Cloud. Select this option to import points as a point cloud instead of a point group.
- Comment character(s). Any lines that start with the specified characters are treated as comment lines and are ignored.
To Import an ASCII-Formatted File:

1. Select File>Import>ASCII: Predefined Formats.
2. Choose the file to import.
3. In the ASCII Import dialog, specify the desired options, then click Import.
4. The file will be imported, and you will receive a summary of lines imported and ignored.

Importing ASCII Formatted Points With Offsets

There are two additional ASCII formats for importing points with offsets, depending on the format of your source data.

To Import Points With Offsets:

- From the menu, select File>Import>ASCII: Points with Offsets><Format>.
<Name><X><Y><Z><Offset>
This option is used when the source file is in the format <Name><X><Y><Z><Offset>.

2 Files: <Name><X><Y><Z>+ <Name><Offset>
This option is used when there are two source files: One in the format <Name><X><Y><Z> and the other in the format <Name><Offset>.

Importing XML Files

XML files containing nominal points and coordinates can be imported into an SA file. At a later time, measured point data can be merged back into the XML file, which will associate the actual coordinates with the nominal coordinates. The nominal points will be imported into a group matching the name of the XML file.

XML Format: Nominal Points

The format of the XML file should have the standard XML format, such as the introductory tag:

```
<?xml version="1.0" encoding="UTF-8" ?>
```

Following this, an enclosing group may contain one or more <POINT > elements, containing a NAME attribute and a child <NOMINAL> element which itself contains \mathbf{X}, \mathbf{Y}, and \mathbf{Z} attributes. For example:

```
<?xml version=''1.0" encoding='UTF-8" ?>
    <left>
            <POINT NAME="Center1">
                <NOMINAL X="1.000'' Y="4.000'' Z="7.000'> />
            </POINT>
            <POINT NAME="Center2">
                <NOMINAL X="3.000'' Y=''6.000'' Z=''9.000'" />
            </POINT>
```

</left>
XML Format: Nominal and Measured Points
Once measured data has been obtained, the measured point names are matched up with the nominal names in the XML file, and an <ACTUAL〉 element is added as a child of each matching <POINT> element. This <ACTUAL > element contains \mathbf{X}, \mathbf{Y}, and \mathbf{Z} attributes holding the measured coordinates. The above XML file might look like the following after merging measured data:

```
<?xml version='1.0'' encoding='UTF-8' ?>
    <left>
        <POINT NAME="Center1">
            <NOMINAL X="1.000" Y="'4.000" Z="7.000" />
            <ACTUAL X='"1.002" Y="3.996" Z='`7.003" />
        </POINT>
        <POINT NAME="Center2">
            <NOMINAL X="3.000" Y="'6.000" Z='9.000" />
            <ACTUAL X="3.007" Y="'6.005" Z=''8.998" />
        </POINT>
    </left>
```

To Import an XML File:

Figure 7-6. The XML import dialog for the above example file.

1. From the menu, select File>Import>XML, then select the desired XML file.
2. In the XML import dialog, the structure of the points to import will be listed (Figure 7-6). Click the Import Points button.

To Merge Measurements to an XML File:

1. From the menu, select File>Import>XML, then select the desired XML file.
2. In the XML import dialog (Figure 7-6), click the Merge Measurements and Save button.
3. From the Object Selection dialog, select the point group you'd like to merge.

Custom Formats

Many custom file formats can be imported, including the following:

- xyz, ijk Files (IJK). Files in IJK format (containing both position and probe orientation data).
- Digital Network Level Measurements. Measurements from a digital level. This is an ASCII file expected to be of the format <group>, <target>, <elevation>.
- VSTARS .xyz Files. .xyz files from VSTARS.
- VSTARS Cameras. Camera files from VSTARS in the outstar.txt format.
- DMIS Files.
- Polyworks Files. .POL, .PIF, .PF, and .DPI formats are all supported.
- IMETRIC Files.
- Leica GSI8/GSI16 Files. Files from Leica total stations in GSI8 or GSI16 format.
- Steinbichler AC Files. This imports data from a Steinbichler scanner (such as the T-Scan) originating in .AC format.
- Wavefront Objects Files. This imports data in Wavefront Technologies' Objects file (.obj).
- Leica ADF format. Files in Leica's .adf format.
- 1-D Data (DataMyte).

To Import a Custom File Format:

- From the menu, select File>Import>Custom Formats>...

Embedding Files

You can import any file from the file system and embed it in the SA job file. The embedded file is placed into the active collection. This is convenient for transporting relevant files with the job file. Of course, when doing so the SA job file grows accordingly to store the file. At any time, this file can be exported back to the file system.

To Embed a File:

1. Activate the collection into which you'd like to embed the file.
2. From the menu, select File>Import>File as Embedded File.
3. At the prompt, select the file to embed. The file will appear under the Embedded Files category of the tree.

Importing Images

You can import any common image format into the SA job. In the tree, embedded images appear under the Pictures category in the active collection. Importing images is particularly useful because these images can be used in reports. For example, you might have a few JPEG images of a measured part taken with a digital camera that you'd like to include in your report. Importing these images into the SA file gives you the ability to use them in a report.

To Import an Image Into an SA File:

1. Ensure the collection into which you'd like to import the image is active.
2. From the menu, select File>Import>Image.
3. At the prompt, select the image file to import. In the tree, the image will appear in the Pictures category of the active collection.

File Export

There are many ways to export your data from SA. Points, Point Clouds, Vector groups and many CAD formats are supported under the File>Export menu option.

Exporting ASCII Formatted Points

Points are easily exported from SA to an external ASCII text file. Using this method, the points are always exported in the working coordinate frame. There are many export options to give you fine control over the export format and data (Figure 7-7). These options are summarized below:

- Target Name. The name of each exported target can be one of four options: Collection Group Target, Group Target, Target, or None. These options indicate which parts of the point/target name are included. For example, exporting using Collection Group Target exports in the format CollectionName GroupName TargetName x y z.
- Coordinate System. Point coordinates can be exported in Cartesian, Cylindric, or Spherical coordinates.
- Tolerance. If selected, point tolerances will be exported for each point (if available).
- Coordinate uncertainties. If selected, coordinate uncertainties for each point will be exported (if available).
- Time Stamps. If selected, the point's time stamp will be exported.
- Target Offsets. If selected, the planar and radial offset of each point will be exported.
- Target Comments. If selected, any comments stored with the point will be exported.
- Measurement Details. If selected, measurement details (such as RMS error, measurement mode, and sampling method) will be exported, if available.
- Separator. Data can be delimited by spaces or commas in the exported format.
- Decimal Precision. Numerical values can be exported using fixed decimal precision (you specify the number of digits) or using full precision scientific notation.
- Include SA Version and Frame Comments. If selected, the SA version and working coordinate frame name will be listed at the beginning of the file, preceded by // to denote that the line is a comment.
- Include Axis Comments. If selected, information about the exported coordinate system will be listed at the beginning of the file, preceded by // to denote that the line is a comment.

ASCII Export	x
File	
C:V Users \backslash Todd\Desktop\PtOut.tst	
Target Name	Coordinate System
- Collection Group Target	- Cartesian (X/V/Z)
- Group Target	O-ylindrical (R/T/Z)
- Target	- Spherical (R/T/P)
O None	
Target Data to Include	Formatting
\square Tolerance	O Space © Comma
\square Coordinate uncertainties	Decimal Precision
\square Time stamps	(0) Fixed at 6 digits
\square Target Offsets	- Full (scientific notation)
Target Comments	\square Include SA version and frame comments
\square Measurement Details	\square Include Axis Comments
OK	Cancel

To Export Selected Points:

1. From the menu, select File>Export>Points (ASCII File).
2. When prompted, select the desired points to export, then press Enter.
3. In the Save As dialog, specify the name for the exported file,
then click Save.
4. When the ASCII Export dialog appears, choose the desired options, then click OK. For convenience, the resulting exported file will be opened in Notepad.

To Export an Entire Point Group:

1. In the tree, right-click the desired point group to export, then select Export to ASCII File from the context menu.
2. In the Save As dialog, specify the name for the exported file, then click Save.
3. When the ASCII Export dialog appears, choose the desired options, then click OK. For convenience, the resulting exported file will be opened in Notepad.

Exporting Point Clouds

You can export point clouds to an external ASCII file. You can specify whether each point is assigned a label in the exported file.

To Export One or More Point Clouds to an ASCII File:

1. From the menu, select File>Export>Point Clouds.
2. Select one or more clouds to export.
3. In the Save As dialog, specify the filename to export, then click Save.
4. When prompted, indicate whether you would like each cloud point to have a label in the exported file.

To Export a Single Point Cloud to an ASCII File:

1. Right-click any point cloud in the tree and select Export to ASCII File.
2. In the Save As dialog, specify the filename to export, then click Save.
3. When prompted, indicate whether you would like each cloud point to have a label in the exported file.

Exporting Vector Groups

Vector groups can be exported to an ASCII file. The file is exported in the following format:

- Name, X, Y, Z, dX, dY, dZ, Signed Magnitude

To Export a Vector Group to an ASCII File:

1. From the menu, select File $>$ Export $>$ Vector Group.
2. At the prompt, select the vector group to export.
3. In the save dialog, specify the name for the ASCII file to export. For convenience, the exported file will be opened for you in Notepad.

Exporting Object Frames

The coordinate frames for any objects that have representable frames (such as coordinate frames, circles, and spheres) can be exported in one of two formats:

- Name, X, Y, Z, Rx, Ry, Rz
- Name, r0c0, r0c1, r0c2, r0c3, r1c0...

The first option exports the name of the objects and their positions and orientations in space. The second exports the name of the objects and the 16 elements of their transformation matrix.

To Export Object Frames:

1. From the menu, select File $>$ Export $>$ Frames (and objects' frames).
2. Select all of the objects defining the frames you'd like to export.
3. In the Frame Export Settings dialog, select the desired format for the exported file, then click 0K.
4. In the Save As dialog, specify the name for the exported file. Notice that this file is automatically exported as a .CSV file. For convenience, the file is automatically opened after successful export.

Exporting to CAD Formats

SA jobs can be exported to several different formats, with support for points, geometry and surfaces. Only the entity types supported by the selected file format will be exported. The supported formats are:

- STEP. You can export the entire SA file or specific objects.
- IGES. You can export the entire SA file or specific objects.
- VDA. You can export the entire SA file or specific objects.
- SAT.
- DXF.
- Metric Vision Instrument Compensation Data Format.
- Imageware Cloud File.
- Surface Wireframe Curve File(s) (.crv). Writes a wireframe representation of the selected surfaces to a text file containing comma-separated values.
- Polyworks POL File.
- STL. Files can be exported in either ASCll or binary format.

To Export an SA File to a CAD Format:

1. From the menu, select File>Export>[Format]. If supported, specify whether the entire model or specific objects should be exported.
2. If applicable, select the objects you'd like to export.
3. When prompted, specify the name of the file to export.

Exporting Window Placements

When automating SA using Measurement Plans or the SDK, it is sometimes desirable to preserve the placement and size of SA windows and dialogs. Consider an example in which a number of client computers running at a specified screen resolution will be using a series of automation routines. In order to ensure that these measurement computers have all of the windows and dialogs in the exact same place as the "development computer", you can export window placements on the development computer, then have the automation routine import these placements on the client computers using the Import SA Windows Placement MP command. This will ensure that the client computers position and size the windows exactly the same as the development computers.

To Export Window Placements:

1. From the menu, select File>Export>Window Placements.
2. Specify a name for the exported file. The file will be exported as a .POS file.

Templates

When you create a new file or start up SpatialAnalyzer, it opens in a "factory default" configuration. However, you might wish to specify your own read-only configurations for one or more files that are used as starting points for your work. Or, you may wish to create a configuration that is used as the default starting point for your job when starting up SA or creating a new default file. For instance, you likely have a preferred set of default units, decimal precision settings, colors, and other settings you wish to use. Setting these manually each time you start a new job would be tedious.

To satisfy this need, SA employs templates. A template is not very different from a regular job file. In fact, it is a job file. The only difference is that it is marked as read-only and is typically stored in a standard
folder on disk (C: \Analyzer Data \Templates), although this is not a requirement.

To Create a New Template File:

Note: Template files are typ
ically stored in C: \Analyzer Data\Templates, although this is not mandatory.

1. Configure a job file as desired.
2. From the menu, select File>Save As Read-Only Template.
3. In the dialog, specify the name and location for the template file. It will be set as read-only.

To Open an Existing Template File:

1. From the menu, select File>Open Template File.
2. From the dialog, choose the file to open.

The Default Template

Instead of having templates as starting points for a specific job, you may also have a preferred default starting configuration for all files. SpatialAnalyzer provides the capability to define a default template. A default template is a template that is automatically loaded in the following situations:

- SpatialAnalyzer is started from the Windows start menu or a desktop shortcut.
- File $>$ New is selected from the menu, or the New File icon \square is selected in the toolbar.

Default templates help you avoid repeating the same job file preparation steps by allowing you to define a starting point for all of your job files. They also provide a convenient method for standardizing file setup and settings across an organization. If a default template does not exist, SA will use factory default settings.

To Create a Default Template

1. Configure an SA file with the settings for your template. Remember to set all settings that are saved with an SA file (such as the active units and decimal precision settings) as desired.
2. From the menu, choose File>Save As Read-Only Template.
3. In the save dialog, ensure you are in the Analyzer Data \} Templates folder (SA will take you there by default), then save the template as default.xit. When you start SA or a new file, this file will automatically be restored.

To Remove a Default Template

1. Navigate to SA's Analyzer Data \Templates folder in Windows Explorer.
2. Delete the default.xit file. Without this file, the factory de-

Screen \& Graphics Capture

At any time, you can capture either the entire screen or the graphical view for printing or output to a standard image file (BMP, JPG, PNG, GIF, or TIFF).

To Print or Capture the Screen or Graphical View:

1. From the menu, select File>Capture Screen[Capture Graphics]>To Printer[To File (BMP/JPG/PNG/GIF/TIFF)] as appropriate.
2. If capturing to printer, choose the printing options and confirm. If capturing to file, select the filename and type, then click Save.
3. The Capture Graphics > To File (BMP/JPG/PNG/GIF/TIFF) command allows you to specify a render scale. A value of 1.0 uses the actual pixel count of the graphical view for the resulting image. A value of 3.0 will create an image three times the resolution of the graphical view.

Points

Points are the most fundamental aspect of any measurement. They are the basis from which virtually all analysis is performed in portable me-trology-therefore having a good understanding of how they work in SpatialAnalyzer is crucial.

About Points

A point is defined as a specific location in three-dimensional space, and may be represented in Cartesian (X/Y/Z), Spherical (r/Ө/Ф), or Cylindrical ($\mathrm{r} / \theta / \mathrm{Z}$) coordinates (depending on the application). With a few exceptions coordinates are reported to the user in the working coordinate frame.

Points can be created by many methods. For example, they can be created from a point construction command or can be the result of measurement with a portable metrology device. They may be imported from a CAD file, extracted from sphere scans, or the result of a fit to existing data.

Point Groups

In SA, all points must exist inside of a point group. A point group is a container for a set of points that are related in some way. The point group itself is considered an object, whereas its contained points are not objects. All points inside of a point group are treated as a rigid body. That is, when you move or rotate a point group, all of the enclosed point groups move or rotate together, as if rigidly connected.
The point group is the organizational element that is used to organize
your point data by feature. All measurements of a specific hole should typically be placed into their own point group. All measurements of reference (tie-in) points should typically be placed into their own group. Likewise, measurements of a complex surface should typically be placed into their own group as well. As mentioned earlier in this manual, organizing your point data in this manner will make analysis and reporting easier later on.

Since point groups are objects and points themselves are not, only point groups have a color. All points inside that group inherit the color of their point group.

There are two types of points that you will see in SA: Constructed Points and Measured Points (also referred to as Targets). Both of these types of points may appear in the same point group.

Constructed Points

Figure 8-1. A constructed point as seen in the graphical view.

Figure 8-2. A constructed point in the tree named MyPoint sits inside the MyPointGroup group.

A constructed point is a point that is not associated with any instrument observations or measurements. There are many ways to create constructed points. They may have been created manually by entering coordinates, by intersecting a line with a plane, or may be the result of importing data from an ASCII file. A constructed point may also result from deleting a target's individual measurement observations.

A constructed point is represented in the graphical view and the SA tree by a 3-D"plus" symbol, as pictured in Figure 8-1 and Figure 8-2.

```
4) A
- \(\searrow\) Frames
4 Point Groups \(4 \stackrel{\text { ** }}{4}\) MyPointGroup \(\square+\) MyPoint
```

Expanding the triangle next to any point will display its coordinates in the working frame.

A measured point (also referred to as a target) is a point which has been determined from one or more direct instrument observations. For traceability purposes, targets they maintain a record about who and what measured them, when and how they were measured, weather data, sampling statistics, raw measurement data from the instrument, and any other pertinent metadata. Because they are tied to instrument measurements, measured points cannot be created through typical point construction or analysis methods--they must be mea-

Figure 8-3. A measured point as it
appears in the graphical view.

Figure 8-4. A measured target named MyTarget as it appears in the tree.
sured. (There is, however, a way to create targets through measurement simulation).

Measured points are represented in the graphical view by a 3-D plus symbol with a diamond around it (Figure 8-3).

In the tree, targets are represented by a crosshair \oplus icon (Figure 8-4).
$\triangle 15 A$

- \succsim Frames

4. Point Groups
4 4 . + MyPointGroup
\oplus MyTarget

Expanding the triangle next to any point will display its coordinates in the working frame.

Point Characteristics

There are a number of characteristics common to both constructed and measured points. The Point (Target) Information dialog, shown in Figure 8-5, contains the properties of an individual point. In this particular figure, a constructed point's properties are shown.

To Display the Properties for a Point:

- Double-click a point in the graphical view or tree, or
- Right-click a point in the graphical view or tree and select Properties.

At the top of the Point Information dialog, the collection, group, and target name are listed. Below that are the coordinates of the point in the working coordinate frame.

To Edit the Coordinates of a Point:

1. Click the Edit Values button. The Edit Point Coordinates dialog will appear as shown in Figure 8-6.

2. Type in the new values and click 0 K .

If you attempt to edit the coordinates of a measured point (something you typically should not do), you will receive a warning and the measured point will turn into a constructed point. The original measurement data is still preserved with the point, but the measurements become deactivated and they need to be reactivated (and the target recomputed) to restore the measured point.

Point Tolerance

Figure 8-7. The Point Tolerance dialog allows you to specify the tolerance for a point.

Each point can be assigned a tolerance (Figure 8-7). Tolerances that have been assigned to a point will be used for watch windows and other comparisons where applicable. A point tolerance must be associated with a specific coordinate frame (because it may be asymmetrical). Tolerances can be applied on any combination of axes, and in any combination of sides (high or low).

To Add a Tolerance to a Point:

1. In the Point (Target) Information dialog, click the Tolerance button, or right-click the point in the tree or view and choose Tol-

Figure 8-8. The Vector Tolerance dialog.
erance.
2. In the resulting Point Tolerance dialog, click the Add button, as shown in Figure 8-7.
3. To pick the applicable coordinate frame from a list, click the Pick Frame button and choose the frame from the resulting dialog. To specify that the tolerance will apply to the current working frame, click the Use Active Frame button.
4. To assign the numeric tolerance value, click the Tolerance button, which will open the Vector Tolerance dialog (Figure 8-8).

5. Check the tolerances that you want to apply, and enter the numeric values. The Enable All and Disable All buttons are shortcuts to check and uncheck all tolerances. If a value is entered into the Set Values field, then clicking the Set All High, Set All +/-, or Set All Low buttons apply the value to all of the high tolerances, all of the high and low tolerances, or all of the low tolerances, respectively.
6. Click OK to apply the tolerance.

Notes

The Notes field in the Point (Target) Information dialog can be used to enter descriptive notes about an individual point.

Targeting Offsets

Each point can be assigned a planar and radial target offset. Enter the values in these fields to change them for a single point. These offsets will be automatically compensated for when comparing the point to surfaces and other geometry. By default, constructed points have offset values of zero.

The planar offset is the most commonly-used offset. It is used in almost all situations. To provide examples, the planar offset is used when compensating in the planar direction for a pin nest (Figure 8-9), when comparing to a cylinder or best-fitting a cylinder to measured
points, or when comparing a set of measured points to a surface.

Radial Offset

Figure 8-9. Measuring a surface hole with a laser tracker's SMR and Pin Nest.

The radial offset is only used in one situation: when using tooling intended to measure circular and elliptical holes that has a radial offset associated with it-that is, when using a pin nest. In Figure 8-9, the radius of the pin nest's shank determines how far outward or inward the circle radius or ellipse axis must be offset.

Spherical probes (such as SMRs and balls) have the same planar and radial offset, although technically the radial offset is not used.

The following are some sample measurement instrument/tooling combinations, and the proper planar and radial offsets associated with each:

Measurement Tooling	Planar Offset	Radial Offset
PCMM arm with 6 mm probe	$3 \mathrm{~mm}\left(0.1181^{\prime \prime}\right)$	$3 \mathrm{~mm}\left(0.1181^{\prime \prime}\right)$
PCMM arm with 3 mm probe	$1.5 \mathrm{~mm}\left(0.0591^{\prime \prime}\right)$	$1.5 \mathrm{~mm}\left(0.0591^{\prime \prime}\right)$
PCMM arm with Point Probe	0	0
Tracker with $1.5^{\prime \prime}(38.1 \mathrm{~mm})$ SMR	$0.75^{\prime \prime}(19.05 \mathrm{~mm})$	$0.75^{\prime \prime}(19.05 \mathrm{~mm})$
Tracker with $1.5^{\prime \prime}$ SMR and Flat Nest ${ }^{1}$	$1.0^{\prime \prime}(25.4 \mathrm{~mm})$	$\mathrm{N} / \mathrm{A}(0)$
Tracker with $1.5^{\prime \prime}$ SMR and Pin Nest	$1.0^{\prime \prime}(25.4 \mathrm{~mm})$	$0.125^{\prime \prime}(3.175 \mathrm{~mm})$
Tracker with $1.5^{\prime \prime}$ SMR and Edge Nest	$1.0^{\prime \prime}(25.4 \mathrm{~mm})$	0
Laser Radar (non-contact measurement)	0	0

1 When a flat nest is used, a feature such as a hole cannot be measured because there is no tooling feature to properly locate the SMR radially. As a result, there is no valid radial offset for this tooling combination.

Accessing A Point's Group Menu From the Graphical View

Sometimes, you want to select a point and access the properties of its enclosing point group. For instance, to change the color of a point you would need to access its parent point group. The graphical view's context menu allows you to do just that.

To Access a Point's Enclosing Group Menu:

- In the graphical view, right-click a point and select Group Menu from the context menu. The enclosing group's context menu will be displayed.

Measurements

Measured points carry a number of additional properties that are important to understand.

How SA Computes a Measured Point's Location

Determining the location of a measured point at first seems trivial. However, it gets significantly more complex when you realize that some instruments (such as theodolites) are angle-only measurement devices, and do not measure a target's position in space. With theodolites, at least two measurements of a target need to be recorded from different points in space to triangulate the location of the point.

Another complication is that one or more instruments may measure a single target several times. We will discuss these situations, but let's first look at how SA computes a measured point's location in a simple case, when an instrument provides a point position in space.
When measurements are recorded, SA always records the raw measurement data that came from the instrument. For theodolites, this means a horizontal angle (azimuth) and vertical angle (elevation). For other line-of-sight devices, it means azimuth, elevation, and distance, and for non-spherical measurement devices (such as portable arms) the coordinates are provided from the instrument in Cartesian space.

The instrument always provides the location of the measurement relative to its own internal reference system-typically at the optical center or at the base of an instrument. Since each instrument has a three-dimensional position and orientation in the job file, SA takes these raw measurements and calculates their coordinates in job space based on the position of the instrument. When an instrument moves, the position of all of its measurements are recalculated.

At any time, you can move a point group containing measured points. When you do so, you will break the connection between the measured points and their instrument, and the measured points will
instantly turn into constructed points to show that you are no longer looking at actual measurements. You haven't lost the original measurement data, however. You can recalculate these measured points and turn them back into measurements.

To Recalculate Measured Points:

- From the menu, select Analysis>Re-Compute Targets From Shots. This will snap all measurements back into place relative to the instrument and convert them back into measured points.

About Target Observations

An observation is a single reported measurement from an instrument. A target, by definition, must have one or more instrument observations. While the coordinates for a constructed point are easy to understand and unambiguous, the coordinates for a target take more explanation. It is fairly common, particularly with theodolite measurements, for a given target to have multiple observations that together define the coordinate of the point. Consider, for instance, the case where three theodolites have measured a common point (see Figure $8-10$ on page 185). Since each measurement has finite error (due to encoder error, operator differences, alignment, and other factors), the observations will not coincide in space. Put another way, each instrument will "see" a slightly different location when measuring the same point in space. (The error in Figure 8-10 is greatly exaggerated for clarity).

It would be easy to simply take an average of each observation to determine the computed target location, but that is not an optimal technique, because it assumes that each observation has equal error. Instead, SA uses a more accurate technique of computing the coordinate for the target based on an optimization. In Figure 8-10, the computed target location is closer to the leftmost instrument's observation, due primarily to the fact that it is closest to the measured point and therefore should have the least measurement error.

A view of this situation from above (see Figure 8-11 on page 185) makes it even clearer: The closest instrument is most accurate, and gets the most influence in calculating the target location. The net result of this optimization technique is that the computed target location's coordinates are more accurate than they would be if the average of the observations were used instead.

In the case of a single instrument measuring a point multiple times, the end result is that the target coordinate is almost exactly an average of the individual observations, as the distance to the target is approximately constant for all observations.

Figure 8-10. A measured target as computed by observations from three instruments (exaggerated for clarity).

Figure 8-11. The instrument closest to the target has the greatest accuracy and therefore gets the largest influence in target computation.

About Target Offsets

Figure 8-12. The center of the probe is the recorded point, and the offset is its radius.

Regardless of the type of instrument used, when a measurement is performed in SA, the point that is recorded is the center of the probe (or the surface intersection point for non-contact measurements). For example:

- Laser tracker measurements record the center of the SMR.
- PCMM arm measurements record the center of the probe tip.
- Laser radar measurements record the returned point of contact with the object's surface.

In order to properly compare measured points to geometry or construct geometry from measured points, SA must always know the planar and radial offset for the measurement tooling that is currently in use. In normal use, an instrument interface has an offset assigned based on the current probe and tooling being used, and this offset is automatically applied to points as they are measured. For example, suppose a pin nest and SMR are being used to measure the inside diameter of a hole with a laser tracker. If SA is set up to construct a circle as a result of the measurement, then once the circle is fit to the measured probe centers, it will be offset normal to the circle by the planar offset amount, and its radius will be increased by the radial offset value. These offsets will align the constructed circle with the true location of the edge of the hole, regardless of the measurement tooling or probe used for the measurements.
In addition to the target's offsets, for traceability purposes each individual measurement observation has a radial and planar offset as well.

Characteristics Unique to Measured Points

There are a few characteristics that are unique to measured points that you will not see on constructed points (Figure 8-13).

Figure 8-13. The Target Information dialog looks like the Point Information dialog for constructed points, but has a few subtle (but important) differences.

Uncertainty
There is an Uncertainty box with a Compute button inside. This is used for computing the uncertainty of the measured point and is discussed in more detail in the chapter on Measurement Uncertainty.

Measurement Details

To view the detailed measurement information that comprises a target, click on the Measurement Details button. (Note that the button will display the number of active observations that are being used to calculate the target position).

Figure 8-14. Two observations comprise this measured target, and both are active.

Warning: Deactivated observations are not used when calculating

[^5]In this example (Figure 8-14), there are two active instrument observations that are being used to calculate the target coordinates. The checkboxes at the top of this dialog control which items are visible in the table.

- Time. Toggles whether or not the timestamp (date and time) for the measurement is displayed.
- Information. Toggles whether measurement details (such as
instrument serial number, mode, weather information, etc.) are displayed.
- User. Toggles whether the username is displayed.
- Target Offset. Toggles whether the stored offsets for each observation are displayed.
- Pointing Error. Displays the instrument's angular and linear pointing errors. (Pointing error is the angular error between the observation and the computed target location).

Next to these checkboxes, the dialog displays the RMS value of the combined angular pointing errors.

To Activate or Deactivate an Observation:

- Check or uncheck the observation in the Instrument column.

To Activate or Deactivate All Observations on a Target:

- Right-click the point in the tree or graphical view and select Activate All Measurements or Disable All Measurements as applicable.

To Activate All Measurements to All Targets:

- From the menu, select Analysis>Activate All Measurements.

To Permanently Delete an Observation:

- Select the row in the table and click the Delete button.

An Apex Angle is the angle between two measurement rays, or lines of sight, from measurement devices (see Figure 8-15). Ideal measurements with the least amount of error and uncertainty are obtained with apex angles of 90 degrees. As the apex angles increase or decrease from this value, the measurements have more uncertainty and are less reliable. SA can calculate and display the worst apex angle from a series of observations comprising a target.

Figure 8-15. The apex angle between two lines of sight to a common target.

To Determine the Worst Apex Angle Comprising a Target:

- Click the Apex Angles button. SA will determine the two observations that form the worst apex angle, list the angle, and also list the two observations that form this angle.
To Point an Instrument's Graphical Model at its Observation:
- Select the observation of interest and click the Point At w/ Graphics button. The instrument's head will point at the measurement in the graphical view.
Observation Details
You can view the details for an individual instrument observation.
To View the Details for a Single Observation:
- Double-click or right-click the observation, or
- Select the desired row and click the Properties button.

The details for an observation are displayed in the Polar Measurement dialog (see Figure 8-16 on page 190).

Figure 8-16. A single observation's details. This shows a laser tracker's observation information.

The top section displays all of the metadata associated with the observation.

- Use In Calculation. Toggling this option is equivalent to activating/deactivating an observation in the Measurement Details dialog.
- Draw Me. Turn this option off to prevent SA from drawing the instrument shot (ray) for the observation.
- Theta/Phi/Z (X/Y/Z). Read-only values showing the raw data from the instrument, expressed in the instrument's coordinate frame.
- Advanced Options (theodolites only). Mark observations as normal, collimation shots, or mirror cube shots (see below).
Each observation can store a planar and radial offset. These offsets are normally recorded when the measurement is taken. However, you can change them by filling in the Planar and Radial offset values to assign custom offsets to a specific observation.
The Advanced Options button allows you to specify whether the observation is a Normal Shot, a Collimation Shot (you must specify the instrument you're collimating to), or a Mirror Cube Shot (you must specify which mirror face was measured). These settings are used to help constrain bundle adjustments (see Figure 8-17 on page 191).

Figure 8-17. Advanced shot options for a spherical measurement.

Advanced Shot Options	
Collimation Shot Targeted Instrument Pick Instrument	
Mirror Cube Shot Mirror Face OK 1	4

Targeting Offsets
Individual observations can have their own stored planar and radial offsets. Constructed points do not have to deal with this, as they do not have any observations.

A button labeled Apply offsets to all measurements (see Figure 8-13 on page 187) is visible below the planar and radial offset fields for measured points (you will not see it for constructed points). Clicking this button will apply the specified planar and radial offsets to all individual observations for the target.

Setting Properties for Multiple Points

Some situations arise in which you'd like to change the properties of multiple points at once. For instance, if you accidentally measure a large number of points with the wrong target offsets set in the instrument interface, you will need to correct these offsets in order for SA to properly apply probe compensation.

You can apply new tolerances or offsets to multiple points using the Set Properties for Multiple Points dialog (Figure 8-18).

Figure 8-18. The Set Properties for Multiple Points dialog.

To Change Offsets or Tolerances For Multiple Points:

- From the menu, choose Edit>Set Properties for multiple points and select the points to modify. This will call up the Set Properties for Multiple Points dialog.

To Change Offsets or Tolerances For An Entire Group:

- Right-click a point group and select Set Point Properties from the context menu. This will call up the Set Properties for Multiple Points dialog.
This dialog has two regions. The top region is for changing the stored target offsets, and the bottom region is for changing the point tolerances.
- Set Target Offsets. Check this option to change the planar and radial offsets of the measured points to the values entered into the Planar and Radial fields.
- Set Measurement Offsets Also. This applies the entered offsets to the individual observations within a target as well. Very rarely would you not want to select this option.
- Set Tolerances. When checked, the tolerances specified via the Tolerance Settings button will be applied to the points.

Working With Point Lists

It is often useful to view a list of points and point coordinates in tabular format, so that you can easily compare against nominals or quickly modify a set of points at once (similar to working in Excel). SA's point lists provide this functionality (Figure 8-19).

Figure 8-19. A point list.

To View a Point List:
Do one of the following:

- From the menu, select View>Point Lists for Groups, then select the group(s) to view, or
- Right-click a group and select View Point List from the context menu (to view a single group).
The list has several buttons at the top:
- Refresh. Refreshes the list to ensure it's showing the latest information.
- Copy to Clipboard. Copies the selected rows (or all rows if nothing is selected) to the clipboard.
- Export to Text File. Exports the selected rows (or all rows if nothing is selected) to a text file.
- Display. Display provides a list of additional point properties that can be displayed including tolerances, weights, offsets, etc.
- Coordinate System. Click this button to switch among Cartesian, Cylindrical, and Spherical coordinates.
- Edit. Opens up a new window allowing you to modify the point information (see below).
Instead of just viewing the information, a point list can be used for modifying point names, coordinates or properties. This is particularly useful because you can change multiple values at once. For instance, you can quickly change the x-coordinate of multiple points in one action.

To Edit a Point List:

Figure 8-20. The Edit Point List dialog.

Do one of the following:

- With the point list already displayed (see "To View a Point List:" on page 192), click the Edit button, or
- Right-click a point group and select Edit Point List from the context menu to edit that group of points.

The Edit Point List dialog is displayed in Figure 8-20.

(1] Edit A:-Nominals					x
Apply	Coordinate System		Cancel		
Name	X	Y	Z	Notes	
M1	-271.4915	125.5194	-57.0032		
M2	-130.8167	119.3638	-56.8865		
M3	-166.3771	36.7893	-56.0920		
M4	-100.1650	8.7241	-55.8220		
M5	-157.9157	-33.3122	-55.6148		
M6	-94.1955	-78.0174	-55.1982		
M7	-18.5527	-64.1910	-55.2997		

To Change a Point's Name, Coordinate, or Notes:

- Double-click the field you'd like to modify, enter a new value,
then press Enter.

To Modify Multiple Values At Once:

1. Select multiple fields using Shift+Click (standard Windows range selection) or Ctrl+Click (standard Windows non-contiguous selection).
2. Double-click one of the selected fields, type a new value, and press Enter. All fields will be updated with the new value.

The dialog provides a few additional buttons at the top.

- Apply Changes. Modifications are not actually applied to the points until you click this button.
- Coordinate System. Choose to switch the display between Cartesian, Cylindrical, or Spherical coordinates.
- Cancel. If you cancel, no changes will be applied the points.

Constructing Points

There are many different ways to create points in SA. You can explicitly create a point at a specified coordinate or create points through an array of geometric analysis functions.

Entering Point Coordinates

The most basic way to create a point is to explicitly enter a point by specifying its collection, group, target, and coordinate system. This will create a single constructed point in your job.

To Enter a Point:

Figure 8-21. Constructing a point by entering its coordinates.

1. From the menu, select Construct>Points>Enter, or press Ctrl+P (default keyboard shortcut). The Add Points to Model dialog will appear (Figure 8-21).

2. Enter a collection, group, and point name (or select one from
the dropdown of existing collections or groups).
3. Specify the desired coordinate type (Cartesian, Cylindric, or Spheric).
4. Enter the desired coordinate values, then click the Add Point button to create the point and continue adding more, or click Done to create the point and close the dialog.

Constructing a Point at the Center of a Line

Creating a point at the center of a line constructs a point halfway between its endpoints.

To Create a Point at the Center of a Line:

1. From the menu, select Construct>Points>Center>Line.
2. Select the desired line.
3. The Construct New Point dialog will appear (Figure 8-22).

4. Leave the coordinates as-is (they are calculated for you), and specify the desired collection, group, and point name (or select an existing collection or group from the dropdown).
5. Click the OK button.

Constructing Points at the Center of Spheres and Circles

You can construct points at the center of multiple circles or multiple spheres with a single command.

To Construct Points at the Center of Circles or Spheres:

1. From the menu, select Construct>Points>Center>Circles or $>$ Spheres. The Point Name dialog will appear (Figure 8-23).

Figure 8-23. The Point Name dialog.

2. Enter a collection, group, and point name for the first point to construct. (Leave the Collection field blank to put the points into the active collection). Click OK.
3. Select one or more circles or spheres. Each center point will be created, and successive point names will be incremented.
4. When finished creating centers, press Esc or Enter.

Constructing Points at the Center of a Cylinder

When creating points at the center of cylinders, SA will actually create three points: one point at each end on the cylinder's axis (called EndA and EndB), and a third point halfway between the endpoints (called Center).

To Create Points at the Center of Cylinders:

1. From the menu, select Construct>Points>Center>Cylinder.
2. Select the cylinder. The points will be placed into the active collection, into a group with a name matching that of the cylinder.

Projecting to the Closest Point on Objects

Projecting points to the closest point on an object is equivalent to creating points on the object where that object's surface normals intersect with the original points.

With this command, you can select multiple objects and SA will find the closest point among all selected candidate objects. You can also select multiple points, and SA will find the closest point for each of the candidate points.

You can also offset points away from the surface. This is particularly useful when you have nominal points on a surface that you'd like to back away from the surface by the probe radius (so that those points can serve as proximity triggers for measurement).
To Project Points to the Closest Points on an Object:

1. From the menu, select Construct>Points>Project Points

Figure 8-24. The Point Naming dialog.
to>Objects>Closest Point.
2. Select one or more objects to project to.
3. Select one or more points to project. The Point Naming dialog will appear (Figure 8-24).

4. Enter or select the desired group to contain the projected points. In the Add Prefix or Add Suffix field, enter a prefix or suffix that you'd like to attach to the point names, then click OK.
5. The Probe Offset dialog will appear. Enter a distance to offset the projected points back away from the object's surface. A positive value shifts along the positive direction of the surface normal.

Projecting Points Parallel to a Working Coordinate Frame Axis

You can project points along a working coordinate frame axis until it intersects with one or more surfaces (Figure 8-25). (If there is no intersection, no projected point will be created).

Figure 8-25. Projecting a grid of points along the working X axis to a surface.

To Project Points Along the Working Coordinate Frame Axis:

1. From the menu, select Construct>Points>Project Points to>Objects>Relative to Coordinate Frame Axis>Parallel to WCF Axis.
2. When prompted, pick the surfaces to project to.
3. Select the points you'd like to project.
4. When the Select Axis dialog appears, choose the axis to project along.
5. The Point Naming dialog will appear (Figure 8-24). Enter or select the desired group to contain the projected points. In the Add Prefix or Add Suffix field, enter a prefix or suffix that you'd like to attach to the point names, then click 0K.

Projecting Points Radially from a Working Coordinate Frame Axis

You can also project points radially from a coordinate frame axis. Here, one of the axes of the working coordinate frame serves as the axis of a cylindrical coordinate system, and the points are projected out radially from that axis until they intersect with one or more surfaces (Figure 8-26).

Figure 8-26. Projecting radially

To Project Radially from a Working Coordinate Frame Axis:

1. From the menu, select Construct>Points $>$ Project Points to>Objects>Relative to Coordinate Axes>Radial from WCF Axis.
2. When prompted, pick the surfaces to project to.
3. Select the points you'd like to project.
4. When the Select Axis dialog appears, choose the axis from which to project radially.
5. The Point Naming dialog will appear (Figure 8-24). Enter or select the desired group to contain the projected points. In the Add Prefix or Add Suffix field, enter a prefix or suffix that you'd like to attach to the point names, then click 0K.

Projecting Points Spherically from a Working Coordinate Frame Origin

Points can be projecting spherically outward from the origin of the working coordinate frame (Figure 8-27).

Figure 8-27. Projecting points spherically from the working coordinate frame origin.

To Project Points Spherically From the Working Coordinate Frame Origin:

1. From the menu, select Construct>Points>Project Points to>Objects>Relative to Coordinate Frame Axis>Spherical From WCF Origin.
2. When prompted, pick the surfaces to project to.
3. Select the points you'd like to project.
4. The Point Naming dialog will appear (Figure 8-24). Enter or select the desired group to contain the projected points. In the Add Prefix or Add Suffix field, enter a prefix or suffix that you'd like to attach to the point names, then click 0K.

Projecting Points to a Curve

You can project points directly to any arbitrary curve or curves (Figure $8-28)$. The projected points can lie directly on the curves or can be backed off the curve by a specified amount. Each point will be projected to the closest curve among all candidates.

To Project Points to a Curve:

1. From the menu, select Construct $>$ Points $>$ Project Points to $>$ Curves.
2. At the prompt, select the curves to project to.
3. Select the points to project.
4. The Point Naming dialog will appear (Figure 8-24). Enter or select the desired group to contain the projected points. In the Add Prefix or Add Suffix field, enter a prefix or suffix that you'd like to attach to the point names, then click 0K.
5. At the Probe Offset dialog, enter a distance to offset the pro-
jected points back away from the curve. This value must be positive, and always shifts away from the curve.

Figure 8-28. Projecting points to a curve.

Creating Points at a 3-Plane Intersection

A point can be created at the intersection of 3 planes. This of course requires that no two planes may be parallel.

To Create a Point at the Intersection of 3 Planes:

1. From the menu, select Construct>Points $>$ Intersection >3 Planes.
2. Select the three planes successively.
3. The Construct New Point dialog (see Figure $8-22$ on page 195) will appear. Leave the coordinates as-is (they are calculated for you), and specify the desired collection, group, and point name (or select an existing collection or group from the dropdown).
4. Click OK to create the point.

Creating Points at the Intersection of a Plane and Circle

Intersecting a plane and a circle will actually create two points as seen in Figure 8-29. It should be noted that the plane and circle cannot be parallel or coplanar.

To Create Points at the Intersection of a Plane and Circle:

1. From the menu, select Construct>Points>Intersection>Plane and Circle.
2. Select the plane, then the circle. Two new points will be created in the active collection's Intersections group named Plane-Circle1 and Plane-Circle2.

Figure 8-29. Intersecting a plane with a circle.

Constructing Points at the Intersection of a Line and Plane

You can intersect a line with a plane to create a point at the intersection (Figure 8-30).

Figure 8-30. A line and plane intersection creating a point, even though their depictions do not intersect.

There are a few things to keep in mind:

- The line and plane need not physically intersect, since planes and lines are treated as infinite in size.
- If the line lies in the plane, or the line is parallel to and not in the plane, no points will be created.
To Create a Point at the Intersection of a Line and Plane:

1. From the menu, select Construct>Points>Intersection $>$ Line and Plane.
2. Select the line, then the plane.
3. The Construct New Point dialog (Figure 8-22) appears.
4. Leave the coordinates as-is (they are calculated for you), and specify the desired collection, group, and point name (or select an existing collection or group from the dropdown).
5. Click the OK button.

Constructing a Point at the Intersection of 2 Lines

You can create a point at the intersection of two lines (Figure 8-31). Or, if the lines do not intersect, a point will be created at their mutual perpendicular midpoint. (The mutual perpendicular midpoint is halfway between the closest points between the two lines). If the lines are parallel, no point will be created.

Figure 8-31. A point constructed at the mutual perpendicular midpoint between two lines. In this case, these two lines do not intersect.

To Create a Point at the Intersection of Two Lines:

1. From the menu, select Construct>Points>Intersection >2 Lines (mutual perpendicular midpoint).
2. Select the first line, then the second.
3. The Construct New Point dialog (Figure 8-22) appears.
4. Leave the coordinates as-is (they are calculated for you), and specify the desired collection, group, and point name (or select an existing collection or group from the dropdown).
5. Click the 0 K button.

Constructing Points at the Intersection of a Line and Circle

Points can be created at the intersection of a line and a circle (Figure $8-32$). The line is first projected to the plane on the circle and then the intersection points are created.

Figure 8-32. A line and circle intersection creating two points.

To Create Points at the Intersection of a Line and Circle:

1. From the menu, select Construct>Points>Intersection>Line and Circle.
2. Select the line, then the circle. Two new points will be created

Constructing Points at the Intersection of a Line and Cylinder

You can create a point at each intersection of a line and cylinder. The cylinder and line need not physically intersect, since cylinders and lines are treated as infinite in length (Figure 8-33). However, the line must pass within the cylinder's radius.
$+$

Figure 8-33. A point at each intersection of the line and cylinder are created, even though their depictions do not intersect. Note the length of the cylinder does not need to be increased, since cylinders are infinite in size.

To Create a Point at the Intersection of a Line and Cylinder:

1. From the menu, select Construct>Points $>$ Intersection $>$ Line and Cylinder.
2. Select the line, then the cylinder. A naming dialog appears (Figure 8-35).
3. Specify the desired collection, group, and point names (or select an existing collection and group from the dropdown).
4. Click OK to create the point.

Constructing Points at the Intersection of a Line and Sphere

You can create a point at each intersection between a line and a sphere.

Figure 8-34. A point is constructed at each intersection of the line and sphere.

To Create a Point at the Intersection of a Line and Sphere:

1. From the menu, select Construct>Points>Intersection>Line and Sphere.
2. Select the line, then the sphere.
3. A naming dialog appears (Figure 8-35).
4. Specify the desired collection, group, and point names (or select an existing collection and group from the dropdown).
5. Click OK to create the point.

Figure 8-35. The naming dialog for line intersections with cylinders and spheres.

Constructing Points at the Intersection of 2 B-Splines

Points can be constructed from the intersections of two B-Splines. A point will be created at the midpoint of the closest location between the two B-splines if they do not intersect (Figure 8-36).
To Create a Point at the Intersection of 2 B -Splines:

1. From the menu, select Construct>Points>Intersection>2 B-Splines.
2. Select the first B-spline, then the second.
3. The Construct New Point dialog (Figure 8-22) will appear. Leave the coordinates as-is (they are calculated for you), and specify the desired collection, group, and point name (or select an existing collection or group from the dropdown.
4. Click OK to create the point.

Figure 8-36. The pink and green B-splines create a point where they physically intersect, whereas the green and purple B-splines create a midpoint between their closest locations since they do not intersect.

Constructing Points at the Intersection of a B-Spline and Surfaces

Note: If the B-Spline intersects multiple times or intersects multiple selected surfaces, only one point is created. Which point is created is not generally clear.

You can create a point at the intersection of a B-Spline and a surface (Figure 8-37). The command follows the B-Spline from its tail toward its head and creates a point when the spline first pierces the surface. You can select multiple surfaces with this command, but still only one intersection point will be created.

Figure 8-37. Intersecting a B-
Spline with a surface to create a point.

To Create a Point at the Intersection of a B-Spline and Surfaces:

1. From the menu, select Construct>Points>Intersection>B-Spline and Surfaces.
2. Select the B-Spline.
3. Select one or more surfaces to test.
4. When prompted, enter an approximation tolerance. Generally, the default value is fine.
5. The Construct New Point dialog (Figure 8-22) will appear. Leave the coordinates as-is (they are calculated for you), and specify the desired collection, group, and point name (or select an existing collection or group from the dropdown.
6. Click OK to create the point.

Constructing Points at the Intersection of Principle Object Axes and Surfaces

A point can be constructed at the intersection of an object's axis and a surface (Figure 8-38). The definition of the axis depends on the type of object, but the axis must intersect at a point on the surface and not through a hole in the surface.

Figure 8-38. A point created at the intersection of a plane's axis and a surface.

To Construct a Point at the Intersection of an Object Axis and Surface:

1. From the menu, select Construct>Points $>$ Intersection $>$ Principle $\mathbf{O b}$ ject Axes and Surfaces.
2. Choose the axis object, followed by the surface.
3. Enter the destination point group name. You also have the option of entering a suffix for the points (which will have the same name as your object).
4. Click OK.

Shifting Points In a Direction

You can use a selected object to define a direction in which to shift a point or selection of points by a specified distance (Figure 8-39). If a frame is selected as the object, you will be prompted to choose along which axis to shift the points.

Figure 8-39. Green points were copied from the original points (red) and shifted along the circle's surface normal. $+\quad+$

To Shift Points in a Direction:

1. From the menu, select Construct $>$ Points $>$ Shift Points $>$ In a Direction.
2. Select the object defining the shift direction, then select the points you would like to shift.
3. The Shift Points in Direction dialog will appear (Figure 8-40). Enter the shift distance and the point group destination.

4. Click Make Points to create the shifted points.

Shifting Points In Cylindric Coordinates

Points may be shifted cylindrically. Any object that contains directional information may be selected to define the axis of the cylinder about which the points are shifted (Figure 8-41).

Figure 8-41. The cylinder is the object defining the cylindrical coordinate system and the blue points were copied from the original points (green) and shifted $5.0^{\prime \prime}$ along the planar and radial directions.

To Shift Points in Cylindric Coordinates:

1. From the menu, select Construct>Points $>$ Shift Points $>$ In Cylindric Coordinates.
2. Select the object defining the cylindric coordinate system,

Figure 8-42. Specifying the radial and planar shift.
followed by the points to be shifted.
3. The Shift Points in Cylindric Coordinates dialog will appear (Figure 8-42). Enter the radial and planar shifts and the point group destination.

4. Click Make Points to create the shifted points.

Laying Out Points on a Grid By Count

A grid of points can be laid out with respect to the XY plane of the working coordinate frame. Using this command, you specify the range of the grid and the number of points desired along each axis, and SA determines the spacing for you automatically.

Figure 8-43. $10 \times 10 \times 1$ Grid layout of 100 points.

+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+

To Lay Out Points on a Grid by Count:

1. Activate the frame you'd like to use to define the grid orientation.
2. From the menu, select Construct>Points>Layout>Grid by Count.
3. The Make a Grid of Points dialog will appear (Figure 8-44). In the Min and Max fields, specify the limits along the coordinate directions for the three-dimensional grid. In the Count fields, specify the number of rows of points along each direction. You can also enter a destination collection, group, and target

Figure 8-44. Entering the X, Y, and Z range of the grid, and the number of rows of points along each axis direction.
prefix for the resulting points.
4. Click Create Points to construct the grid.

Make a Grid of Points					X
The grid will be created in the $X Y$ plane of the working frame.					
\times Axis					
Min: 0.0	Max	100.0	Count:	10	
YAxis					
Min: 0.0	Max	50.0	Count:	10	
ZAxis					
Min: 0.0	Max	10.0	Count:	1	
Destination					
Collection Name					
Group Name:	PointGrid		Point prefix:	P	
Create Points					

Laying Out Points on a Grid By Distance

A grid of points can be laid out with respect to the XY plane of the working frame. Using this command, you specify the range of the grid and the distance between points, and SA determines the number of points for you automatically.

To Lay Out Points on a Grid by Distance:

1. Activate the grid you'd like to use to define the grid orientation.
2. From the menu, select Construct>Points>Layout>Grid by Distance. The Make a Grid of Points dialog will be displayed (Figure 8-45).

3. Specify the range of the grid in all three component directions, as well as the desired spacing between points along each direction. You can also enter a destination collection,
group, and target prefix for the resulting points.
4. Click Create Points to construct the grid.

Laying Out Points On a Circle

It is often useful-particularly when laying out nominal bolt hole pat-terns-to lay out points on a circle. A circular point layout can be constructed in the XY plane of the working frame (Figure 8-46).

Figure 8-46. Laying out 16 evenly-spaced points on a circle.

Figure 8-47. The Layout Points on Circle dialog.

- Radius. The radius of the circle defining the points.
- Starting angle. The angle in the working frame's XY plane, from the X axis, at which to lay out the first point.
- Number of points on circle. The number of points to create on the circle.

There are two methods for laying out points on the circle:

- Evenly space points around entire circle. The points will be
constructed evenly around the entire circle.
- Space points by. You can specify the angle between points. If (based on the specified spacing and the number of points) more than 360° of the circle is specified, the points will continue to be laid out around the circle.

You can also control the naming of the resulting points using the Group and First Point fields, and whether a center point is created with the Create center point option.

To Construct a Layout of Points on a Circle:

1. From the menu, select Construct>Points>Layout>Circle.
2. The Layout Points on Circle dialog will appear (Figure 8-47).
3. Fill in the desired parameters, then click OK to create the points.

Generating Random Points

Occasionally, you may come across the need to generate random points. (This tends to be more common in training and testing than actual production environments).
When generating random points (Figure 8-48), you can specify the number of points and the range of the points along each of the three axis directions. The points will be randomly created inside this defined box.

Figure 8-48. 100 randomlygenerated points.

To Construct a Random Layout of Points:

1. From the menu, select Construct>Points $>$ Layout $>$ Random Points or use the default keyboard shortcut Ctrl+Alt+Z.
2. The Random Point Generator dialog will appear (Figure 8-49). Specify the number and range of point coordinates as well as the desired group name.

Figure 8-49. The Random
Point Generator dialog.

Random Point Generator				-
Group Name: Randomi				
Number of points		100		
\times Range	0.0		150.0	
YRange	0.0		100.0	
ZRange	-1.0		1.0	
			Cancel	

3. Click OK to create the points.

Laying Out Points On A Surface By Clicking

You can click anywhere on a surface to create a point on that surface (Figure 8-50).

Figure 8-50. Laying out points on a surface.

To Lay Out Points on a Surface:

Note: The first click on a surface will incur a small delay as the software performs some calculations. Remaining clicks on the surface will be much faster.

1. From the menu, select Construct>Points>Layout $>$ On Surface By Clicking.
2. Place the cursor anywhere on the surface and click to create a point at that location. If the cursor is not over a surface, a point will not be created.

Laying Out Points On An Object Vertex By Clicking

Points can be constructed on an object's vertices simply by clicking near the vertex (Figure 8-51).

Figure 8-51. Several points have been laid off on this cylinder's vertices.

To Lay Out Points on Object Vertices by Clicking:

1. From the menu, select Construct>Points>Layout>On Object Vertex by Clicking.

Tip: Increasing surface ren-- dering detail will create more vertices for a given surface.
2. At the prompt, enter a desired group and starting point name.
3. Click the object near the desired vertices.
4. Press Enter when finished.

Laying Out Points On An Object's Vertices

You can construct points on all vertices of one or more objects at once (Figure 8-52).

Figure 8-52. Points laid out on a cylinder's vertices.

To Lay Out Points on an Object's Vertices:

1. From the menu, select Construct>Points>Layout>On Object's Vertices.
2. Select the objects on which you'd like to create vertex points.
3. Enter a name for the destination group, then click OK.

Laying Out Points Evenly On Curves

You can construct any number of evenly-spaced points on one or more B-Spline curves (Figure 8-53).

Figure 8-53. 10 points spaced
evenly on a B-Spline.

To Lay Out Evenly-Spaced Points on a Curve:

1. From the menu, select Construct $>$ Points $>$ Layout $>$ On Curves $>$ n Spaced Points.
2. Select one or more B-splines.
3. Type a name for the destination group, then click OK.
4. At the prompt, enter the number of points to create on each curve, then click OK.

Laying Out Points On Curves With Prescribed Spacing

SA can construct points on one or more curves spaced by a prescribed distance (Figure 8-54). This is not a straight-line distance, but a distance along the curve (as if you'd laid a measuring tape of the prescribed length along the curve). When creating the points, SA places the first point exactly on the starting end of the curve.

Figure 8-54. Points on a B-spline spaced exactly 2" from each other along the curve.

To Create Points Spaced on a Curve by a Prescribed Distance:

1. From the menu, select Construct>Points $>$ Layout $>$ On Curves $>$ Spaced at Distance.
2. Select one or more B-splines.
3. Type a name for the destination group, then click OK.
4. Enter the specified distance between points, then click OK.

Laying Out Points On Curves by Clicking

This command allows you to click anywhere on one or more curves and create a point at that position on the curve (Figure 8-55).

Figure 8-55. Several points cre-
ated by clicking on a B-Spline.

To Create Points on a Curve by Clicking:

1. From the menu, select Construct>Points>Layout $>$ On Curves $>$ By Clicking.
2. Enter a destination group name for the constructed points, then click OK.
3. Type a starting point name, then click OK.
4. Select one or more curves to consider.
5. Click at the desired locations. SA will create the point on the closest point of the closest curve.

Laying Out Points On Lines

As with a curve, you can lay points out on a line by specifying the number of points (in which they're evenly spread along the line) or by specifying the spacing (Figure 8-56).

Figure 8-56. A line with 10
evenly-spaced points.

To Lay Out Points on a Line:

1. From the menu, select Construct>Points>Layout>On Lines.
2. Select one or more lines.
3. The Layout Points on Lines dialog will appear (Figure 8-57).

Figure 8-57. The Layout
Points on Lines dialog.

- n Spaced Points. SA will create the specified number of points spaced evenly along each of the selected lines.
- Spaced at Distance. SA will create points on each line starting from the tail of the line, using the prescribed spacing.
- Group. The name for the resulting point group.

4. Choose the desired options, then click 0K.

Laying Out Points At The Center of Surface Holes

It is often useful to create points at the center of holes on a surface. You can click on a single surface containing surface holes, and SA will create points at the center of the holes based on prescribed minimum and maximum diameter thresholds (Figure 8-58).

If a surface is dissected and you therefore select just a single surface face with holes, the points will be created along that face. If a surface is merged and you select a closed shell, points will be created on each end of the hole (if it is a thru hole).

Figure 8-58. These points have been constructed at the center of surface holes.

SA considers any surface opening that has a circular arc for an edge as a surface hole.

To Construct Points at the Center of Surface Holes:

1. From the menu, select Construct>Points>Layout>At Center of Surface Holes.
2. Select one or more surfaces with holes.
3. The Points from Surface Holes dialog will appear (Figure 8-59).

- Output Group. The name for the destination group.
- Min Dia. The minimum diameter hole for point construction. Holes smaller than this diameter will not have center points constructed.
- Max Dia. The maximum diameter hole for point construction. Holes larger than this diameter will not have center points constructed.
- Check Tolerance. This describes the accuracy of the diameter check. Smaller values may take incrementally longer, but will more accurately check the diameter of the hole. Typically, you need not adjust this value unless you encounter unexpected behavior.

4. Select the desired options, then click OK.

Laying Out Points In The View By Clicking

Primarily intended for training and testing purposes, SA enables you to construct points by clicking anywhere in the graphical view. These points will be created on a plane perpendicular to the viewing direction (Figure 8-60).

Figure 8-60. Random points laid
out in the view.

To Construct Points in the Graphical View by Randomly Clicking:

1. From the menu, select Construct>Points>Layout>In View By Clicking.
2. Enter a name for the destination point group.
3. Specify a name for the starting point (subsequent point names will be incremented.
4. Click anywhere in the graphical view to create each point. Press Enter when finished.

Copying Existing Points

Note: Any copied measurements become constructed
points.

Any set or subset of existing points can be easily copied. The copies are placed into a new point group.

To Copy Points from Existing Points:

1. From the menu, select Construct $>$ Points $>$ From Existing Points $>$ Copy.
2. Select the points that you want to copy.
3. When prompted, type a destination group name, then click OK.

Moving Existing Points Into A New Group

Note: This command does not physically move points, as the name might imply.

You can quickly and easily relocate a set of points into a new group (Figure 8-61). The points may start in the same group or separate groups, but they will always end up in the same group. The points are relocated (not copied), which means that measurements remain as measured points after the command is executed. After the command,
the point names will carry a prefix indicating their source group.

Figure 8-61. Relocating points into a new group.

Points-3
,

To Move Existing Points to a New Point Group:

1. From the menu, select Construct>Points>From Existing Points>Move.
2. Select the points you want to move.
3. At the prompt, enter a name for the destination group, then click OK.

Creating a Subset of Points With Greatest Spacing

It is not uncommon to be confronted with point data that is more dense than is necessary for a certain operation (Figure 8-62).

SA can sample an existing point group and create a new group of points at a lower spatial density than the source group (Figure 8-63). You can specify the desired number of points, and SA will choose a subset of points spread out to match that number.
The original points are untouched. Any subsampled points are a copy of the originals.

Figure 8-63. A subset of the
original point group.

To Create a Subset of Points with Greatest Spacing:

1. From the menu, select Construct>Points>From Existing Points>Subset with Greatest Spacing.
2. Specify the number of points to create.
3. Enter a name for the destination point group.

Auto-Corresponding Two Groups By Proximity

Given a group of reference points and a group of roughly-aligned corresponding points, this command will copy the corresponding group and automatically rename the copied points to match the names of the reference points.

To Auto-Correspond Two Groups by Proximity:

1. From the menu, select Construct>Points>Auto-Correspond 2 Groups>Proximity.
2. When prompted, select the reference group of known point names.
3. Select the group to copy and rename. The Autocorrespond Points dialog will appear (Figure 8-64):

Autocorrespond Points
This function will auto-correspond the two point groups that were selected. Then it will create a new group with copies of the "matched" points from the second group. Auto-correspond "same-point" tolerance Group to contain matched points OK Station1 Auto-Cor. OKancel

- Auto-correspond "same point" tolerance. Each point must be within this proximity to a reference point, or it will not be renamed.
- Group to contain matched points. The name for the copied group with the corrected point names.

4. SA will propose new names for your review. Click Accept to create a copy of the source point group and assign the appropriate point names.

Auto-Corresponding 2 Groups by Inter-Point Distance

Given a set of reference points and a group of source points, this command copies the source group and renames the points based on the reference point names. This command does not require the source and reference groups to be roughly aligned.

To Auto-Correspond Two Groups by Inter-Point Distance:

1. From the menu, select Construct>Points>Auto-Correspond 2 Groups>Inter-Point Distance.
2. Select the reference group.
3. Select the group to be copied. The Autocorrespond Points dialog will appear (Figure 8-64).

- Auto-correspond "same point" tolerance. Once "aligned", each point must be within this proximity to its reference point to be considered a match.
- Group to contain matched points. The name for the copied group with the corrected point names.

4. SA will propose new names for your review. Click Accept to create a copy of the source point group and assign the appropriate point names.

Averaging Points

You can create a single averaged point from a set of points.

Figure 8-65. The average of 5

+ ${ }^{+}$
selected points.

To Average a Set of Points:

1. From the menu, select Construct>Points>Fit to Points.
2. Select the points to average, then press Enter.
3. The Construct New Point dialog appears (Figure 8-22).
4. Specify the name for the resulting point-leave the calculated coordinates alone-then click OK.

Creating Points at the End of a Line

You can construct a point at either or both ends of a line by clicking near the desired end of the line.

To Construct a Point at the End of a Line:

1. From the menu, select Construct>Points>End of a Line.
2. The Point Name dialog will appear (Figure 8-66).

Figure 8-66. The Point Name dialog.

Point Name	
Name for first point at end of line:	
Collection (blank = default):	
Group:	Line Ends1
Point:	Pt 1
OK	

3. Specify the name for the first created point, then click 0K.
4. Click near the end of a line to create the point. When finished creating points, press Enter.

Constructing a Hidden Point

Note: This command assumes you've already defined your hidden point bar in SA. For details, see "Measurement".

If you have measurements on a hidden point bar, you can construct the hidden point. An A and B point are used to define the vector of the hidden point bar, and the hidden point is constructed along this vector based on the prescribed distance from the A point to the hidden point.

To Construct a Hidden Point:

1. From the menu, select Construct>Points $>$ Hidden Point Bar.
2. When prompted, select the A point.
3. Select the \mathbf{B} point.
4. The Pick Hidden Point Bar dialog will appear. Select the appropriate hidden point bar, then click OK.
5. The Construct New Point dialog will appear (Figure 8-22). Specify the point name, leaving the coordinates alone-then click OK.

Creating Points at a Plane Cross Section:

This command utilizes the database order of a given set of points to create a new set of points at a cross section of a plane.

To Construct Points at a Plane Cross Section:

1. From the menu, select Construct>Points>Plane Section Crossing.
2. When prompted, select the Group of Points.
3. Select the Section Plane.

Constructing Points Evenly Spaced on a Surface:

Given a surface, this command allows you to lay out a grid of evenly spaced points along both the U and V directions (Figure 8-67).

Figure 8-67. Points laid out in ten
divisons along U and V.

To Construct a Grid of Points Evenly Spaced on a Surface:

1. From the menu, select Construct>Points>Mesh Surfaces in UV.
2. When prompted, select the appropriate surface(s), then press Enter.
3. The Make Points From Surface dialog will appear (Figure 8-68).

4. Specify a prefix for the resulting point group.
5. If you would like each row to be in a separate group, check the Make each line a separate group option.
6. Specify the number of divisions along the U and V directions, then click OK.

Constructing Points From Vectors

This command will create a point at the origin of each selected vector (Figure 8-69).

Figure 8-69. A point is constructed at the origin of each vector.

To Construct Points from Vectors:

1. From the menu, select Construct>Points>From Vectors.
2. When prompted, select the appropriate vector(s), then press Enter.
3. The Input dialog will appear (Figure 8-70).

Figure 8-70. The Input dialog.

4. Specify a name for the point group containing the resulting points, then click OK.

Constructing a Single Point through Patch Normal Shift

This command allows you to project a single point to a defined set of patch points. A theoretical plane is created from the patch points and the end result is a constructed point at a specified offset along its probing direction (Figure 8-71).

Figure 8-71. A point constructed from a selected point and shifted $0.75^{\prime \prime}$ along the probing direction of the theoretical patch point plane.

To Construct a Point by Shifting along Normal:

1. From the menu, select Construct>Points $>$ Patch Normal Shift>Single Point or press Ctrl + M.
2. When prompted, select the point, then select the patch points you wish to use. Press Enter.
3. The Add Shifted Point dialog will appear (Figure 8-72).

$\stackrel{+}{*}$

Scale Points

Figure 8-72. The Add Shifted
Point dialog.
4. Specify the point group and point name of the resulting point, as well as the target and additional offsets (if applicable).
5. Click OK.

This command build a copy of the selected points scaled relative to the working frame.

Copy Groups Excluding Obscured Points

This command builds a new point group from the selected group including only points directly visible from the instruments base frame. It excludes points on the far side of surfaces.

Auto Filter to Faces

Figure 8-73. Auto Filter to Surface Faces Dialog.

Creates a new set of points, groups, or clouds based on the proximity of points to a selection of surfaces.

A selection of useful controls are available which include:

- Surface Offset. The necessary proximity to the surface
- Edge Offset. The required distance from a surface edge, which allows removal of points too close to an edge.
- Surface Offset Direction. Which can be set to both above and below the surface or in only a single direction.
- Output Limits. This control ensures that no more than the specified number of points are included per face.
- Output Grouping. This selection determines if a single point cloud is built or if a cloud per surface face is returned.
- Cloud Thinning Options. A list of cloud thinning controls are also available including randomized thinning, Nth point thinning, and $\mathrm{min} / \mathrm{max}$ limits.
When combined with the user of cloud based geometry relationships this command makes it very easy to extract features from a cloud using the available CAD to filter the cloud. For more information on geometry relationships refer to "Properties \& Controls - Geometry Relationships" on page 662.
A variation on this same command can be found under GD\&T>Feature

Inspection Auto Filter. This command displays the same dialog and selection of controls but does the following:

1. Detects which surface faces have both annotations attached and valid features checks built.
2. It filters the data using the specified criteria to those faces
3. Associates the newly built points with the corresponding feature checks.

Additional True Position Point Detection.

The GD\&T Feature Inspection Auto Filter works great for most applications except for True Position Checks using alternate cylinder evaluation modes. Additional Hole Measurement Modes may include:

- Measure a single point in the hole (axis)
- Measure 2 points on the axis
- Place a dowel pin in the hole and measure it, indirectly measuring the hole (either as a circle or a scan)
- Measure the hole scanning with a pin nest

This check box was added specifically to fill this need. This check box option (Figure 8-74) converts the operation from a surface filter to a comparison to cylinders defined by those surfaces.

Figure 8-74. True Position Point Detection

Point is therefore compared to both the axis of the cylinder defining the pin or hole and the surface of that cylinder such that it is no longer bounded by the ends of the hole but can extend upward along
its axis.

From Surface Faces

This command currently builds a single point at the proximal extent of the cylinder it defines. Much like Construct>Cirles>From Surface Faces.

Closet points between 2 Surfaces

This command compares the provided surfaces and builds 2 points on the surfaces at the closest point locations on those surfaces, displaying the minimum distance between them.

Clouds

Point Clouds are a collection of compressed point locations in a format that is optimized for working with large amounts of data. This chapter addressed the fundamental principles necessary for effectively working with Point Cloud data with in SA and the differences between cloud points and regular points.

Point Clouds

Point Clouds are unique from Points and Point Groups because they are optimized for data storage and minimum memory usage. All cloud points are treated as a rigid body so point offsets and meta data are only recorded on the cloud level not with the individual points. Point Clouds are therefore ideal for large amounts of data, such as data measured with a laser room scanner or arm scanner, but can also be used to reduce the size of scanned measurements from a laser tracker with offsets.

Point Cloud Formats

Standard Clouds © ©Point Clouds
The standard point cloud format is the simplest and most generic format of point clouds. Each cloud point consists of nothing more than and XYZ position and an index. The cloud contains targeting offsets (applied to all included cloud points) and visual controls.
Scan Stripe Clouds \triangle Sscan Stripe Clouds
Scan Stripe Clouds were added to provide a missing piece of information necessary for meshing. In this format a transform representing the instrument probing direction is saved per scan stripe. Scan Stripe

Clouds therefore contain slightly more information but are otherwise the same as Standard Clouds. For this reason Scan Stripe Clouds can be converted to Standard Clouds but Standard Clouds cannot be converted to Scan Stripe Clouds.

Point Cloud Visualization

One of the more challenging aspects of working with point cloud data is finding the best way to visualize it. A cloud is often compose of millions of cloud points and rendering all of them graphically at once can cause performance problems. For this reason SA has added a number of visualization options.

Cloud Display Control

The number of cloud points displayed graphically can be controlled using the Cloud Display Control (View>Cloud Display Control Ctr+T). This utility provides the ability to adjust a global thinning factor which reduces the overall number of cloud points displayed as well as a cloud point size control.

As a Point Cloud is rotated or translated in the graphic view, the display resolution of the cloud will reduce automatically and will be restored once the movement is stopped. Control over the extent of this additional thinning is also provided as part of the Cloud Display Control (Figure 9-1).

- Thin. The visual thinning factor applied. If set to the 8 , for example, only 1 point in 8 will be displayed.
- Size. The number of pixels used to display a point cloud point.
- Rotational Thinning. This section controls the additional thinning during graphical moves and rotations. Either or both of these rotation limits can be applied:
- Percent. If set, Rotational Thinning is controlled by a percentage value from 0-100 where 100 is no additional thinning.
- Limit. If set, Rotational Thinning is controlled by an upper limit of the number of cloud points displayed. In other words no more than the Limit number of points will be displayed graphically.

Dynamic Cloud Thinning
Starting in the 2016.08 version a strategy for dynamic cloud thinning was introduced. When a live instrument is connected to in the job the total number of cloud points visible at one time is limited to 200,000 points. This prevents potential loss of data due to slow downs resulting for graphic display issues. Cloud thinning can be regulated below this threshold but can not be increased beyond the threshold until the instrument is disconnected.

Auxiliary Cloud Thinning Factor
In addition to the global cloud thinning controls each individual cloud can have its own thinning factor set independently through its properties. This control decreases the total number of points displayed at any time. This allows clouds of very different densities to be equalized for display purposes.

Figure 9-2. Cloud Properties Dialog

Clipping Planes

Clipping planes can be extremely useful in removing unwanted data from a scan. For example, in many cases a part is set upon a flat surface and then scanned and the splash measurements of the flat surface are included with the measurements of the part. Clipping planes provide a way to easily removed measurements of the flat surface leaving only the measurements of interest.

Clipping planes can be set globally but are defined through a point cloud's properties and must be edited there as well. These clipping planes can be edited at ay time to be used in 2 ways:

- Defined in advance. If a clipping plane is defined for a cloud prior to scanning the data obscured by the clipping plane will be deleted automatically.
- Defined after scanning. If a clipping plane is defined after the scan has been conducted then the hidden data is only hidden and not removed until the Delete Hidden Points command is used.

To define a clipping plane do the following:

1. Open the clouds properties dialog
2. Press the Configure Clipping Planes button
3. Press Add and select an object.

Each object in the Clipping Entities dialog (Figure 9-3) defines the base frame for a particular clipping volume. By default the XY plane of this object's base frame defines the clipping plane used. Therefore if you choose a plane directly it will be used as expected. However, you can choose any object as the reference object to define this plane.

Figure 9-3. Clipping Plane

Each Clipping Entity defines a coordinate system which defines not only a clipping plane but a full clipping cube or volume. Any of the 6 different clipping planes or sides of a cubic volume can be enabled and used as clipping plane to fully enclose a specific region of data. Therefore, up to 6 clipping planes per object can be used and as many objects as you want can be added all of which can refine the clipped volume. With multiple clipping entities defined just about any specific volume can be partitioned to either eliminate or isolate cloud points from the cloud (Figure 9-4).

Figure 9-4. Clipping Entities and controls

Figure 9-5. Edit Clipping
Volume Controls

The clipping volume box can be directly controlled graphically. By placing the mouse over an edge or corner the an arrow will appear graphically allowing you to drag that bounder to either increase or decrease its length. Particular clipping faces of this box can be turned on or off by hovering over them until the side illuminates and then clicking. For more explicit control these controls can be accessed through the edit button (Figure 9-5).

To define a clipping plane for multiple clouds

1. Go to View> View Control> Clipping Planes (Alt +x)
2. Define a global visual clipping plane as desired
3. Press the Set as Cloud Default button

Clipping planes are cloud specific and set through the properties of each cloud independently. However, by setting up a clipping plane through the view control and applying it as a Cloud Default you are setting up each new cloud that is built to inherit this clipping plane
definition when it is build. This allows you to easily set a single plane as the default clipping plane for a job and then measure as many clouds as you would like. Each newly built cloud will then have this defined clipping plane. In order to then turn off this feature just go back to the global control again and reset the cloud default for the job.

Meshing Formats

Polygonized Surfaces \triangle 曲 Polygonized Sufaces
Polygonized Surfaces are approximated surfaces built from triangles (or polygons). These surfaces can be either imported or built directly from cloud data. They can be used for a wide range of purpose including simplified reference surfaces that can be used as a proxy for a surface's true curvature. The vertice points used to define the triangles provide the only accurate position information which the connecting lines are used for visualization purposes.
Scan Stripe Mesh $\boldsymbol{\Delta}$ \$ Scan Stripe Mesh
Scan Stripe Meshes are only built directly from a specific Scan Stripe Cloud, much like auto-vectors built from a relationship. The probing transforms embedded within Scan Stripe Cloud provides the direction vectors necessary to make real-time meshing possible. It also provides the ability to build finely detailed meshes from cloud data.

- Course Mesh. Build as you scan or as a preview.
- Fine Mesh. Provides a detailed surface approximation for the scan data.

Graphical Entities Graphical Entities

When a Colorized Graphical Mesh is generated from the proximity of points or point clouds to a surface the resulting feature in the tree is a Graphical Entity. This is use for visual representation only.

Scan Stripe Mesh Operations

Scan Strip Meshes
Scan Stripe Meshes display a graphical rendering of cloud data in either of two formats:

- Real-Time Course Mesh. Which is built as you scan or is generated directly from a cloud and is a course and minimally processed mesh for visualization
- Fine Mesh. This mesh must be built from course mesh and uses the specified meshing parameters defined in the mesh
properties to built a finalized or detailed mesh.

Real-Time Scanning Course Mesh

A course mesh can be enabled during scanning. This can be quite useful as an easy to see coverage indicator. In order to enable the RealTime Course Mesh go to the Scan Stripe Cloud properties menu and enable the option to Automatically Generate Course Mesh During Data Collection (Figure 9-6). This option is off by default but can be enabled and this status set as default. Doing so will cause all subsequent clouds built within that job file to also build course meshes as you scan. If this is done prior to scanning this will build a placeholder Scan Stripe Mesh in the tree which will update as you scan. At any time you can also right-click on a scan stripe cloud and generate a course mesh for visualization purposes. This course mesh can also be built through the menu command Construct>Polygonized Surface> From Point Clouds.

Figure 9-6. Coarse Mesh Controls within the cloud Properties

Fine Mesh Generation
A finalized mesh must be built from a course mesh. This can be done from the right-click menu of the Mesh by choosing Generate / Regenerate Mesh.

Figure 9-7. Fine Mesh Generation

Scan Stripe Mesh Parameters

There are many mesh parameters available through the Scan Strip Mesh properties which control how a mesh is built. These parameters control both Course and fine Meshing (Figure 9-8).

Figure 9-8. Mesh Parameter
Controls

Course Mesh Controls include:

- Points Per Line. The number of Points used from each scan line in scan line by the meshing engine.
- Course Mesh Tolerance. The Tolerance set for point exclusion.
- Maximum Triangle Edge Length. The maximum size allowed for triangles within the mesh. Triangles greater than this size will be removed.

Fine Mesh Controls Include:
Scan Pass Processing

- Critical Tilt Angle. Allowable tilt threshold. This excludes points recorded at a sharp angle to the instrument.
- Critical Span Angle. Allowable span angle.

Filter Triangles

- Maximum Triangle Edge Length. The maximum size allowed for triangles within the mesh. Triangles greater than this size
will be removed.
Stitch Overlap
- Mesh Overlap Threshold. Required overlap necessary for scans to be stitched together as a single layer.

Reduce Deviation

- First Pass Deviation Tolerance. Tolerance set for the first pass processing of the mesh.
- Second Pass Deviation Tolerance. Tolerance set for the second pass processing of the mesh.

Re-mesh Refine Deviation

- Deviation Tolerance. Final tolerance set for the mesh.
- Minimum Triangle size. Removes triangles smaller than the specified threshold
- Maximum Number of Triangles. Total number of triangles allowed.
- Options Mask. Set of optional check boxes for greater smoothing options.
- Reorganization Mask. Set of options for optimized triangle layout.
- Cloud Point Exclusion Threshold. Final exclusion threshold.
- Bad Incident Angle Threshold. Allowable incident angle.

Saving and Applying Mesh Parameters

Scan Stripe Mesh parameters can be saved using the Manage Default Settings option. Currently only a single set of saved settings can be recorded at one time in addition to the system default settings and these settings are saved only within the current job file. To save settings for use in other jobs you can set up a template file with the saved settings.

Point Cloud Construction Options

From Existing Clouds

Creates a new point cloud using a copy of the cloud points contained within the selected clouds.

From Existing Clouds Uniform Spacing

This command builds a new cloud from the selected clouds with a reduced number of cloud points. It returns an approximately uniform distribution of cloud points keeping only the closest cloud points at the desired point distance specified.

From Existing Cloud Points

Creates a new point cloud copying the selected set of individual cloud points.

Random Data

Builds a randomly generated point cloud using the desired number of points within the specified X, Y, Z limits.

From Existing Point Group

Converts a point group into a point cloud.

Auto Filter to Faces

Creates a new point cloud based on the proximity of points to a selection of surfaces. This command can also be accessed through Construct>Points>Auto Filter to Faces and GD\&T>Feature Inspection Auto Filter. For more information refer to "Auto Filter to Faces" on page 226.

Create Empty Scan Stripe Cloud

Building an empty scan stripe cloud allows an operator to configure the cloud prior to measuring. For example a clipping plane can be set up in advance as well as the meshing options defined as needed prior to the scan.

Building Points from Point Clouds

Note: Creating more than about 20,000 constructed points will result in increasingly sluggish interaction with the software. When dealing with very large datasets, use cloud points.

You can convert cloud points gathered from a scan into normal constructed points as needed. These newly-constructed points will retain the offsets saved with the cloud and will appear as constructed points. This can be helpful for a number of other functions that require regular points as inputs.

To Convert Cloud Points Into Constructed Points:

Note: If the cloud is being thinned, only the thinned subset will be selected.

Figure 9-11. The Make
Points from Clouds dialog.

1. From the menu, select Construct>Points>From Cloud Points>Pick Cloud Points.
2. Select the points to convert.
3. The Make Points from Clouds dialog will appear (Figure 9-11).

4. Specify the group name, an optional target prefix and starting number, and an offset for the resulting points. If desired, select the Get a point every xxx option to subsample the cloud.
5. Click OK. If subsampling, confirm the dialog.

Converting Clouds to Points

Similar to converting cloud points to points, you can convert an entire cloud to points. The procedure is almost identical to creating points
from cloud points.

To Create Points from Clouds:

1. From the menu, select Construct>Points>From Cloud Points>Pick Clouds.
2. Select the points to convert.
3. The Make Points from Clouds dialog will appear (Figure 9-11).
4. Specify the group name, an optional target prefix and starting number, and an offset for the resulting points. If desired, select the Get a point every xxx option to subsample the cloud.
5. Click OK. If subsampling, confirm the dialog.

Filtering Clouds to Points

Given a set of clouds and a set of points, SA can filter the clouds to the points. You provide a desired proximity and maximum number of points, and choose the existing points to serve as filter points. SA will create a new point group containing a subsampled set of up to the prescribed number of points (within the proximity) for each filter point (Figure 9-11).

This command is useful, for instance, when you have a set of nominal points on a design surface that indicates where you'd like to measure, and you have a surface scan of the part. The command will filter the clouds to those points.

To Filter Clouds to Reference Points:

1. From the menu, select Construct>Points>From Cloud Points>Filter Clouds to Points.
2. Select the points to use as filter points.

Figure 9-12. Filtering a cloud to a set of reference points. Here, up to 5 points were created for each reference point.

Note: You may wish to average the resulting points after this operation.

3. Pick one or more clouds to filter.
4. At the prompt, specify the resulting group name.
5. Enter a filter proximity-the maximum distance that a resulting cloud point can be from a filter point. Entering 0 will create a point only at the closest cloud point.
6. Specify the maximum number of points to create for each filter point. Entering 0 will pick all points within the prescribed proximity.

Filtering Clouds to a Plane

You can filter one or more clouds to a plane. After specifying a proximity to the plane, SA will create a point group or cloud containing all cloud points within the prescribed proximity to the plane (Figure 9-13).

This is particularly useful for creating clean cross-sections from surface scan data.

To Filter Clouds to a Plane:

1. From the menu, select Construct $>$ Points $>$ From Cloud Points $>$ Filter Clouds to Plane.
2. Select the desired filter plane.
3. Select one or more clouds to filter.

Figure 9-13. Filtering a cloud
to a plane.

4. At the prompt, enter the desired destination group name (or cloud name, if you choose to create a cloud).
5. Specify a filter proximity, which indicates how close a cloud point must be to the plane to be used. If you enter 0 , all source cloud points will be used.
6. The Filter Clouds to Plane dialog will appear (Figure 9-14):

- Offset Direction. Determines the location of the proximity region. Both accepts points up to the prescribed filter proximity on both sides of the plane. Positive only only accepts points on the positive side of the plane, and Negative only only accepts points on the negative side of the plane.
- Output Type. Determines the format of the resulting pointsshould they be Points or Cloud Points?

7. Select the desired options, then click OK.

Filtering Clouds to Vectors by Resolving Points

Given a set of clouds and a set of vectors, SA can filter the clouds to the vectors. You provide a desired threshold around each vector, a proximity to the vector's base, and the minimum number of required points, and SA will-for each vector-extract the points that meet the specified thresholds and average them into a single point (Figure 9-15).

This command is useful, for instance, when you have a set of nominal vectors on a design surface that indicates where you'd like to measure, and you have a surface scan of the part. The command will filter the clouds to those vectors.

To Filter Clouds to Vectors:

1. From the menu, select Construct>Points>From Cloud Points>Filter Clouds to Vectors-Resolve Points.
2. Pick the clouds you'd like to filter.
3. Select the vector groups you'd like to filter to.
4. The Filter Clouds to Vectors dialog will be displayed (Figure 9-16):

- Output Group Name. The name for the resulting point group.
- Minimum Proximity. The minimum allowable distance from a point to the vector to be considered.
- Maximum Proximity. The maximum allowable distance from a point to the vector to be considered.
- Max Distance from Vector Begin. The maximum distance that a cloud point can be from the base of the vector to be
considered.
- Minimum Number of Required Points. The minimum number of points required for an averaged point to be created. If this minimum is not met, no averaged point is created.

5. Enter the desired options, then click 0K.

Extracting Center Points From Scanned Spheres

Given a raster scanned point cloud, SA can extract the centers of registration spheres from the scan data. You provide the command with the expected sphere diameter, acceptable RMS tolerance, and minimum number of points required, and the command will detect spherical data matching the proposed diameter from the scan data, fit spheres to them, and create their center points (Figure 9-17).

Figure 9-17. Registration sphere centers have been automatically extracted from this scan.

To Auto-Detect Sphere Centers from Raster Scan Data:

1. From the menu, select Construct>Points>From Cloud Points>AutoDetect Sphere Centers.
2. The Sphere Extraction Settings dialog appears (Figure 9-18):

Figure 9-18. Specifying sphere extraction parameters.

Figure 9-19. Sphere Autodetection results.

Sphere Extraction Settings	
Search Parameters	
Desired Diameter	
Tolerance	2.375
Minimum Point Count	50
Group to Contain Sphere Centers	
Sphere Centers1	
Spheres	
∇ Create Spheres in addition to points	
OK Cancel	

- Desired Diameter. The nominal diameter of the registration spheres.
- Tolerance. The maximum allowable deviation for a given point from the desired diameter in order to be considered.
- Minimum Point Count. The minimum number of points required to satisfy the tolerance to consider a sphere to be "found".
- Group to Contain Sphere Centers. The name for the resulting group to contain the sphere centers.
- Create Spheres in addition to points. When enabled, SA will create the spheres (at the desired diameter) in addition to the center points.

3. Select the desired options, then click OK.
4. After calculation, SA will display the Sphere Auto-Detection Results dialog (Figure 9-19). This contains the RMS error, maximum error, and point count for each detected sphere.

Sphere Auto-Detection Results				
Name	RMS	Max	Point Count	
Sphere 0	0.005	0.010	197	
Sphere 1	0.005	0.010	329	
Sphere 2	0.005	0.011	250	
Sphere 3	0.004	0.010	194	
Sphere 4	0.005	0.010	381	
Sphere 5	0.004	0.008	89	
Sphere 6	0.005	0.009	155	

5. Click OK to accept the results, or Cancel to cancel.

This Page Intentionally Left Blank.

Objects

Anything that has both a position and orientation in space-with the exception of instruments-is considered an object in SA. In this chapter, we'll discuss how to work with objects, and what you can do with them.

Point Groups

Figure 10-1. Point groups as they appear in the tree.

When points are created (constructed or measured), they are placed into point groups, often referred to just as groups. Point groups act as "containers" to hold points, and are best used to organize measured data in a logical manner.

Point groups are listed under the Point Groups category in the treebar (see Figure 10-1). Each individual point group can be expanded to reveal the contained points by clicking the disclosure triangle next to the point group name. Click the triangle again to collapse the list of points.

Figure 10-2. A point group has been copied and translated in the positive Z direction.

Frames

Figure 10-3. This collection has two coordinate frames, World and Local. The Local frame is active (working).

A point group is an object, whereas an individual point is not. As such, the point group can be moved, scaled, rotated, mirrored, etc. When a point group is manipulated in this manner, all of the points inside the group are treated as a rigid body. For example, if a point group is scaled by a factor of 2 , the space between the points inside the group will be doubled. In Figure 10-2, a point group has been copied, then translated up in the Z direction by 10 units.

If a point group contains targets, and the point group is moved, then the targets will temporarily convert to constructed points. You can revert these constructed points back to targets (and their original locations relative to the instrument) by using the Analysis>Re-Compute Targets From Shots command.

Points will also inherit some of the properties of their containing group. For example, an object color can be assigned to the point group, and all points will inherit the color of their containing group. If a point group is hidden, then all of the points inside the group are hidden as well.
one can be designated as the working frame. When a coordinate frame is designated as the working frame, it will be drawn in a bold blue font in the tree (see Figure 10-3 on page 250), and the Color/WCF Toolbar will display the name of the frame (right).

Figure 10-4. The Color/WCF
Toolbar.

All coordinates, query results, and other values are always displayed relative to the active coordinate frame (Figure 10-4), unless explicitly specified otherwise. For example, when you view the coordinates of a point, you are seeing the coordinates relative to the active coordinate frame.

To Activate a Coordinate Frame:
Do one of the following:

- Right-click a frame in the graphical view or SA tree and select Make Working Frame.
- Click the WCF button on the Color/WCF toolbar and choose a new working frame from the Object Selection dialog.
- Right-click a frame in the tree and select Properties. Then click the Make Working button.
- From the menus, choose Edit>Pick Working Frame and select the frame to activate.
- Press Alt+W (default hotkey) and choose the desired frame from the Object Selection dialog.

Frame Properties

Frames, like virtually all entities in SA, have properties associated with them.

To View a Coordinate Frame's Properties:

Do one of the following:

- Right-click the frame in the SA tree or graphical view and choose Properties.
- Double-click a frame in the SA tree.
- Click the Object Properties icon in the Main Toolbar, then dou-ble-click a frame in the graphical view.

- Collection. Indicates the collection in which the frame resides.
- Name. The name for the coordinate frame.
- Notes. The notes field allows you to add text-based notes to a coordinate frame, which you can reference at a later time.
- Frame Axes. By clicking on the X, Y, or Z buttons, you can view the projected angle of the selected coordinate axis, presented relative to the working coordinate frame (Figure 10-6).

- Custom Size. Enable this option to assign a custom size to the

Note: The assigned color of the frame is only shown when it is not the working frame.
coordinate frame, and enter the size in the resulting text field.

- Make Working. Sets the coordinate frame active so that it becomes the working coordinate frame.
- Transform. Opens the transformation dialog to adjust the position and orientation of the frame.
- Color. Opens the color dialog so that you can assign a new color to the coordinate frame.
- Update. Updates SA with any changes in the object properties without actually closing the Frame dialog. Note that closing the dialog also applies changes to SA.
- Menu. Exposes object-specific menu options. This is equivalent to right-clicking the object in the tree.
- Close. Closes the properties dialog.

Frame Construction

SpatialAnalyzer offers many methods for constructing Frames. To fully understand frame construction it is important to understand the components needed to construct a frame. A frame has four basic components: an origin point, primary axis, secondary axis and tertiary axis. A frame can usually be constructed by defining an origin point and two of the axes.

During frame construction many commands will prompt the user to define the primary, secondary and tertiary axis. An axis can be described by a point or a vector (object direction). When using a point to describe an axis, a vector is formed from the origin point and the selected point. If an object is selected its normal will be used to define the axis. The following examples show several combinations of points and vectors.

Enter
Creates a frame at the origin and orientation of the active frame. The transform dialog will appear allowing the user to enter the position and orientation values.

Plane, Line, Point (3-2-1)
A 3-2-1 frame consists of a locator point for the origin, line/vector for one axis and plane for the second axis (see Figure 10-7 on page 254). The Plane, Line, Point Transformation dialog allows control over the axis for the plane and line/vector. The user may also specify an alternate coordinate for the locator point.
Plane, Line, Point Transformation
B
Plane
Use the Plane normal vector to define:

OXAxis YAxis OAxis Z Value (Double-Click)	\square Reverse	
Point	0.000000	
A:Random:r0	0.000000	
A:Random:r2	0.000000	
A::Random:r1		

Line
Use Line to Define

Locator Point
$\times 0.0$ Y 0.0

Done
Show Results
Cancel

Figure 10-7. The Plane, Line, Point Transformation dialog.

Plane, Line, Line (Sheet Metal Corner)
Uses a plane and two lines to define a frame. A user can select the axis for each object selected.

Using Points and Vectors
Example using only three points. Construct>Frame>3 points>Origin, Xaxis>Point on XY plane

3 Points
Uses three point to describe the origin, primary axis and secondary axis.

Z-Axis
Constructs a frame with the Z-axis normal to a plane, circle or a line and uses the selected points for origin and X -axis.

On Instrument
This will construct a frame on the instrument base with the Z-axis being the standing axis. A frame can also be made on the "scope or end effector". This will generate a frame using the probing direction as the vector for the Z-axis.

Using Working Frame Orientation

Uses the current active frame orientation to define a new frame. A copy can be made by defining a new origin point or maintain the Zaxis and clock the remaining axis.

Uses three planes to create a coordinate system. User selects X, Y and Z planes. The user interface allows control over priority and direction.

Mirror Cube

Figure 10-9. The Mirror Cube Coordinate Frame dialog.

Often, users wish to construct a coordinate frame based on the faces of a mirror cube (see Figure 10-9). The Mirror Cube frame assignment method provides a convenient method for repeatedly and accurately locating a coordinate frame with two instruments (typically theodolites). SpatialAnalyzer contains a powerful mirror cube frame assignment tool.

To accomplish a mirror cube frame assignment, point two theodolites at the mirror cube and collimate the instruments with the mirror faces. Record a shot from each theodolite at the cube using the same target name, just as if you were shooting the mirror as a target. If you desire reversed shots, reverse the scope and take another shot, or take multiple shots in each face. In SpatialAnalyzer, select Construct, Frame, and Mirror Cube. You will be prompted to select the target for the mirror. Pick the common target name you used for the measure-
ments. The mirror cube frame assignment dialog will appear. At this point, you may press the Create Frame button to make the coordinate frame, or you may change the options.

Possible Options:

- You may select which instrument represents the X-axis of the coordinate frame.
- You may select or deselect specific shots from each instrument. When there are multiple shots, their vector directions are averaged to calculate the vector displayed below the measurement box.
- The check box for coordinate axes determines whether the axes of the frame are outward along the theodolite vectors or inward toward the theodolites.
- The Axis weighting box allows you to control the distribution of the errors between the two axes.
- Set the Cube face angle (normally 90 degrees). Press Compute after doing this to update!
- The difference between the cube"ideal" angle and the theodolite vector angle will be displayed.
- Use the slider bar to control how far the frame axes are away from the theodolite axes. Sliding the bar to the left places more of the error on the "right-side" instrument.
- Choose carefully when distributing the error. In some cases, it may be better to have no error on one axis since it is difficult to tell if the "error" is coming from the theodolite measurements or the mirror cube itself.

On Object

Constructs a frame with the Z-axis normal to the selected object.
Fit to Coordinate Components
In this method of frame assignment, we assume that we have several points which share a known X coordinate, several points which share a Y coordinate, and several points which share a known Z coordinate. This is often used in a factory setting where a designer has established a reference block with one face representing a certain XY, one plane representing a certain XZ plane, and one face representing a certain $Y Z$ plane. Initially the user will be prompted for the points of known X value, then Y and Z in turn. After selection of the points is completed, the user will see the dialog shown below. Enter the known values and hit OK. The frame assignment will be made.

Average of Other Frames

Creates a frame based on the average of selected frames. Usually used
to create an average between gravity frames.
Copy and Make Left-Handed
Makes a copy of the selected frame and prompts for the axis to reverse.

Spheres

Fit to Points

Constructs a best-fit sphere for the selected points. See the Geometry Fit section for more information.

Enter

Constructs a sphere at a position and orientation relative to the working frame. Use the Sphere Properties dialog to edit parameters.

Sphere Section

Figure 10-10. Creating a spherical section.

Creates a spherical section. Use the Sphere Section dialog to edit parameters.

\square sphere Section			x
Name	Sphere	ction	
Outer Radius	20.0		$\hat{\imath}$
Wall Thickness	1.0		$\hat{\imath}$
Theta Span	90.0		$\hat{*}$
Facets	5		$\hat{\imath}$
Phi Span	180.0		$\stackrel{\rightharpoonup}{2}$
Facets	10		$\stackrel{\sim}{2}$
Update	Tanstorm	Cola	

B-Splines

Properties

The B-Spline properties will report the Curve Parameters and allow directional arrows to be drawn.

Figure 10-13. B-Spline Fit options.

Figure 10-11. The B-Spline curve properties dialog.

Construction

From Points

Figure 10-12. A B-Spline fit to a series of measured points.

Creates a B-Spline curve from selected points using either an interpolated fit or cubic fit (see Figure 10-12 and Figure 10-13).

- Fit Style. A B-Spline can be fit one of two ways, Interpolation or Fit with control points. An interpolated fit will pass through all of the selected points and interpolate the curve's shape between each point. Fitting with control points allows for a best fit.

From Surface

Creates B-Splines from surface boundaries (Figure 10-14).

Figure 10-14. Creating B-Splines from the boundaries of a surface.

Intersect Surface

Figure 10-15. This B-Spline has been created by intersecting cylindrical and planar surfaces.

Creates a B-Spline from the intersection of two surfaces (Figure 1015).

- Curve Style. If closed the B-spline will end at the beginning point of the B-spline.
- Point Ordering. The direction and path of the B-spline is determined by the order of the points. The user can select the points in order or use the closest neighbor approach. Points can also be ignored if their neighbor is within a prescribed distance.
- Termination Conditions. The B-Spline creation will terminate if a gap of a prescribed distance is exceeded.

Intersect Plane and Surface

Creates a B-Spline at the intersection of a plane and surface. Very similar to the Intersect Surface command.

From a Collection of B-Splines
Creates one single B-Spline from the selected individual B-Splines.

Circles

Properties

- Collection. Specifies collection name where object resides.
- Name. Object name
- Radius. Radius of circle
- Projected angles. Displays the Principle Projected Angles dialog. These angles represent the projection of the object normal vector onto the coordinates planes of the active frame.
- Draw. Displays the normal vector in the graphics.
- Radial Normal Direction. Reverses the normal radial vector direction of the circle.
- Notes. Contains information entered by user or information regarding construction method, fit, etc.
- Reverse. Reverses the normal direction of the object.
- Transform. Opens the transformation dialog.
- Color. Opens color dialog and allows the object color to be changed.
- Update. Updates SA with any changes in the object properties.
- Menu. Exposes object specific menu options. Emulates rightclicking the object in the tree.
- Close. Closes the object properties dialog.

Construction

Fit to Points
Constructs a best-fit circle for the selected points. See the Geometry Best-Fit section for more information.

Enter
Constructs a circle where the normal is in the Z-axis of the working frame. Use the Circle Properties dialog to edit parameters.
Maximum Material Condition (from Scan Patch)

Creates a best-fit circle with a diameter that bounds all of the selected points. All of the points will either be touching the circle or inside of the circle.

From CAD Surfaces
Uses selected CAD surfaces to look for circular segments and creates circles based on the search criteria.

Circles from Surface Holes		
Min Dia:	0.128	
Max Dia:	0.5	
Check Tolerance:	0.002	
	\square	OK Cancel

Normal to Object, Centered at Point
Creates a circle using the selected object's normal and is centered at the selected point.

Planes

Construction

Fit to Points
Constructs a best-fit plane for the selected points. See the Geometry Best-Fit section for more information.

Enter
Constructs a plane where the normal is in the Z-axis of the working frame. Use the Plane Properties dialog to edit parameters.

Normal to Object, Through Point
Plane created normal to a selected object and passes through a selected point.

Normal to Line, Through End
A plane is created that is normal to the line and passes through a selected end of line.

Mirror from Two Measured Points
The mirror plane function is used to determine the location of a mirror by measuring a point both directly and through the mirror.

1. Pick the instrument.
2. Pick the point measured directly (not through mirror).
3. Pick the virtual point that is really the same point, but measured through the mirror.

SA creates a plane representing the mirror location (see Figure 10-18 on page 263). You can make a frame on this plane if needed.

Figure 10-18. Creating a plane from two measured points using a mirror.

If the points used in the construction have uncertainty fields (Analysis>Coordinate Uncertainty>Create Point Uncertainty Fields), SA will automatically compute the uncertainty of the mirror plane and add the results to the notes field for the constructed plane.
Establish Bounding Planes for Points
Creates two planes parallel to the selected plane and are spaced so that they bound the selected points.

From Surface Faces
Creates planes from the selected surface faces.

Lines

Properties

- Collection. Specifies collection name where object resides.
- Name. Object name.
- End-Point Method. Enter two point coordinates to determine length, position and orientation of the line.
- Ray Method. Control the length or the transformation of the line.
- Projected angles. Displays the Principle Projected Angles dialog. These angles represent the projection of the object normal vector onto the coordinates planes of the active frame.
- Draw. Displays the normal vector in the graphics.
- Notes. Contains information entered by user or information regarding construction method, fit, etc.
- Reverse. Reverses the normal direction of the object.
- Shift Ends. Enter values to shift beginning and end point along the vector of the line.
- Color. Opens color dialog and allows the object color to be changed.
- Update. Updates SA with any changes in the object properties.
- Menu. Exposes object specific menu options. Emulates rightclicking the object in the tree.
- Close. Closes the object properties dialog.

Construction

Fit to Points
Constructs a best-fit line for the selected points. See the Geometry Best-Fit section for more information.

Enter
This will allow you to enter the end-points of the line or designate a direction and a length. These values are entered using the Line Property dialog.

2 Points
Constructs a line between two selected points. The lines direction is from the first to second point.

Projection, Line to Plane / Circle
After selecting either a plane or a circle as the destination, you will be prompted to select the line you wish to project. A new line will be created on the projection surface.

Between a Point and a Line
This function creates a line between a user-selected point and a line.
2 Plane Intersection
A line is created at the intersection of two planes. If the planes are parallel, the function reports that the line can not be created.
Center of Cylinder
Constructs a line from the cylinder end points and inherits the cylinder's direction.

Along Frame Axes

Constructs a line down each axis of the working frame.
From Instrument Shot
Creates a line from a measured point and its associated instrument. The point selected must be a measured point.

Normal to Object(s)
Creates a line normal to an object. All objects (plane, line, cylinder, etc) have a normal direction. The line created will represent that normal direction.

Normal to Objects, through Point
Creates a line parallel to the selected object's normal and intersects to selected point.
Parallel to Line, through Point
Creates a line parallel to the selected line and pass through the selected point.

Cross Product
The cross product is a function that takes two lines (vectors) and produces a line that is perpendicular to them.

From a Vector Group
Creates lines from each vector in a vector group.

Cylinders

Properties

- Collection. Specifies collection name where object resides.
- Name. Object name.
- Transformation Method. Controls the length or the transformation of the cylinder.
- End-Point Method. Enter two point coordinates to determine length, position and orientation of cylinder.
- Diameter. Diameter of the cylinder.
- Surface Normals. Reverses the surface normal direction.
- Projected angles. Displays the Principle Projected Angles dialog. These angle represent the projection of the object normal vector onto the coordinates planes of the active frame.
- Draw. Displays the normal vector in the graphics.
- Notes. Contains information entered by user or information regarding construction method, fit, etc...
- Reverse. Reverses the normal direction of the object.
- Color. Opens color dialog and allows the object color to be changed.
- Update. Updates SA with any changes in the object properties.
- Menu. Exposes object-specific menu options. Emulates rightclicking the object in the SATreebar.
- Close. Closes the object properties dialog.

Construction

Fit to Points
Constructs a best-fit cylinder for the selected points. See the Geometry Best-Fit section for more information.

Enter
Constructs a cylinder where the normal is in the Z-axis of the working frame. Use the Cylinder Properties dialog to edit parameters.

Cylinder Slice

Figure 10-19. Creating a cylinder slice.

Pie Wedge

Figure 10-20. Creating a pie wedge.

Pipe

Figure 10-21. Creating a pipe.

Tapered Pipe

Figure 10-22. Creating a tapered pipe.

Ellipses

Properties

Figure 10-23. The major/minor axes of an ellipse.

- Collection. Specifies collection name where object resides.
- Name. Object name.
- Transform. Opens the transformation dialog.
- Major Axis Radius/Minor Axis Radius. The major (long) and minor (short) axis lengths (Figure 10-23).

- Notes. Contains information entered by user or information regarding construction method, fit, etc...
- Update. Updates SA with any changes in the object properties.
- Color. Opens color dialog and allows the object color to be changed.

Construction

Fit to Points

Best-Fit section for more information.
Enter
Constructs an ellipse about the working frame. Use the Ellipse properties dialog to edit parameters.

Paraboloids

Properties

- Collection. Specifies collection name where object resides.
- Name. Object name.
- Graphical Settings. Control the length, span and facets of the graphical representation of the cone.
- Geometry Parameters. Control length and alternative parameters.

Construction

Fit to Points
Constructs a best-fit paraboloid for the selected points. See the Geometry Best-Fit section for more information.

Enter
Constructs a Paraboloid about the working frame, use the Plane properties dialog to edit parameters.

Cones

Properties

- Collection. Specifies collection name where object resides.
- Name. Object name.
- Graphical Settings. Control the length, span and facets of the graphical representation of the cone.
- Included Angle. The entire angle that contains the taper.
- Surface Normals. Reverses the surface normal direction.
- Notes. Contains information entered by user or information regarding construction method, fit, etc.
- Transform. Opens the transformation dialog.
- Color. Opens color dialog and allows the object color to be changed.
- Update. Updates SA with any changes in the object properties.
- Menu. Exposes object specific menu options. Emulates rightclicking the object in the tree.
- Close. Closes the object properties dialog.

Construction

Fit to Points
Constructs a best-fit cone for the selected points. See the Geometry Best-Fit section for more information.

Enter
Constructs a cone about the working frame, use the Cone properties dialog to edit parameters.

Surfaces

Offset Surfaces

Currently under construction...however, this will allow a user to select a surface to offset and enter an offset.

From a Collection of Surfaces

Merges selected surface into one surface entity.

By Dissecting Surfaces

Dissects the surface into individual surfaces. The user has the option to dissect any surface or pick surface faces to dissect.

Select Faces by Projecting Points

Creates separate surfaces by checking point projections. This can be useful for speeding analysis when trying to reduce surface faces to analyze.

Figure 10-24. Creating surfaces by projecting points.

From Objects

Creates surfaces from supported SA Geometry. Examples are plane, cylinders, etc...

From Plane, Cylinder, Sphere, and Cone

Performs same functionality as above, these are just geometry specific. The above command is more universal.

Tubular Surface from a B-Spline

Creates a tubular surface that uses the B-Spline path. Users has the ability to enter Tubular Diameter.

From Point Groups

Functionality only available in SA Ultimate. Please see the Advanced Surface Fitting section.

From B-Splines

Functionality only available in SA Ultimate. Please see the Advanced Surface Fitting section.

From Plane and Closed B-Spline

Functionality only available in SA Ultimate. Please see the Advanced Surface Fitting section.

Fit from Bounding Curves and Internal Points

Functionality only available in SA Ultimate. Please see the Advanced Surface Fitting section.

Fit from Nominal Face and Actual Data

Functionality only available in SA Ultimate. Please see the Advanced Surface Fitting section.

Polygonized Meshes

From Surfaces

Converts selected surface to a Polygonized Mesh.

From Cloud Points and from Selected Cloud Points

Generates a Polygonized Mesh from selected point clouds or points. By default the mesh orientation uses the current Point of View, however, the working frame can be used as well (Figure 10-25). Enter the grid resolution based on point cloud density. Rule of thumb, the data density should be four times greater than the grid resolution.

Polygonalized Mesh Generation Settings
X
Mesh Orientation
() Use Current Point of View

OUse Current Working Frame
Figure 10-25. Polygonized mesh generation settings.

```
1.0
```

Data density should be at least 4 times the grid resolution for best results.

Figure 10-26. Generating a
polygonized mesh from a point cloud.

Colorized Mesh from Point Proximity

Creates a Colorized Polygonized Mesh depicting the error between the selected points and the selected surface (Figure 10-27). The colorization options can be accessed through the Polygonized Surface properties.

Figure 10-27. A colorized graphical mesh created using proximity of measured points to a nominal surface.

Perimeters

Properties

- Collection. Specifies collection name where object resides.
- Name. Object name.
- Closed Perimeter. When unchecked the perimeter is opened.
- Notes. Contains information entered by user or information regarding construction method, fit, etc.
- Color. Opens color dialog and allows the object color to be changed.
- Apply. Updates SA with any changes in the object properties.
- Cancel. Closes dialog without saving changes.

Construction

Figure 10-28. Perimeters defining the boundary of measurements from a total station.

This command will create an open or closed perimeter object from selected points. Its purpose is to provided a boundary for scanning instruments. The below example shows perimeters to capture data from a targetless scanner.

Working With Surfaces

Working with CAD surfaces is a discipline in itself. As more and more industries move toward computer model-based representations and away from paper drawings, the ability to work with surfaces grows every year.

Surface Grouping

Any set of surfaces may be combined into a single surface or split into separate surfaces. The process of combining surface faces is referred to as merging surfaces, and the process of separating surfaces is referred to as dissecting surfaces.

The advantage of have a merged surface is that it simplifies the tree. When surfaces are merged, they appear as a single surface in the tree, therefore there are less surface entities to wade through when moving around in the tree. This also can make selection easier, because selecting a single surface selects all of the faces that are part of that merged surface.
However, merged surfaces have some limitations. A merged surface cannnot have its normals corrected-so, if you need to reverse some surface faces, the surface must be dissected first. Also, you cannot create queries, relationships or other entities involving specific subfaces of a merged surface. If you want a relationship, for instance, to only compare against a single face of a surface, that face must be extracted from the merged surface so that it appears as a separate entity in the tree.
One cannot definitively say whether a merged surface is better than a
dissected surface, or vice versa. It really depends on the situation and what you'd like to do with the surfaces.

Merging Surfaces

To Merge Surfaces:

Figure 11-1. Merging a set of surfaces.

Warning: Since sewing faces together can change the topology of a CAD model (usually undesirable in metrology), it is strongly recommended that you avoid this option unless you have a very valid reason for using it.

The process of merging a surface involves selecting individual surfaces and combining them into a single surface in the tree that is treated as a single surface. When merging surfaces, you have the option of keeping the original surfaces in addition to the new merged surface, or deleting the original surfaces. In addition, you also have the option of hiding the original source surfaces as well.

1. From the menu, select Construct>Surfaces>From a Collection of Surfaces.
2. Select all of the surfaces that you'd like to merge.
3. The Group Surfaces dialog appears (see Figure 11-1).
4. Select the desired options, then click OK. A new surface named Merged Surface xxx will be created.

- Hide Original Surfaces. When selected, the original source surface faces will be hidden, but not deleted.
- Delete Original Surfaces. When selected, the original source surface faces will be deleted.
- Sew Faces Together. When selected, adjacent surface faces which lack tangency (they do not smoothly flow from one surface face to another) will be stitched together in accordance with the sewing tolerance.
- Sewing Tolerance. The maximum normal deviation from one surface face to the next in which those adjacent surface faces will be stitched together if Sew Faces Together is enabled.

Dissecting Surfaces

Dissecting surfaces is the inverse operation of merging. Given a merged surface containing two or more surface faces, dissecting that surface will extract the selected faces and separate them as unique surfaces in the tree. Dissecting a surface leaves the original surface
intact-it will be hidden for you in the tree.

To Dissect an Entire Surface:

1. From the menu, select Construct $>$ Surfaces $>$ By Dissecting Surfaces>Entire Surface.
2. Select the surface to dissect.

To Dissect Specific Surface Faces from a Surface:

1. From the menu, select Construct $>$ Surfaces $>$ By Dissecting Surfaces $>$ Select Faces.
2. Select the individual faces to extract. The original surface will remain untouched, and the extracted faces will be created as separate surfaces.

Duplicate Surface Faces

Occasionally, you may encounter one or more surfaces that have overlapping surface faces. This may be a problem in the source model, a result of how the surface was imported, or simply a result of accidentally duplicating surface faces.

Duplicate surface faces can cause confusion in analysis, so it's best to clean these surfaces up before using them. Fortunately, SA has a command to detect and delete duplicate surface faces.

To Delete Duplicate Surface Faces:

1. From the menu, select Edit>Remove Duplicate Surface Faces.
2. Select the surfaces to examine.
3. Provide a coincidence tolerance. This indicates how close two overlapping surfaces must be to be considered duplicates.
4. If duplicate faces are found, confirm the deletion.

Surface Normal Conditioning

As explained in"SA Fundamentals", the normal direction of surfaces is critical to how offset compensation is applied to your measurements. An incorrectly-oriented surface normal can lead to dramatically incorrect analysis results. CAD surfaces should always have their normals facing away from the material of the part. That is, the side on which you approach the surface with a probe must be defined as the positive side of the surface.
The use of surface backside coloring (see "The Graphical View") enables you to determine if any surface normals are reversed. Whenever you import a CAD model, you should therefore check to ensure that surface normals are correct, and any incorrect normals should be
fixed.
There are three methods for flipping surface normals: indicating point on positive side, reversing normals, and auto-reversing from viewpoint. All of these methods require a surface to be dissected into its individual surface faces before they are reversed.

Indicating Point on Positive Side

One method for correcting surface normals is to use a reference point as an indicator for whether that point should end up on the positive or negative side of a surface. This is similar to some metrology software that expects an additional measured point to indicate the direction of offsets for measured geometric surfaces.

To Condition Surface Normals by Indicating Point on Positive:

Note: This method currently
compares the reference point to the middle of each surface face. Therefore, it is not 100\% reliable.

1. Dissect the surface as described in "Dissecting Surfaces" on page 276.
2. From the menu, select Edit>Surface Normal Conditioning>Indicate Point on Positive (or negative) side.
3. Select the point to serve as the reference point.
4. Select the surfaces to consider.
5. At the Decision dialog, indicate whether the reference point should end up on the positive or negative side of the surface.

Reversing Surface Normals

The most straightforward method for reversing surface normals is to explicitly select the surfaces you'd like to reverse. The normal direction of each selected surface will be flipped.

To Reverse Surface Normals:

1. Dissect the surface as described in "Dissecting Surfaces" on page 276.
2. From the menu, select Edit>Surface Normal Conditioning>Reverse Surface Normals.
3. Explicitly select the surface faces you'd like to reverse.

Auto-Reversing Surface Normals

Note: You may need to perform this operation from several different viewpoints.

SA can use the current view orientation to automatically reverse a set of surface faces. This has the advantage of reversing a large number of surfaces at once, without requiring you to select the specific surfaces you'd like to fix.
With this command, you orient the view so that you can see the sur-
faces you'd like to correct. You then select these surfaces, and the key is that you can also select surfaces which are already facing the proper direction. SA will go through each selected surface, determine if it's visible from the current viewpoint, and then reverse it if its normal does not generally point toward the viewpoint.

To Auto-Reverse Surface Normals from Viewpoint:

Tip: If there is not a large \exists number of surfaces, it's generally faster to just select all surfaces using rectangular selection or the F2 window versus trying to select only those surfaces that need to be fixed.

1. Dissect the surface as described in "Dissecting Surfaces" on page 276.
2. From the menu, select Edit>Surface Normal Conditioning>Auto Reverse Surface Normals from Viewpoint.
3. Orient the view so that you can see the surface faces you'd like to correct.
4. Select the surfaces you want the command to consider. (It's OK if these surfaces are already facing the correct direction).

This Page Intentionally Left Blank.

Instruments

Instruments are the devices that gather accurate measurement data and provide a foundation for this data's position in a digital world. This chapter discusses how to work with instruments in general.

SA supports over 100 different measurement devices, from PCMM arms and laser trackers to scanners, laser radars, digital levels, and theodolites. An instrument in SA contains the basic properties of the instrument and defines its location in the workspace. Instruments appear in the treebar under the Instruments category, and each instrument is assigned a number (starting from zero), referred to as the Instrument Index Number. This number appears next to the name of the instrument in the treebar (Figure 12-1).

It is very important to keep in mind that instruments are not objects. In SA, objects are treated differently than instruments. Commands and functions that explicitly ask for objects will not accept an instrument. They are completely independent entities.

Figure 12-2. A number of instruments in the graphical view.

For spherical measurement devices (total stations, laser trackers, and the laser radar, for example), the position of the instrument defines the origin of the instrument's measurement volume. For a PCMM arm, the instrument position defines the base of the kinematic chain of linkages leading toward the probe.

When a point is measured by an instrument, the instrument reports back a point in its own internal coordinate system. This point is recorded in the measured target's observation details. For spherical measurement devices, the coordinate is represented in a spherical coordinate system. For a Cartesian measurement device (such as an arm), the coordinates are represented in XYZ coordinates.

Instrument Properties

To Access an Instrument's Properties:

- Right-click the instrument in the tree or graphical view and choose Properties from the context menu,
- Double-click the instrument in the tree, or
- Select Instrument>Properties, and double-click the instrument of interest.
The properties for an instrument (Figure 12-3) will vary depending on the class of instrument (laser tracker vs. arm vs. scanner, etc.).

Figure 12-3. The Instrument Properties dialog.

- Instrument Number. The index number for the instrument (referred to as the Instrument Index Number).
- Model. The name assigned to the instrument. (By default, this will be the manufacturer's name and instrument type).
- TCP/IP Socket Port. The TCP/IP port that the instrument has been assigned. This is a random port number that is assigned by SA.

The sensor control section allows you to adjust the graphic model of the instrument. For spherical devices, you can adjust the vertical, horizontal, and distance degrees of freedom. For an arm, you can adjust the rotation value for each link. Other instrument types (such as laser scanners) may not have any adjustment at all. After selecting the degree of freedom and associated value, click the Apply button to see the changes. Or, click the up/down arrows to increment the rotation value.

Scale Factor

It may be desirable to apply a scale to an instrument's measurements to account for thermal expansion and contraction of a measured part. For example, suppose you have a nominal model that has been designed for $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ conditions. If you are laying off nominal features from that model on a hot day--say $95^{\circ} \mathrm{F}\left(35^{\circ} \mathrm{C}\right)$--then you will want to scale the instrument's measurements down from $95^{\circ} \mathrm{F}$ to $68^{\circ} \mathrm{F}$ so that the instrument and the nominal model are adjusted to the same temperature reference. One way to achieve this is to scale the instrument's measurements.

When an instrument scale factor is applied, all measurements from the instrument will be scaled appropriately. For example, an instrument observation that is normally at a radius of 100 " from the instrument will be 101 "from the instrument at a scale factor of 1.01. Instruments that are currently using a scale factor other than 1.0 will appear with a special yellow icon in the tree and will be listed as a scaled instrument, as depicted in Figure 12-4.

Figure 12-4. This laser tracker has
a scale applied.

The scale for an instrument can be set in several different ways. It can be set manually (by directly entering a scale factor), set by measuring scale bars, or set in a command (such as Instrument>Locate (Transform to Part)>Measure Nominal Points), which allows you to vary the instrument's scale as part of the best-fit procedure.

To Set an Instrument's Scale Factor Manually:

1. In the Instrument Properties dialog, click the Set Manually button.

Figure 12-5. The scaling dialog.

Scaling				X
Calculate Scale Based on CTE Coefficient of Thermal Expansion Material:			Ed	
		Coef	cient: (1/deg F)	
Steel		\checkmark	0.0000065	
Temperature Change				
Initial Temp	68.0	F		
	68.0	F		
Scale Factor 1.000000				
- Enter Scale Manually				
Scale Factor				
1.0				
OK			Cance	

2. In the Scaling dialog (Figure 12-5), select the Enter Scale Manually radio button and enter a scale factor, then click OK.

To Calculate a Scale Based on a Coefficient of Thermal Expansion:

Consider an example of measuring a steel part sitting in the sun, which has expanded in the $95^{\circ} \mathrm{F}$ midday heat. If we want to compare measurements against the nominal model for this part, which is at $68^{\circ} \mathrm{F}$, then it is important to scale the instrument's measurements from $95^{\circ} \mathrm{F}$ (initial temperature) to $68^{\circ} \mathrm{F}$ (final temperature). This would be a situation where entering a scale for the instrument based on a CTE could be appropriate. The resulting scale factor will shrink the instrument's measurements so that the measurements can be com-
pared to the $68^{\circ} \mathrm{F}$ CAD model, effectively removing the differences caused by thermal expansion.

1. In the Instrument Properties dialog, click the Set Manually button.
2. Select the Calculate Scale Based on CTE radio button.
3. In the dropdown, choose the desired material for the part that will be measured. If the material of interest is not available, click the Edit button, which allows you to add, delete, and edit materials and their associated coefficients of thermal expansion.
4. Enter an initial and final temperature. A higher final temperature will result in a scale increase, and a lower final temperature will result in a scale decrease.

To Calculate a Scale Based on Measured Scale Bars:

Scaling based on measured scale bars should only be performed when the material of the scale bar matches the material of the part to be measured, and when the nominal scale bar temperature matches the nominal (modeled) CAD temperature of the part. Consider an example of measuring a steel part sitting in the sun, which has expanded in the $95^{\circ} \mathrm{F}$ midday heat. If a steel scale bar with a nominal length of $36^{\prime \prime}$ at $68^{\circ} \mathrm{F}$ is then measured in the same conditions as the part, it will also have expanded, and the measured scale bar points will be more than $36^{\prime \prime}$ apart. Scaling based on this measured scale bar will scale the instrument's measurements down to match the nominal $\left(68^{\circ} \mathrm{F}\right)$ length of $36^{\prime \prime}$. Subsequent measurements from the instrument will now be properly compensated to the nominal $68^{\circ} \mathrm{F}$ temperature.

1. In the Instrument Properties dialog, click the Set from Scale Bars button.
2. If the instrument has measured points that belong to a defined scale bar, the scale factor will be instantly calculated.
3. Review the results of the scale calculation, and click Yes to apply the scale factor to the instrument.

- Measurements Active. Unchecking this box will deactivate all of this instrument's measurements from target calculations. This might be useful, for example, if you've measured the same point with several instruments, and have found an instrument to be out of calibration to the point where its measurements are corrupting the overall coordinates of the targets. Re-check this box to activate the measurements again. (Note that this will require you to recompute targets from shots using Analysis>ReCompute Targets From Shots).

Uncertainty Variables

All instruments have error in their measurements, and as a result every measurement from an instrument has some uncertainty. Each class of instrument (laser tracker, PCMM arm, total station, etc.) has different set of uncertainty characteristics. For example, laser trackers have uncertainties for the horizontal and vertical encoders, as well as an uncertainty for the distance measurement. PCMM arms, on the other hand, have an angular uncertainty for each link of the arm. Additionally, each instrument within a specific instrument class has different values for the uncertainties. The uncertainty values for a newly calibrated laser tracker in pristine condition from a manufacturer will be different from those of an old, dirty, poorly calibrated tracker from the same manufacturer.

The uncertainty variables assigned to an instrument determine what the resulting uncertainties of the individual measurements from that instrument will be. Points measured from an instrument with small uncertainty values will have less uncertainty than those measured from an instrument with large uncertainty values.
The default uncertainty values that SA applies to a given instrument are identical for a given class of instrument. Due to variations in instrument calibration and performance, manufacturer, and measurement parameters, it is impossible to use a specific set of numbers for each instrument--the numbers can vary significantly. Instead, a set of conservative default values have been chosen (see Figure 12-6 on page 287). These values, while usable, will not be truly representative of the instrument's true uncertainty variables, so there is a procedure to determine an instrument's values. An instrument's true uncertainty variables are determined through a process using USMN. Once these values have been determined for a given instrument and measurement situation, they can be plugged into the instrument to get truly accurate uncertainties for a given instrument's measurements.
Note that all instrument uncertainty values are entered as 1 sigma values, regardless of the confidence interval set for the job in the User Options. Clicking the Edit Uncertainty Variables button will present you with a dialog in which you can enter specific values that apply to the selected instrument. The values in Figure 12-6 apply to spherical measurement devices such as laser trackers, total stations, and laser radars.

Figure 12-6. Generic uncertainty variables for a spherical measurement device (laser trackers shown here).

Figure 12-7. Uncertainty values associated with a portable CMM arm.

- Theta or Horizontal Angle. The angular uncertainty for a spherical measurement device's horizontal encoder, in arcseconds.
- Phi or Vertical Angle. The angular uncertainty for a spherical measurement device's vertical encoder, in arcseconds.
- Error (in job distance units). The fixed component of uncertainty for a spherical measurement device's distance measurement. The instrument above has been assigned a static uncertainty of $0.0003^{\prime \prime}$ in distance measurement.
- Parts per million. Additional uncertainty (on top of the fixed component described above) for a spherical measurement device's distance measurement that increases linearly as the measured distance increases. This value is entered in parts per million (ppm). The instrument above has been assigned a PPM uncertainty of 2.5 ppm . This implies that, at a measurement distance of 1000 ", the uncertainty contributed by the PPM component will be 0.0025".

The PPM and static uncertainties combine to determine the total distance uncertainty at a given point. At a measurement distance of 1000 ", the measurement has a total distance uncertainty of $0.0028^{\prime \prime}$ ($0.0003^{\prime \prime}+0.0025^{\prime \prime}$).

For portable CMM arms-as depicted in Figure 12-7-the uncertainty is entered at each link in the arm, in degrees.

The theodolite uncertainty dialog is similar to that for other spherical measurement devices, however the distance uncertainty values do not apply (Figure 12-8).

Theodolite Uncertainty
Angular Measurement (arcseconds) Theta or Horizontal Angle Phi or Vertical Angle Enter 1 sigma values 0.25

Instrument Graphics (PCMM arms only)

PCMM arms have an Instrument Graphics button that appears directly under the Edit Uncertainty Variables button. This button calls up the Instrument Graphics dialog (Figure 12-9).

- Restore Default Graphical Model. The kinematics for a PCMM arm are refined as points are measured. These kinematics only affect how the arm is depicted in the graphical view--not the accuracy of the measurement data itself. Clicking this button will restore the default graphical model that has been stored with the instrument definition.
- Solve for Graphical Model Using All Measurements in Job. This option will consider the measurements that the arm has observed, and recalculate the kinematics for the arm.
- Instrument Interface Response Timeout. This value determines (in seconds) how long an instrument interface will attempt to connect to the instrument until it times out with an error, stating that the instrument cannot be found. Enter zero
to continue checking indefinitely.
- Transform. The Transform button is used to transform (move and rotate) the instrument. More information about transformation can be found in the Move section.

Instrument Shots

It is often useful to draw instrument shots-that is, the line of sight from instruments to their corresponding measurements, as depicted in Figure 12-10. Instrument shots (also referred to as shot lines) help you visualize which instruments have measurements to which points, and also helps with visualizing the angles and distances to your shots, as well as the entire instrument network as a whole.

Figure 12-10. Shot lines for an instrument network.

To Control Whether Instrument Shots are Drawn in the Graphical View:

- Toggle the View>Show Instrument Shots setting.

Instrument Shot Modes

There are four modes for viewing instrument shots:

- Draw only last shot of active instruments. Draws only the most recent shot from any active instruments.
- Draw all shots. Draws every shot line from every instrument to every point (used in Figure 12-10).
- Draw only active (enabled) shots. Any shots which have been disabled will not have shot lines drawn-but all others will.
- Draw only inactive (disabled) shots. Any shots which are enabled will not have shot lines drawn-but all others will.

To Change How Instrument Shots Are Drawn:

1. Click the User Options icon in the toolbar.
2. In the Display tab, click the Shot Graphics Options button.
3. Select the desired mode from the Mode box.

Shot Colors

In addition to changing the instrument shot mode, you can also set the color used for active shots, inactive shots, or the latest (Current) update.

To Change Instrument Shot Colors:

1. Click the User Options icon in the toolbar.
2. In the Display tab, click the Shot Graphics Options button.
3. Click the Active Shots, Inactive Shots, or Current Update button to indicate which color you'd like to modify.
4. Select a color from the dialog, then click OK.

Angle Only Shots

Instruments that do not measure distance (such as theodolites) cannot measure a point in 3D space, therefore the shot line length cannot be determined. A default length of 200 units is used for drawing these shots, although you can lengthen or shorten this value as appropriate to the scale of the measurement job.

To Change the Length of Angle Only Shots:

1. Click the User Options icon in the toolbar.
2. In the Display tab, click the Shot Graphics Options button.
3. Enter a length into the Default Length field.

Using Instruments

Before you can begin measuring with an instrument, you need to add one to your current job.

To Add an Instrument:

Do one of the following:

- From the menus, choose Instrument>Add, or
- Press Alt+I, the default keyboard shortcut, or
- In the Main Toolbar, click the Add Instrument 禺

Figure 12-11. The Add Instrument to SA dialog.

The Add Instrument to SA dialog (Figure 12-2) will list all available instruments that can be used in SA. The instrument list can be filtered to only show the instruments that you have added in the past; each time an instrument is added to a job, it's added to this filtered list.

To Switch Between the Filtered Instrument List and the Full List:

- Select the My Instruments or All Instruments radio button.

To Reset Which Instruments Appear in the Filtered List:

- Navigate to the Analyzer Data\Persistence folder and delete the My Instruments.bin file.

Clicking the Options button opens the Add Instrument Options dialog
(Figure 12-3). In this dialog, you can specify an instrument stand (for visual representation purposes only), specify where to locate the newly added instrument, and specify whether to automatically run the instrument's interface when the instrument is added. These settings are optional conveniences and are not critical to the procedure of adding instruments. The settings persist and will apply to the addition of future instruments until the settings are changed.

To Specify an Instrument Stand:

- Choose None, Brunson Model 233, Wooden Tripod, or Quickset from the Instrument Stand list.

To Specify Where a New Instrument Should Be Located:

4. Choose World Frame (to add the instrument relative to the World frame) or Working Frame (to add it relative to the current working frame).
5. Specify whether to add the instrument along the chosen frame's X, Y, or Z axis.
6. Enter an Increment Value. This value specifies (in job units) how much further down the selected frame's axis each subsequent instrument should be added.

To Specify Whether a Newly Added Instrument's Interface Should Automatically Be Started:

- Check or uncheck the Run Interface option.

Instrument Options and Properties

When an instrument is added to $S A$, it is added to the graphical view as well as the tree. Each instrument is identified by an Instrument Index Number and the name of the instrument. In a given collection, the Instrument Index Number begins counting from zero.

Right-clicking an instrument in the tree will expose a number of commands that apply to instruments.

Instrument Properties
The instrument properties give access to several important properties. Here the user can set the scale of the instrument either using Scale Bars, Material CTE or a Manual entry. Instrument Properties are covered in SA Fundamentals | Entities | Instruments.

Instrument History
The instrument history (Figure 12-4) is a log of events that have occurred to that particular instrument. Events such as when an instrument was connected, instrument specific information, how the instrument was transformed, etc.

Figure 12-13. A tracker's history.

Instruments and Measurements

A unique characteristic to SpatialAnalyzer is the association of points to their respective instrument. SA treats an instrument and its points as a rigid body. If an instrument is transformed (moved), the instrument and its points will move. This is a key concept that is used extensively throughout SA. Objects can also be associated to an instrument, so when an instrument moves the associate points and objects will move.

When a point is measured it is treated as a measured point. Measured points contain all of the instrument specific measurement details. Please see the Point Properties section for more on measurement details.

The Instrument Interface

One of the most powerful aspects of SpatialAnalyzer is the modularity of the instrument interfaces and how they interact with the core analysis platform. These interfaces are able to work independently or together, on a single computer or across networked computers.

Instrument interfaces communicate with SpatialAnalyzer using the robust TCP/IP network protocol. This affords several distinct advantages. First, these connections are extremely fast and reliable. Second, since TCP/IP is a "network" protocol, the instrument interfaces may be run on either the same computer as the instance of SA, or on another computer accessible on the same network. Third, and perhaps most impressive: since it is the "Internet Protocol" (IP), the computers running the instrument interfaces could be in the same room, across the country, or around the world. Likewise, if activated, it is possible to remotely monitor a measurement job in progress using this same TCP/ IP connection over the Internet or on a local network.

Modular instrument interfaces are the basis of the data acquisition aspect of SpatialAnalyzer. These provide an easy-to-use and friendly
interface for the control of instruments during a measurement job.
Establishing the instrument interfaces as separate entities in the architecture affords several key advantages. First and foremost, this provides flexibility to adapt to tomorrow's instrumentation. The number of instrument interfaces available for SpatialAnalyzer is ever-expanding, much like printer drivers and other peripheral devices for the Windows operating system. Second, this approach enables SA to provide a common interface for each type or class of instrument. A portable CMM manufactured by Company A would has the same top-level interface as a portable CMM manufactured by Company B. This allows users to easily select the instrumentation best suited for a particular task. It also allows users to easily transfer the expertise they have gained with one instrument to another. A direct benefit of this capability is to improve a user's flexibility when moving from task-totask and it reduces the training time for a user to become productive on a different instrument. Third, this allows for a more objective view when it comes time to replace or purchase new hardware, since retraining is minimized by the common instrument interface in SpatialAnalyzer.

In all cases, the instrument interfaces perform four key functions:

- They provide a common and simple user interface that can be used under SpatialAnalyzer control to guide a user through a particular measurement task.
- They communicate over a TCP/IP network to convey essential measurement data to SpatialAnalyzer.
- They communicate via a native format to the instrument. For example: serial RS-232 connections for many theodolites, Network protocols for many laser trackers.
- They provide an efficient means to collect the raw measurements, the conditions and techniques under which they were collected, and to perform operational checks on the instrument to establish that it is meeting its performance specifications. It also supports simulating measurements and measurement tasks before the job is performed. By simulating a measurement process before the job is performed, accuracy and time estimates can be made to help you make the best choices regarding optimizing the placement of the instrument(s) relative to the subject of the survey.

Starting an Instrument Interface

To start an instrument interface, choose Instrument>Run Interface Module (or click the dropdown arrow next to the Run Instrument Interface $\boldsymbol{\varkappa}^{*}$ icon). Then select the instrument interface of choice. Once selected,

Figure 12-14. The list of available instruments to connect to.

Figure 12-15. Connection options for this instrument (a Faro tracker).
the Connect to SpatialAnalyzer window will display (Figure 12-5). This window displays all network-accessible and running instances of SA containing instruments. The network location (computer name and IP address) appears in the list, in addition to the open job filename. Any applicable instruments not already connected to an interface will appear in boldface.

In this window, you're choosing the instrument in an SA job file to which you'd like to send the measured data. While it is usually the file open on the same computer, this is not required. Choose the instrument to which you wish to connect and click 0K.

The next dialog will display connection options that are specific to the instrument being added. In Figure 12-6, a Faro tracker is being added.

Once accepted, the instrument interface will appear (Figure 12-7).

Figure 12-16. A simulated tracker interface.

See the Interfaces section for information on instrument-specific interfaces.

If a single instrument is in the job file, you can click directly on the Run Instrument Interface $\boldsymbol{\gamma}^{\boldsymbol{r}}$ icon, and the instrument's interface will be connected and started up. This is equivalent to the Instrument>Run Interface Module and Connect command.

Running Multiple Instrument Interfaces

One of SpatialAnalyzer's strengths is its ability to gather data simultaneously from multiple instruments in the same job file. This can be done with any combination of instruments, and users may connect and disconnect instrumentation at will. The process for adding additional instruments is exactly the same as adding the first. Just follow the procedure outlined in earlier sections.

Connection Configurations

Instruments can be categorized by the connection type used to interact with the computer. These fall into several basic categories:

- Serial Devices. Serial devices (such as RS-232) require a functional serial port on the user's computer and the use of a serial cable. USB to serial adapters are available should your computer not have a serial port (We have had success with DIGI Edgeport adapters, which although are more expensive, have been quite reliable). Refer to the individual following sections for more specific configurations.
- Bluetooth devices. Bluetooth devices require a Bluetooth receiver on the user's computer. If your computer does not have a built-in Bluetooth connection, a relatively inexpensive module, such as a Rocketfish ${ }^{\text {TM }}$ Micro Bluetooth Adapter, can be purchased from most office supply stores.
- Universal Serial Bus (USB). USB connected devices typically require the installation of a USB driver for the instrument. The latest drivers for supported instruments can be found on NRK's FTP site at: ftp://ftp.kinematics.com/pub/SA/Install/Driver Downloads/.
- Network-connected devices (TCP/IP). The majority of instruments used in SpatialAnalyzer are network-connected devices. This connection type provides extremely fast and reliable connections either directly to the host computer or over a network.

IP-Based Instruments

IP Address Basics

An IP address is an identifier for a computer or device on a TCP/IP network. Networks using the TCP/IP protocol route messages based on the IP address of the destination. The format of an IP address (at least for the original, IPv4 version) is a 32-bit numeric address written as four numbers separated by periods. Each number can be zero to 255 . For example, 1.160.10.240 could be an IP address. Within an isolated network, you can assign IP addresses at random as long as each one is unique.

The four sets of numbers can be thought of as a mailing address. State, City, Street and House number. Anyone can live in the same State and City and reside on the same street, however there can't be duplicate house numbers. So if an instrument has an IP address of 128.128.128.100, the computer must have a different "house number", such as 128.128.128.99.

Computer and Instrument Setup

Figure 12-17. A tracker connected directly to a computer via an ethernet cable.

- Host computer and instrument have unique IP addresses.
- It is typically easier to place the host computer on the same IP
family as the instrument.
- As an example the instrument IP address is 192.168.0.168
- The host computer would need a unique IP address on the same IP family.
- Change the host computer to 192.168.0.100 for example.
- To test the connection use the Ping function in the SA network browser (Figure 12-18).

```
SA Network Browser 
```

If multiple instruments exist on the network and they belong to the same family, no changes are needed. If they do not belong to the same family the host computer must be configured to have multiple IP addresses. See the section below regarding Multiple IP Setup.

Changing a Static IP Address

Windows XP

1. Navigate to the Control Panel via Start>Control Panel.
2. Select Network Connections to browse current connections.
3. Select the connection of interest and right-click to select properties (Figure 12-19).

Figure 12-19. Selecting the connection properties.

4. Select Properties. Once inside of the Properties dialog choose - Internet Protocol (TCP/IP) and select properties.
5. Enter in the desired static IP address and subnet mask.

Windows Vista/Windows 7

1. Navigate to the control panel via the Start Menu
2. Select View network status and tasks ave to view the current connection.
3. Select the connection of interest.

Figure 12-21. The Windows 7
Network Connections dialog.

4. Select Properties. In the Properties dialog, choose \rightarrow ntemet Protocol Version 4 (TCP/PV4) and click the Properties button.
5. Enter the desired static IP address and subnet mask.

Figure 12-22. The Windows 7 IP settings dialog.

Multiple IP Setup (Dual IP)

Cases exist where the host computer and multiple instruments are unable to reside in the same IP family (subnet). In this case, the host computer can be configured to handle multiple IP addresses.

1. Follow the above directions to set a single static IP address.
2. Once the first static IP address is set, select the Advanced button at the bottom of the dialog.
3. Click the Add button and enter the additional IP addresses (Figure 12-23).

Measurement Simulation

SpatialAnalyzer allows for instruments and measurements to be simulated (Figure 12-8). This can aid in planning a job, analyzing instrument setup uncertainty, training, etc.

Figure 12-24. Measurement simulation.

The "Fabricate Measurement" command will create simulated measurements from the selected instruments and points.
Measurement error can be injected to simulate real world conditions. The error is based on the uncertainty model of the selected instrument.
4.

[^6]
Instrument Quick-Starts

These instrument Quick-Start guides are designed to supplement the manufacturer's instrument device manuals by providing straightforward, easy to follow steps to quickly get instruments up and running in SpatialAnalyzer. You may wish to reference them when setting up your instrument with SA for the first time.

Laser Trackers

See Quick-Start section of the chapter on Measuring With Laser Trackers (see "Laser Tracker Quick-Start Guides" on page 362).

Portable Arms

See Quick-Start section of the chapter on Measuring With Portable CMM Arms (see "Portable CMM Quick-Start Guides" on page 428).

Total Stations

See Quick-Start section of the chapter on Measuring With Total Stations (see "Theodolite and Total Station Quick-Start Guides" on page 479).

Photogrammetry

See Quick-Start section of the chapter on Measuring With Photogrammetry (see "Photogrammetry Quick-Start Guides" on page 505).

Laser Radar Interface

See Quick-Start section of the chapter on Measuring with the Laser Radar (see"Nikon Laser Radar" on page 535).

Room Scanners

See Quick-Start section of the chapter on Measuring with the Room Scanners (see"Room Scanner Quick-Start Guides" on page 523).

Laser Projectors

See Quick-Start section of the chapter on Measuring/Operating Laser Projectors. (see"Laser Projector Quick-Start Guides" on page 546).

Measuring With Laser Trackers

Laser trackers are prolific portable metrology instruments. They have many uses for both short- and long-range high-accuracy measurements of both discrete and scanned point data. This chapter discusses how to properly and effectively measure with laser trackers in SA.

Note: For information on starting specific trackers refer to the Quickstart Guides at the end of the chapter.

This chapter covers laser tracker operation in detail. For a selection of quick start guides which provide a reference for connection and basic operation for specific trackers models refer to "Laser Tracker QuickStart Guides" on page 362.

There are two ways to measure with laser trackers in SA. The first is through the conventional laser tracker interface, which provides access to advanced functionality and settings and allows complete control over the instrument, target definitions, and measurement modes. The second method is through the simpler Instrument Toolbar, which provides an easy-to-use, streamlined approach to laser tracker measurement.

You'll find that most tracker measurement can be carried out in the Instrument Toolbar, which provides accelerated workflow for common tasks such as discrete and stable point measurement and spatial scanning. However, when more control is needed-or when detailed settings or profiles need to be created or modified-the traditional laser tracker interface provides the ability to work at a deeper level.

We'll first cover the laser tracker interface in detail, then cover the Instrument Toolbar.

Laser Tracker Interface

SpatialAnalyzer's laser tracker interface (Figure 14-1) provides the operator with a great deal of control when measuring with a laser tracker device. The interface has five main sections: the menu and toolbar, target naming, measurement control, measurement profile control, and additional controls.

At the top of the interface, an interface docking button 国toggles between docking the interface to the SA window or letting it float as a separate window. If the instrument interface is opened without running $S A$, or if the interface is run on a machine other than the machine running SA, this button is unavailable (as there would be no instance of $S A$ on the computer to dock with). If more than one interface is running, docking an interface will replace any currently docked interface.

Interface Overview

Menus
Use the menus to get to detailed tracker settings, instrument monitoring utilities, compensation check routines, and other instrumentrelated utilities.

Toolbar

Figure 14-2. The tracker interface's toolbar.

The toolbar (Figure 14-2) provides buttons for commonly-accessed areas of the instrument interface.

Status Indicators
Two colored status indicators (sometimes referred to as traffic lights) indicate the current status of the weather station and tracker beam.

Target Naming

Figure 14-3. Naming for mea-
sured targets.

Controlling target names (Figure 14-3) is an important part of the tracker interface. Use this section to control how measured points are named and organized in the SA tree.

Measurement Control

Figure 14-4. Measurement buttons.

These controls (Figure 14-4) provide access to the critical measurement commands required for operating a laser tracker, including taking a measurement, returning the instrument to the home position, and setting the active target.

Measurement Profile Control

Figure 14-5. The measurement profile dropdown.

This section (Figure 14-5) allows you to quickly switch to any number of predefined measurement profiles. These profiles precisely control what's measured, how it's measured, and what's done with the mea-
surements once they come into the interface.

Additional Controls

Figure 14-6. Additional tracker controls.

The additional controls (Figure 14-6) give you the ability to set and recall remote home positions, perform ADM locks, drive the tracker servos via a variety of different methods, switch to the Laser Tracker Toolbar, and navigate an inspection in the SA Toolkit.

Collection/Instrument ID

When an instrument is added to an SA job, it is assigned an index number. The index (which, for a given collection, begins counting from zero) is used to associate measurements to instruments and also to differentiate one instrument from another, since multiple instruments (of the same type) are frequently added to a job to enable multiple station surveys. The instrument index number is incremented by one as each new instrument is added to a collection. This text displays the connected instrument's collection, index number, and name.

Beam Status

The Beam Status indicates both the current state of the laser tracker beam, as well as the distance measurement technology being used (IFM vs. ADM). There are four possible states:

Green. The tracker is locked onto the retroreflector, and the range data has been set using IFM (Interferometry) technology.

- ADM Green/ADM. The tracker is locked onto the retroreflector, and the range data has been set using ADM (Absolute Distance Meter) technology.
- Yellow. The tracker has locked onto the retroreflector, but a valid distance measurement has not yet been attained.
- Red. The tracker is not currently locked onto the retroreflector, and valid range data is not available.

Power Lock
For instruments that support Power Lock, this functionality can be toggled on and off by clicking the Power Lock button (Figure 14-7).

Figure 14-7. The Power Lock
toggle button.

Target Naming

Figure 14-8. The collection, group, and target name for a measured point is specified here.

Each measured point in SA has a collection, group, and target name (Figure 14-8). This naming system is used for organizing measured data into logical groups. In general, before taking a set of measurements the target naming section should be filled out in order to measure points into the proper collections and point groups.

Collection

Enter the destination collection name for the resulting targets or geometries, or select an existing collection from the dropdown. If this field is left blank, the measurements will be placed by default into the active collection.

Group

To place measured targets into an existing point group, either type in the group name or select it from the dropdown. To place measurements into a new group, enter a new name into the field.

- Increment/Decrement. The Increment/Decrement button ++allows you to quickly increment or decrement the current group name by one. To increment a group, left-click this button. To decrement, right-click the button. If a group name does not have a numeric suffix, one will be added automatically.
- Increment Checkbox. The increment checkbox ∇ Inc specifies whether a group name should be automatically incremented at the completion of a measurement profile. If checked, then when a measurement profile completes the group name will automatically increment by one. Otherwise, the group name will not be changed at the completion of a measurement profile. This is perhaps most commonly used when measurement profiles are iterated.

Target

Enter a name for a specific target (measured point) into the Target field. This target name is automatically incremented after a measurement. If a target name does not have a numeric suffix, one will be added automatically. If the increment checkbox ∇ Inc is checked next to the

Group field, then the target name will reset to 1 after the group name has been incremented.

- Increment/Decrement. The Increment/Decrement button++/quickly increments (left-click) or decrements (right-click) the target name by one. If incrementing and a target name does not have a numeric suffix, one will be added automatically.
- Delete Last Point. The Delete Last Point button X will delete the most recently measured point, if it exists.
- Increment Checkbox. The increment checkbox ∇ Inc increments the point name when enabled, and leaves the point name as-is when disable. It is on by default (and is automatically turned back on every time you start the interface). Turn this off only if you intend to take multiple observations under the same point name.

Measurement Control

Figure 14-9. Controls for measurement.

Measure
Triggers the active measurement mode, which can do anything from take a single measured point to trigger a scan. The name of the currently active target in the interface is listed on the Measure button.

Home
The Home button sends the instrument back to its home position and attempts to lock on the active reflector. The instrument interface will wait until it is able to successfully lock onto the reflector or the operator aborts the process. A successful lock on the reflector sets the beam status indicator to a green state.

Some trackers do not have a home position defined. In this case, this button will be grayed out.

Target/Reflector Quick Select

Since changing target definitions happens somewhat frequently when measuring with a tracker, the target/reflector quick select buttons allow you to assign up to four target definitions to quick-select buttons. Once defined, a simple left-click activates the new target, avoiding the need to navigate into the targets/reflectors dialog to activate a different target. For more on target definitions, see Targets and Retros below.

To Assign a Defined Target to a Quick Select Button:

- Right-click the desired button and select the named target from the list.

Measurement Profile Control

Figure 14-10. Measurement
Profile control.

The Measurement Profile dropdown (Figure 14-10) allows you to select any of the saved profiles and set it as the active profile. After doing so, clicking the Measure button initiates that selected profile. There are also four profile quick select buttons, which allow you to easily assign a profile definition to each.
To Assign a Defined Measurement Profile to a Quick Select Button:

- Right-click a button and select the desired profile from the list. For more on measurement profiles, see "Measurement Profiles" on page 321.

Additional Controls

Remote Home

A remote IFM home can be established in the laser tracker interface. A remote IFM home allows you to define a new "home" position which is used by the tracker for seeding the IFM distance value. This new position will have a stored IFM distance which will be used to initialize the tracker's range when locking onto this remote home position. The major advantage of this capability is that when working in a position that makes it difficult or time-consuming to access the tracker home position (such as when on scaffolding or far from the tracker), you can define a new home position. By pressing the Remote Home button, the tracker will point to the defined home position and wait for a retroreflector. Once a retro is acquired, the IFM distance value will be initialized by the stored value.

Note that when a remote home position is specfied the remote home button will contain the custom name of the remote home position.

To Define a New Remote Home Position:

1. Click the Set button. The Remote IFM Reset Positions dialog will appear (see Figure 14-11).

Figure 14-11. The dialog used for setting remote homing positions.

Figure 14-12. A remote home position has been set.

2. Place the retroreflector into a monument or other stable point of reference and click the Add button. The current position will be measured and added to the window.
3. Click the Name or Notes fields to add a custom name to the remote home position, or a custom note about the position (see Figure 14-12).

To Set a Remote Home Position as the Active Remote Home:

1. Click the Set button. The Remote IFM Reset Positions dialog will appear.
2. Select the remote home position you'd like to activate.
3. Click the Set Selection Active button.
4. Click the OK button. The Remote Home button will list the new active remote home position.

To Change How a Remote Home Position is Measured:

1. Click the Set button. The Remote IFM Reset Positions dialog will appear.
2. Click the View/Edit Acquisition button.

3. In the Remote Reset Acquisiton dialog (see Figure 14-13), choose the desired parameters for the remote home measurement. For more details on the specific parameters see "Measurement Profiles" on page 321.
4. Click the Save button.

To Point to and Lock on Any Specific Remote Home Position:

1. Click the Set button. The Remote IFM Reset Positions dialog will appear.
2. Select the row containing the desired remote home position to point at and lock on.
3. Click the Lock on Selection button.

To Delete a Remote Home Position:

1. Click the Set button. The Remote IFM Reset Positions dialog will appear.
2. Select any row containing the remote home position to delete.
3. Press the Delete key and confirm the deletion.

To Lock on the Active Remote Home Position:

1. Set the retroreflector into the nest/monument at the currently active remote home position.
2. In the tracker interface, click the Remote button. The tracker will point to the remote home position and lock onto the reflector.

Find Target

Note: Depending on manufacturer and proprietary methods, some trackers may not show the ADM indication after locking back on.

The Find Target button will force the tracker to spiral outward from the tracker's current pointing direction and lock onto the first reflector that it can find, using the Absolute Distance Meter (ADM) for the distance measurement. Once locked, the green beam status indicator with the "ADM" label will be displayed, indicating that range has been set via ADM.

To Lock Onto a Reflector Using ADM:

1. Point the tracker generally toward the reflector you'd like to lock onto. The closer the tracker is pointed to the center of the reflector, the faster the lock will occur.
2. Click the Find Target button and wait for the tracker to find and acquire the reflector.

To Adjust the Search Parameters for ADM Reset:

1. From the interface menu, select Settings $>$ Tracker $>$ General Settings, or click the Settings

2. The General Tracker Settings dialog (Figure 14-14) will appear. The ADM Search Parameters section contains the applicable settings, which are described below.

- Seed Distance. Coupled with the Radius value, the Seed Distance is used to calculate the maximum horizontal and vertical angles for the tracker's spiral search. This value is typically set to the distance of the most recent measurement. As a general rule, if you have trouble locking onto a target, this value should be similar to the approximate distance from the tracker to the SMR.
- Radius. The outward distance (perpendicular to the line-ofsight) from the tracker's starting pointing direction that will be searched for a reflector.
- Timeout. If the tracker has not locked onto a reflector within this time limit (and if it is still searching), then the search will be aborted. This setting allows you to avoid a very long search operation if a large radius is used.

Drive Head/OVC

Clicking the Drive Head/OVC button opens a window giving you the capability to point the tracker using one of several manual methods, such as using the keyboard or mouse (Figure 14-15). If capable, cameraequipped trackers will display a video window when this mode is active.

Figure 14-15. Driving a tracker
with the keyboard.

To Steer the Tracker to a Target:

Note: This method may vary depending on instrument manufacturer.

- With the Keyboard Drive/ADM dialog open, use the arrow keys to move the tracker beam.

Inspection Navigation
Three Inspection Navigation controls are available at the bottom of the tracker interface (Figure 14-16). These controls are designed to be used while trapping measurements, either as part of an inspection routine using the SA Toolkit or via other measurement trapping methods.

Figure 14-16. The Inspection
Navigation controls.

The left and right arrows jump to the previous or next feature for trapping, and the stop button stops all trapping operations.

Targets and Retros

When tracker measurements are taken, the planar and radial offsets are stored with the measured points. Since laser trackers aren't aware of the target or tooling being used, you need to keep the interface informed of which tooling you're using, so that the proper offsets can be assigned to measurements--and so those offsets can be accounted for when analyzing to surfaces or fitting geometry. The Targets/ Retros button opens the Reflectors and Targets dialog (Figure 1417) and provides the capability for defining new targets.

Figure 14-17. The Reflectors and Targets dialog.

This dialog is divided into three main areas: Manufacturer Definitions, User Definitions, and Targets.

Manufacturer Definitions

Every laser tracker controller has a set of defined reflectors that the instrument supports. For example, trackers commonly support 1.5", $0.875^{\prime \prime}$, and $0.5^{\prime \prime}$ SMRs, in addition to other peripheral devices. A tracker needs to know which defined reflector is being used for several reasons--one of which is that it tells the tracker which nest to return to when homing.
The list of manufacturer definitions is populated automatically when you open the dialog. In certain cases, the list may need to be refreshed. Clicking the Reload button will poll the controller and retrieve an updated list of manufacturer-defined reflectors. Note that this list may also include 6-DOF devices, mirrors, or other peripherals. Note that this list cannot be modified, and the selected reflector for the active target definition (see below) will be checked.
User Definitions
A user-defined reflector is essentially a manufacturer-defined reflector that has a custom measured ADM offset and/or a custom home position. ADM offset correction is applied when the difference in beam travel length when comparing the red laser to the ADM signal (due to refraction/dispersion) is significant. This is usually the case when the reflector has a clear windowed housing to protect the mirror, or when the reflective surface of the SMR is not the front face (the beam must travel through some material other than air before being reflected). ADM offsets apply a small correction to the measured distance value to account for the different behavior of ADM-wavelength signals.

There are two methods to create a user-defined reflector: Add: Copy Selected Mfcr Reflector or Add: Measure In Nest.

- Add: Copy Selected Mfcr Reflector. Creates a user-defined reflector using the same home position as the selected manufacturer reflector when the button is clicked.

Note: This option is not us able with FARO trackers.

- Add: Measure In Nest. Creates a user-defined reflector using a custom home position (nest).

To Create a User-Defined Reflector with a Custom Home Position (Non-FARO trackers only):

1. Lock the beam onto your custom reflector and place it into the custom nest.
2. From the Targets and Retros dialog, click the Add: Measure In Nest button.
3. When prompted, click Yes to measure.
4. A new user-defined reflector will be added to the table.

To Create a User-Defined Reflector Using an Existing Home Position:

1. Select the manufacturer-defined reflector whose home position you'd like to use from the Targets and Retros dialog.
2. Place your reflector in the appropriate nest, then click Add: Copy Selected Mfcr Reflector.
3. When prompted, click Yes to measure.
4. A new user-defined reflector will be added to the table.

To Delete a User-Defined Reflector:

1. Select the user-defined reflector.
2. Press the Delete key.

To Rename a User-Defined Reflector:

- Double-click the Name field for the user-defined reflector, and type in a new name, then press Enter.
To Measure an ADM Offset for a Custom Reflector:

1. Select the desired user-defined reflector in the Reflectors and Targets dialog and home on the reflector.
2. Click the ADM Offset Check - Selected Reflector button. The ADM Check/ Cal dialog will appear (Figure 14-18).

Figure 14-18. Measuring ADM offset.

3. If desired, set the measurement parameters for the ADM check by clicking on the View/Edit Acquisition button. These parameters are similar to the Discrete Point Measurement acquisition settings (see below).
4. Place the SMR in several positions (at least 5) around the desired measurement volume, and click the Measure Current Position button in each. The tracker will take an IFM and ADM measurement, recording the difference for each observation.
5. Applying a threshold (by setting the Threshold setting and clicking the Apply Threshold button) will highlight any observations in which the difference between the IFM and ADM measurements exceeds the threshold.
6. To ignore any specific measurement for the ADM offset calculation, uncheck its Use checkbox. The Home button will send the tracker home, and the Closure button will measure closure on the tracker.
7. When you feel you have taken sufficient measurements, click OK/Apply to apply the calculated ADM offset to the reflector, or Cancel to close the window and discard changes.

Targets

The targets section lists all of the defined target configurations for the tracker. Target configurations consist of a selected reflector and any combination of measurement tooling. This tooling, along with the reflector, determines the total offset of your measurements.

For instance, a simple $1.5^{\prime \prime}$ SMR is a target configuration, as is a $7 / 8^{\prime \prime}$ SMR. A $1.5^{\prime \prime}$ SMR with pin nest is also a target configuration, as is a 6 mm retro-probe or point probe. Each of these different configurations has a specified planar offset and lateral, or radial, offset.

After adding a target configuration, it will appear as a row in the Targets table at the bottom of the Reflectors and Targets dialog (Figure 1419).

Figure 14-19. The new target definition is in the Targets table.

This table has a number of columns that describe the attributes of the target:

- Active. The checked target is currently active, and its offsets will be applied to any measurements.
- Name. The custom name for the target configuration.
- Reflector/Probe. The manufacturer- or user-defined reflector used by the target configuration.
- Probe Radius. The radius of the spherical reflector or probe.
- Extra Planar Offset. An additional offset that is applied in addition to the probe radius when planar offsets are used (such as fitting a plane). The total primary (planar) offset is the sum of the probe radius and extra planar offset. For example, when using a $1.5^{\prime \prime}$ SMR with standard pin nest, the total offset is $0.75^{\prime \prime}$ (Probe Radius) $+0.25^{\prime \prime}($ Extra Planar Offset $)=1.0^{\prime \prime}$.
- Lateral Offset. The lateral (radial) offset to use when fitting circles and ellipses for features such as holes and pins. When using a purely spherical probe, the lateral offset is equal to the probe radius. For an edge nest, it's zero--and for a pin nest, it's equivalent to the shank radius.

To Define a New Target Configuration:

1. In the Reflectors and Targets dialog, select the desired manu-facturer-defined or user-defined reflector from one of the top two tables, as appropriate.
2. Click the Add: From Selected Reflector button. The Add Targets dialog will appear (Figure 14-20).

Figure 14-20. Adding predefined targets.

3. From the options, pick one or more targets to define, then click 0K. (For a definition of these options, see below).
4. One or more new target definitions will be added to the Targets table, depending on the selected items.

When defining a new target, the Add Targets dialog provides several shortcuts for common tooling configurations.

- SMR or Probe. Adds a separate target configuration entry for the individual probe/reflector only.
- Pin Nest. Adds a target configuration for the selected reflector with a pin nest (you define the shank radius and planar offset.).
- Plane Nest. Adds a target configuration for the selected reflector with a plane nest (you define the planar offset).
- Edge Nest. Adds a target configuration for the selected reflector with an edge nest (you define the offset).
- 6 mm Diameter Probe. Adds a target configuration assuming the use of a retro probe with a 6 mm diameter probe.
- 3 mm Diameter Probe. Same as 6 mm Diameter Probe, except using a 3 mm probe instead of a 6 mm probe.
- Point Probe. Same as above, except assuming a point probe (no offsets).
- Probe. Allows you to enter a custom retro probe radius.

In addition to selecting the predefined options, you can also manually modify the Extra Planar Offset and Lateral Offset columns to use any desired numeric value. You may even see negative values. As long as you remember that the total planar offset it the sum of the probe radius and extra planar offset, the numbers should always make sense. For example, if $1.5^{\prime \prime} \mathrm{SMR}$ is the selected reflector for use with a retro probe with a point probe, then the probe radius will be $0.75^{\prime \prime}$ and the extra planar offset will be -0.75".

To Rename a Target Configuration:

1. Double-click the Name field for the desired target in the Targets table of the Reflectors and Targets dialog.
2. Type a new custom name, then press Enter.

To Delete a Target Configuration:

1. Select the desired target to delete in the Targets table.
2. Press the Delete key and confirm the deletion.

To Make an Editable Copy of a Target Configuration:

1. In the Targets table, select the target configuration to copy.
2. Click the Add: Copy Selected Target button.
3. A copy of the selected target configuration will be added to the table.

To Make a Target Configuration the Active Target:

Measurement Profiles

- In the Targets table, check the Active checkbox next to the target configuration you'd like to activate.

Measurement profiles are defined parameters for acquiring data (taking measurements), operating on that data, and then "doing something" with that data. For example, the most common and simplest measurement profile is one in which clicking the Measure button takes a single measured point. But there are many more capabilities, such as stable point or spatial scan acquisition modes, as well as many operations that can be performed on data (such as fitting geometry, creating cloud points, etc.). Measurement profiles are essentially custom presets. By defining your own custom presets for different tasks, you can easily switch from one profile to another and progress through pre-defined measurement profiles without taking time on the shop floor to adjust settings. This is most advantageous when performing repeated measurements of parts. Clicking the Measure button initiates a measurement profile, and it concludes when the profile is completed.

To edit or define new measurement profiles, click on the View Selected Meas Profile \& button. This will open the Meas Profile Parameters window (Figure 14-21).

If, after modifying the measurement profile parameters, you decide that you'd like to revert to the settings saved to the profile on disk, click the Refresh Popped Profile Parameters to Saved State button At the top of the dialog is the name of the profile being viewed. In the screenshot above, it's Single Pt. to SA. There is a Save button to save the current settings and overwrite the existing profile, and a Save As button to save the settings as a new profile.

- Iterate this Profile \mathbf{X} times. This setting will repeat the complete profile a given number of times.

To illustrate the profile iteration setting, consider an example in which you wish to measure a bolt hole pattern with 24 holes. Suppose you set a profile to measure points spaced by 0.1 "around a bolt hole, then fit a circle and create a point at the center of that circle. Since you'd want to repeat that process for the remaining 23 holes, you'd set the interface to iterate the profile 24 times and measure the entire bolt hole pattern--all requiring you to press the measure button only once.

There are two major sections in the Measurement Profile Parameters dialog: Acquistion and Operation. The Acquisition section defines how measurement data is acquired, and the Operation section defines what is done with that measurement data once it's obtained. Details for these two sections are provided next.

The acquisition section, as its name implies, determines how measurements are acquired by the tracker. You can measure a single point on command, measure points spaced by time or a distance, measure points on specified cross sections, and much more. The dropdown (Figure 14-22) allows you to specify the acquisition mode to use for the current measurement profile. When you select a mode, the parameters unique to that mode appear, which you can adjust as desired.

Each of the default primary acquisition modes is described below. For each measurement mode, only the parameters not already discussed will be covered.

\oplus Discrete Point (Fast/Standard/Precise Point on Leica trackers)

This mode acquires a single point when the Measure button is clicked. (For Leica trackers, Fast/Standard/Precise controls the length of time that samples are taken, since the sampling frequency is not configurable).

- Points. Specify the number of points you would like to measure. Leave the value at " 0 " to continue repeating measurements.
- Samples/Pt. The number of samples to average together in calculating a single discrete point. This is particularly useful for noisy environments, or cases in which vibration is encountered. This setting proportionately affects the time required for an individual measurement.
- PPM Tolerance. Sets the allowable RMS error for measurements based on the distance of the measurement from the instrument. For example, at the default value of 20 PPM, a measurement 7.21 m from the instrument would have an allowable RMS error of $7.21 \mathrm{~m} \times(20 / 1,000,000)=144.2$ microns. If after collecting all samples for the point this allowable RMS is smaller than the actual RMS, a Tolerance Exceeded dialog will appear.

Figure 14-22. Choosing an
acquisition mode.
ples, in Hz. If this rate is not achievable by the instrument, the closest value will be used. This rate inversely affects the time required to take a measurement. A higher frequency will result in faster measurement. Note that Sampling Frequency, in combination with the Samples/Pt setting, determines the duration of measurement. For example, a discrete point measurement at 50 samples/pt and 100 Hz will result in a measurement time of 0.5 secs.

- Sample on Controller. Specifies whether the samples are acquired on the tracker controller, or by the instrument interface. Acquiring samples on the controller will often permit a higher sampling frequency, but since SA does not have access to the individual sample data it cannot provide statistical information about the samples unless the controller makes it available.
- Front/Back. If checked, each measurement will consist of both front and back face measurements.
- Send Ft/Bk Points As. When measuring front face and back face, the individual face measurements can be sent as Separate Obs, in which case they become two separate observations under the target, or as Single Avg Pt, in which the front-face and back-face measurements are averaged together for a single observation.
- Auto-Outlier Rejection. If enabled, SA will perform outlier rejection on the samples (see Auto-Outlier Threshold, next).
- Auto-Outlier Threshold. The sigma value outside of which samples should be discarded. When measurement samples are collected, SA performs a statistical analysis and determines the standard deviation of the measurements. This value, specified in sigmas, indicates which samples should be thrown away and excluded from the samples used to calculate the average point coordinate. For example, a value of 3 indicates that all samples outside of 3 sigma should be tossed away.

(4)" Stable Point (Fast/Standard/Precise Stable Point on Leica trackers)

Stable Point acquisition mode waits for the reflector to move and then become stable again. Once stable for a specified period of time (2 seconds by default), a discrete measurement is taken. This cycle is repeated for as many points are specified in the profile. This acquisition mode is especially useful for single-operator environments, because the measure button only needs to be clicked once for the entire profile. (For Leica trackers, Fast/Standard/Precise controls the length of time that samples are taken, since the sampling frequency is not configurable).

- Stable Space. For stable point measurements, the diameter of

\# \# Hpatial Scan

\#
a sphere that the probe center must remain inside to be considered stable for purposes of triggering measurement.

- Stable Time. For stable point measurements, the amount of time the probe center must remain inside the stable space to be considered stable for purposes of triggering measurement.
- Measure When Beam Found. This option is no longer used.

Spatial Scan measures points spaced by a specified distance. Each time the reflector moves the prescribed distance from the previous measurement, another measurement is triggered. Be aware that this distance will not be perfect, as hardware sampling rate, reflector speed, computer clock speed, network latency, and other factors introduce lag between when the prescribed increment is detected by the instrument interface and when a measurement is taken.

- Start Trigger. Indicates what trigger is to be used to start the measurement profile. After the Measure button is clicked, Button/ delay delays the prescribed number of seconds (in Delay Before Measuring below) before measurement starts. Button/stable waits for the probe to move, then become stable again before triggering measurement.
- Delay Before Measuring. Used when Start Trigger is set to Button/delay, the number of seconds to delay before initiating the measurement profile.
- Pause @ BeamBreak. If active, the measurement profile will be paused if the beam is broken, and resumed when the beam is locked again.
- Stop Trigger. Indicates what event is used to signify the completion of the measurement profile. \# Points stops measuring when the specified number of points is reached. Beam break stops measuring when the beam is broken. Loop stops measuring when the target loops back to its original measuring position, completing a closed loop.
- Increment. For spatial scanning modes, indicates the desired spacing between adjacent measurements.

Measurements are triggered at a specified time interval. Due to sampling frequency, latency, and other factors, there will be small discrepancies between actual and requested spacing.

Equally-spaced cross sections can be established along the X, Y, or Z axis of the working frame at a specified distance. These sections trig-
ger a measurement as the probe crosses the plane.

- Sampling Increment. Indicates the spacing between adjacent samples.
- Working Frame Axis. The axis along which the planes should be located.
- Axis Cross Value. The position along the specified axis to locate the cross section.
- Use Closest Point. Indicates whether the closest point to the section should be used (raw measurement), or whether a point directly on the cross section should be used (interpolated between the closest point on each side of the plane).

\& Auto-Sphere

Spatially-spaced measurements will be taken, and when data is seen to be spherically distributed, SA will automatically fit a sphere to that data.

- Fit Threshold. A set of measured points must fit a sphere to better than this value to be considered a valid sphere.
- Lock Radius. If enabled, the resulting spheres must have the specified radius.
- Lock Rad Value. Specifies the radius to use when locking.

Planes, cylinders, and spheres can be configured to act as measurement triggers such that when a probe crosses the specified geometry, a measured point is recorded.

- Geometry Triggers. Defines the geometry used to trigger measurement in Geometry Trigger acquisition. To define triggers, click the NoneSet box.

The Make Geometry Crossing Triggers dialog will appear when defining geometry triggers for this mode (Figure 14-23). There are three trigger types: planes, cylinders, and spheres. The Select button allows you to select existing geometry from the SA file to use as triggers. The Cartesian, Cylindric, and Concentric buttons provide options for using planes spaced along a Cartesian axis, Cylindrically rotated about an axis, or to create concentric cylinders. When Draw In SA is selected, the geometry will be physically created in the SA file.

There are two sampling methods for the geometry: Closest Pt. and Interpolate. Closest Pt. uses the closest sample to the geometry as the resulting measured point, whereas Interpolate creates a point directly on the geometry by interpolating between the closest samples on each side of the geometry.

Figure 14-23. Defining geometry triggers in the tracker interface.

When Group Separately (Append Trigger Name) is selected, the measurements will be placed into separate point groups based on the specific geometry that triggered them.

䓵

Repeated discrete point measurements are taken spaced by a specified time. Note that this differs from Temporal Scan in that temporal scan has only a single sample per point and assumes that the target is in motion. Time-Spaced Points has a configurable number of samples and assumes that the target is stationary during the sampling process.

- Time Between Points. The time to wait between successive discrete measurements.

${ }^{*}$ High Point

1
Warning: Offset compensation is automatical-
ly applied to the high point, and its planar offset is set to zero. Points are shifted toward the axis when using
and in the negative axis direction when using

Measurement samples are taken, and upon completion of the measurement, only the highest point along a frame axis or the farthest point from a frame axis is recorded.

- Working Frame Axis. The axis $(X, Y$, or Z) to check for a high point, and whether the check should be performed along that axis or radially from that axis.

Two points are measured (A \& B), and a third (hidden) C point is constructed automatically based on the first two.

- Measure Time (secs). The time to measure each point.
- Bottom Pt Offset. The distance from the bottom (B) point to the hidden point.
- Planar Offset. The desired planar offset for the resulting hidden point.
- Radial Offset. The desired radial offset for the resulting hidden point.

4.tedge Points

Developed primarily for sheet metal work, this mode allows you to drag a probe along a flat surface, and when it begins to fall off the edge, will create a point on the edge of the surface.

- Edge Plane. Defines the plane that the probe will be slid along.

Operations

Figure 14-24. Specifying the tracker interface's operation.
Operation

Inside Circle				
	Save As...			
	Delete			
Parameter	Value			
Show Fit Dialog	\boxed{V}			
Send Meas'd Points				
Fit Profile	Inside Circle			

The operation specifies (Figure 14-24) what to do with the measurements once they are obtained. Here a user can decide whether to send the points directly to SA or perform another operation. One example is using the "Inside Circle" operation: this will perform a circle fit and show the fit dialog prior to sending measurements to SA. The advantage of this type of operation is that real-time processing of measurements can take place. That is, you can fit geometry to measurements and identify potential problems right at the time of measurement.

The different basic operations are described below. For each operation, only the parameters not already discussed will be covered.

Send Points to SA

Measured points are sent on to SA to be created as normal measured points in the job file. There are no settings for this operation.

SA is updated with the latest measured position and orientation of the tracker and probe, but no measurements are created in the job file. There are no settings for this operation.

Send Cloud Points to SA

Similar to "Send Points to SA", except that instead of creating standard

© ${ }^{+}+$+ Poll Data

Note: The Poll Data operation is only useful for certain (usually older) trackers. You only need to use it if you find normal update rates to be too slow for your application.

Make A Circle

measured points, SA creates cloud points. The major advantage of using this operation is seen when measuring a large number of points with a laser tracker (greater than $\sim 20,000$). For efficiency purposes, best practice when taking large volumes of data is to use cloud points, because the metadata associated with normal measured points consumes a large quantity of RAM.

- Buffer Size. The number of points to buffer in the interface before sending them over the network to SA. Only advanced users should modify this value, and only with good reason.

Certain trackers take a relatively long time to return a measurement update when asked. For applications that operate best with data supplied as close to real-time as possible (such as Trans-Track), you may find it preferable to put the tracker into the "Poll Data" operation instead of "Watch Update", which may yield faster updates.

A circle is automatically fit to the measured data.

- Show Fit Dialog. When enabled, the geometry fit dialog will be displayed at the completion of the measurement profile.
- Send Meas'd Point. When enabled, measured points will be sent to SA in addition to the resulting circle.
- Fit Profile. The geometry fit profile to use for fitting the circle. Click the box to modify the profile (see the chapter on Geometry Fitting). Right-click to use an existing profile.
- Projection Plane. The data can be automatically projected to a plane prior to the circle fit. This is particularly useful when fitting a circle to data that may not be measured along a cylinder's cross-section. For details, see "Projection Planes" on page 331.

A plane is automatically fit to the measured data.

- Patch Shift. Shifts the resulting plane an additional amount after compensating for probe offset.

A sphere is automatically fit to the measured data.
-IMake A Cylinder
A cylinder is automatically fit to the measured data.
2Make A Line

A line is automatically fit to the measured data.

Auto Proximity

Used for certain auto proximity automatic measurement modes. Sends data to a command in SA to be interpreted.

SSingle Point Circles

\int Note: This operation reduces accuracy when burrs or chamfers exist on the hole edge, or if the hole is out of round.

This operation is effective for measuring a hole with a single point. With a projection plane defined, place the probe into a hole and take a single measurement, and the resulting circle will be created based on the probe diameter and the degree to which the reflector sunk down into the hole.

- Lock Radius. Forces the circle to be locked to a specified radius.
- Locked Radius. The radius to use when Lock Radius is enabled.
- Intersection Plane. The plane defining the top surface of the hole can be selected from an existing plane by left-clicking this option, or measured as part of the operation by right-clicking this option. For details, see"Projection Planes" on page 331.

\#Patch Points

Projects all measurements to a specified plane.

```
$3-Plane Point
```

Creates a point at the intersection of 3 measured planes (such as the corner of a box).

- Plane1/Plane2/Plane3. The three planes defining the corner to measure. Existing planes can be used by left-clicking this option, or measured as part of the operation by right-clicking. For details, see "Projection Planes" on page 331.

*. Send Frame Updates to SA

Updates SA on the position and orientation of a frame without actually creating any frames in the SA job. Offset frames and offset points can be sent as well. Sending frame updates requires a 6-DOF device.

- Frames To Send. You can send a Raw Frame (the frame from the device), an Offset Frame (a frame offset from the raw frame), or an Offset Point (the origin of an offset frame).
- Offset Frame. Click this parameter to define an offset frame to send. For more information, see "Offset Frames" on page 331.

Constructs frames measured from a 6-DOF device in the SA job.

- Frames To Send. In addition to Raw Frame, Offset Frame, and Offset Point (described above), you can also send Both Offsets (offset frame and point), Both Frames (raw and offset frames), Pt. \& Raw Frame (offset point and raw frame), and All (raw and
offset frames \& offset point).

Projection Planes

Certain operations (such as Make a Circle \& Make a Plane) allow measurement data to be projected to a plane prior to the operation. Projection planes handle the settings for this.
To use an existing plane as the projection plane for a measurement operation:

1. Click the box next to Projection Plane in the operation's parameters.
2. Select an existing plane in the SA file.

The projection plane may also be measured as part of the operation.

To Measure The Projection Plane As Part Of A Measurement Profile:

1. Right-click the box next to Projection Plane in the operation's parameters. The Plane Options dialog will appear.
2. Pick the appropriate settings (see below), then click OK. The plane will be measured as part of the measurement operation.

- Regenerate in SA. The measured fit plane will be created in the SA file.
- Remove from Profile. If this option is checked and you click 0K, the existing defined projection plane will be cleared.
- Fit To Points. The specified number of points will be gathered as part of measurement to define the plane.

Offset Frames

Offset frames allow you to measure a raw frame with a 6-DOF device, then send an offset frame or point that is spatially offset from the raw frame. The offset frame maintains its relative position and orientation to the raw measured frame.

To measure offset frames, you must first measure and construct the offset frame itself. This frame will be transformed as part of the operation. Then, you must also measure the raw frame, which defines the delta from the reference to the offset frame. As the raw frame is updated and moved, the offset frame will be updated as well.

To Measure Offset Frames:

1. In the Meas Profile Parameters dialog, select a measurement operation supporting offset frames (Send Frame Updates To SA or Send Frames To SA).
2. Select the desired feature to send from the Frames To Send parameter.
3. Measure the offset frame.
4. Click the box next to Offset Frame in the measurement operation's parameters. The Offset Frame dialog will appear (Figure 14-25).
5. Click the 1) Select 0ffset Frame From SA button and select the frame to become the offset frame.
6. Click the 2) Measure Reference Frame To Offset button to measure the reference frame. The target must be a 6-DOF target.
7. If creating an offset point and you'd like the offset point to have a defined probe radius, enter it in the 3) (Optional) Enter probe radius for offset point field.

Figure 14-25. Defining an offset frame.

8. Begin measuring 6-DOF frames, and the offset frame will be updated automatically.

Managing Measurement Profiles

Measurement profiles can be managed (Figure 14-26) by clicking the Manage Profiles button \square in the Laser Tracker Interface. Here you can add and delete measurement profiles. Measurement profiles can also be imported and exported, allowing them to be transferred to another computer. This also serves as a great way to back up custom profiles.
To Delete A Custom Profile:

- Click a profile to select it, then click the Delete button.

To Create A New Profile Using Existing Acquisition/Operations:

1. Click the Add button, then enter a new profile name.
2. In the appropriate dropdowns, select the acquisition and operation to associate with the profile.

To Assign A Quick-Select Button To A Profile:

- Right-click a profile and select the desired button.

To Export Profiles To A File:

- Click the Export button, then select the desired filename and
path for the .MSP file.

To Import Profiles From A File:

- Click the Import button, then select the .MSP file to import.

To Restore Measurement Profiles To Their Defaults:

- Click the Restore Defaults button.

Settings

General Settings

Access to Search Parameters, Action Time Out settings and Trackerspecific Settings can be reached by clicking the General Settings button $\%^{\circ}$ or by selecting Settings>Tracker>General Settings from the interface menu. This opens the General Tracker Settings dialog (Figure 14-27).

- Seed Distance. Specifies the estimated distance to use when initiating an ADM search. This is generally updated automatically as measurements are taken and usually does not need to be manually modified unless there is large range variation relative to the last measured point and an ADM search to find a target is not successful.
- Radius. The radius from the starting pointing position (at a distance equal to the seed distance) at which to start searching. A larger value will initiate an ADM search over a larger cone.
- Timeout. If a target has not been found after this time has elapsed, an ADM search will be cancelled.

Action Time Out

- Get Status. After requesting the tracker's status, if a response hasn't been received after this time, the request will be cancelled.
- Get System Info. After requesting the tracker's system infor-
mation, if a response hasn't been received after this time, the request will be cancelled.
- Read Weather. If a weather information request hasn't been received by this time, the request is cancelled.
- Set Weather. If a weather set operation isn't performed by this time, the operation is cancelled.

θ General Tracker Settings			Σ
ADM Search Parameters			
Seed Distance 300.0 in			
Radius 1.5			
Timeout 40 sec			
Action Time Out			
Get Status 2.5 sec			
Get System Info 2.5 sec			
Read Weather 2.5			
Set Weather 2.5 sec			
Update SA Graphics When Not Measuring			
Send 1.5 Pts/Sec (not>10)			
Toggle in Settings>> Tracker>>SA Interaction			
Stable Start and Recovery Trigger			
Stable Time 1.0 sec			
Stable Space 0.1			
\square Home At Startup			
Sim Settings	OK	Canc	

- Send x Pts/Sec. Indicates the frequency at which updates should be automatically sent from the tracker to the SA interface, even when not in a measurement.
- Stable Time. Sets the stable time (how long must the probe be stable before starting to measure?) used for stable measurement triggering (wait for move, wait for stable). This does not apply for Stable Point acquisition mode, which uses its own setting.
- Stable Space. Sets the size of a sphere within which the probe must remain to be considered stable for stable measurement triggering (not used for Stable Point acquisition mode, which has its own setting).
- Home At Startup. If disabled, the tracker will not go home when the interface is started.
- Sim Settings. The label on this button will change depending on the specific instrument connected to the interface. Click it to access parameters specific to the connected hardware.

Figure 14-28. The tracker inter-
face's Units dialog.

Click the Units button to set the active units for the interface(Figure $14-28)$. When data is sent from the interface to SA, it is automatically converted into the active job units.

Function Keys

Note: The instrument interface will not see function key presses unless it has focus, so be sure to click on the interface prior to attempting to use a function key.

Function keys can be assigned for different operations in the tracker interface (Figure 14-29). The operations that can be assigned to a function key include:

- Measure/Resume
- Watch Data
- Increment Group
- Change Face
- Find Target
- Remote Home
- Home
- Check Closure
- Motors Off
- Motors On
- Decrement Group
- Increment Target
- Decrement Target
- End Acquisition
- Iterate Quick-Select Mode
- Navigation Next
- Navigation Previous
- Navigation Stop
- Remove Last Point

To modify the function keys assigned in the interface, select

Settings>Fcn Keys from the interface menu. The Function Keys dialog will appear (Figure 14-29).

To Change An Assigned Function Key:

- Select a new operation from the dropdown for the specified function key, then click OK.

To Restore Default Function Key Assignments:

- Click the Restore Defaults button.

Figure 14-29. Defining function keys in the interface.

User Interface Settings
The verbosity of the tracker interface when displaying certain error message can be controlled using the User Interface Settings dialog (Figure 14-30), which is accessed by selecting Settings>UI from the interface menu.

Figure 14-30. The User Interface settings dialog.

- Quiet Mode (Turn off all error reporting, etc.). When enabled, error messages such as RMS tolerance violations will be suppressed.
- Discrete Point Error Report Threshold. This setting controls the minimum limit for reporting an error indicating reflector
movement during measurement. This error is normally triggered by the PPM Tolerance setting in the measurement profile's acquisition mode, and is based on distance from the tracker. However, measurements close to the tracker may trigger this warning even though the data is valid. This lower limit suppresses errors below the specified value.
- Discrete Pt RMS Monitor/Measure Indicator. Turns on the RMS Monitor (see "RMS Monitor" on page 337).
- No Delete Last Point Confirmation. When enabled, you will not be prompted to confirm deletion of points via the Delete Last Point button.
- Translate (change language). The tracker interface can be translated using a custom language, just like the SA interface. For more information, (see "Language Translation" on page $56)$.

RMS Monitor

Figure 14-31. The RMS monitor indicating an out of tolerance measurement.

The RMS Monitor (see "User Interface Settings" on page 336) is a window that can remain open and will display atop the SA interface when docked. It reports the RMS error for measurements when that measurement involves averaging of samples (such as discrete point or stable point acquisition modes).

Two tolerances can be set: warning (yellow) and out (red). The RMS error of the previous measurement is displayed, along with the proper color code, to notify you that the previous measurement may have been noisy. The tolerances can be set to your preferred values.

- Don't Use Out of Tol Pt. When enabled, a point with an out-oftolerance RMS value will not be recorded.
- Show \mathbf{x} decimal places. Limits the displayed RMS value to the specified number of decimal places.

Beam Autoreset Mode

The behavior when the tracker loses a beam lock can be controlled by adjusting the Beam Autoreset Mode. There are three modes to choose from:

- No Action. When a beam lock is lost, the tracker will just stop and not attempt reset. This is generally only used with older legacy trackers.
- Auto IFM. When a beam lock is lost, the tracker will home and wait to lock onto the reflector in the home position using IFM distance measurement (not applicable to ADM-only trackers).
- Auto ADM. When a beam lock is lost, the tracker will stop head motion and wait for a beam lock, reacquiring using an ADM distance measurement.

To Change the Beam Autoreset Mode:

- From the interface menu, select Settings>Tracker>Beam AutoReset>..., or
 between the three modes.

Tracker Pointing Behavior

When pointing a tracker at an existing point, the instrument can behave in one of two ways:

- The instrument can point to the point but not attempt an ADM reset, or
- The instrument can point and perform an ADM search to attempt to lock onto a nearby target.
To Change Tracker Pointing Behavior:
- From the interface menu, select Settings>Tracker>SA Interaction>Point Laser>Point Only or Point and Attempt Reset.

Updating Graphics While Not Measuring

Tip: This option persists pri3 marily for older legacy trackers. In general, it's best to leave this option on unless you have a good reason to turn it off.

The probe position, current shot line, and instrument graphics are always updated while measuring, however if you are not in the midst of measurement, you can choose whether or not you'd like the graphical view to automatically update when new data is received from the tracker.

This allows you to view updated Watch Windows without requiring you to be in any sort of measurement mode, for instance.

To Update Graphics While Not Measuring:

- From the interface menu, enable Settings>Tracker>SA

Interaction>Update Graphics While Not Measuring. Upon doing so, SA will begin receiving updates from the connected tracker.

Running "Watch Update" Automatically

Tip: This setting is primarily \# for older legacy trackers. It is recommended to leave this setting off and leave "Update Graphics While Not Measuring" on unless you have a reason to do otherwise.

Older versions of SA required the tracker to be in an active measurement mode (such as "Watch Update") in order to receive updates to watch windows. This setting will automatically set the tracker to the "Watch Update" measurement profile (and initiate measurement) whenever a watch window is opened.

To Toggle Automatic "Watch Update" Mode:

- In the interface menu, select Settings > Tracker > SA Interaction > Run "Watch Update" When Watch Window Opened In SA.

Measurement Requests

Certain measurement commands, such as Auto-Correspond With Proximity Trigger and Measure Nominal Points, send measurement requests to the instrument interface. When these requests are received, the interface needs to know how to handle the request. These settings are controlled in one of two windows: Single Point Parameter Measurement Requests and Auto-Proximity Profile Measurement Requests.

Single Point Parameters
For commands that request discrete measurements (such as Instrument > Locate > Measure Nominal Points), the measurement settings are controlled by the single point parameters. These parameters are identical to those of the Discrete Point acquisition mode (see "Acquisition Modes" on page 323), but apply when measurements are initiated from SA itself.

To Access the Single Point Parameters:

- In the interface menu, select Settings > Tracker > SA Interaction > Measurement Requests > Single Point Parameters.
Auto-Proximity Profile
For commands that use auto-proximity modes, such as Instrument > Automatic Measurement > Auto-Correspond With Proximity Trigger > Points, the measurement parameters are controlled by the auto-proximity profile. These commands require some sort of temporal scanning acquisition mode. The specific measurement profile used for these commands can be modified.

To Change the Auto-Proximity Measurement Profile:

Note: Profiles not using a temporal scanning acquisition mode cannot be used.

- In the interface menu, select Settings > Tracker > SA Interaction > Measurement Requests > Auto-Proximity Profile. Select the desired profile from the list.

The Weather Station

The Weather Station Status indicator (the smaller of the two colored lights) gives an indication as to the current status of the weather data coming into the interface.

Laser tracker measurements must be compensated using weather data to account for factors such as atmospheric index of refraction. Without doing so, the tracker's measurements would not be as accurate. The possible status indicators and their meanings are presented below:

- Green. A weather station (whether internal or external) is connected and sending data.
- Yellow. The tracker interface is set for manual input. This setting compensates measurements using manually entered weather data. The yellow color serves as a reminder that this data may need to be updated by hand.
- Red. The tracker's controller does not have valid weather data from an internal or external weather station (whichever is selected). This most likely indicates that the interface is not receiving weather data at all. Measurements should not be trusted when the weather status is red.

You can indicate whether you'd like weather data to come from the tracker's internal weather station, an external weather station, or via manual input.

To Change the Source for Weather Data:

1. Double-click the weather station status indicator or choose Devices>Weather>Set Up. A Weather Source/Settings dialog will appear (Figure 14-32).

Figure 14-32. Setting the desired weather source.

2. Choose the desired source, then click the Set As Active Source button. Edit the settings for the current selection if necessary. Then click 0K/Apply Values to Tracker. The options are listed below.

- Manual Input. Manually-entered weather data (Figure 14-33)

Figure 14-33. Entering manual weather data.

Figure 14-34. Specifying the external weather source.
will be sent to the tracker controller to be used for compensation. This weather data will continue to be used until updated manually again. When this option is selected and set as the active source, the Edit/Confirm Settings dialog will appear to allow you to set the weather values:

- Tracker Internal Weather Station. This setting will use the internal weather station integrated into the tracker. Typically, this setting is used when a weather station is either integrated into the tracker, or when a weather station connects directly to a tracker controller. This is the most common source for tracker weather data. When this option is selected, clicking the Edit/Confirm Settings button will allow you to view the weather station's values, but you cannot change them. After selecting this option, click the Set As Active Source button to apply the setting.
- External Weather Station. This setting allows you to use a separate, independent weather station device for weather data. After selecting this option, you must first click the Set As Active Source button. This will bring up the External Weather Source dialog (Figure 14-34).

In this dialog, pick the desired device, then click the Connect Selected Source button. If connected correctly, the external weather station's values will be fed to the tracker controller for compensation. As with the Internal Weather Station setting, the Edit/Confirm Settings button will allow you to view (but not edit) the weather station's values.

You can view the current weather data to monitor the change in temperature, pressure, and humidity since the window was first opened. This provides a warning if environmental conditions have changed enough to indicate potentially bad data. The Weather Values/Deltas dialog shows this information, and this window can be left open
while working.

Figure 14-35. Viewing the initial and current weather data alongside the deltas.

Weather Values/Deltas					\underline{x}
	Initial	Current	Delta	Units	
Source	Simulated ...	Simulated ...			
Time	13:58.42	14:01:39	00:02:57	H:M:S	
Temperature	67.5965	67.3230	-0.2735	F	
Pressure	29.9240	29.9165	-0.0075	inHg	
Humidity	40.0000	40.0000	0.0000	Pct. Rel.	
	Reset				

To View Current Weather Information:

- In the interface menu, select Devices $>$ Weather $>$ Current Values/ Deltas.
- Click the Reset button to reset the initial values to the current observations.

Level Measurement

All modern trackers either have a built in inclinometer or provide the ability to connect to an external level measurement device. These devices accurately read the gravity (level) direction at the instruments current position. This information can be used in either of two ways.

1. To compensate the recorded measurements (or change their location) such that the measurements are reported relative to gravity prior to being recorded.
2. To passively record the orientation of the gravity vector as a measurement. This can be very useful as a direct reference for measurements or for constraining a network of instruments during alignment.

Some trackers offer a level compensator which can be turned on or off. With a level compensator turned on all measurements are automatically adjusted such that the instruments base frame is aligned with the gravity vector and measurements can be directly compared to a level plane.

This compensation can be a convinence for an operator but it is important to remember that it takes place on the instrument before the data is sent to SA. Compensation is changing the relative position of the measurements in relationship to the instrument stations base frame so turning on or off the compensation requires a new instrument station.

The Influence of Level Compensation
Most laser trackers don't use or have a level compensator, so they al-

Figure 14-36. Comparison between compensated measurements and standard tracker level measurements.
ways report data relative to the standing axis of the instrument. The difference between level compensated and the standing axis of the instrument models can be seen in SA as shown in the figure below (Figure 14-36).

The instrument model above on the left is using level compensation, so the data is automatically aligned to gravity. The base frame of the instrument and the gravity frame are pre-aligned. The instrument model above on the right isn't using level compensation, so its data is shown relative to the standing axis. Note that when the measurements are straightened using the level measurement the points are in the same location. However, the instrument models are in different orientations. The uncompensated tracker model on the right refects the true tilt of the instrument. This difference is often very slight, but can be clearly shown in the graphic above since the angular difference is exaggerated by 20°.

A level measurement operation is typically taken in 4 separate head orientations or quadrants and the readings in each of the orientations are average to produce an accurate level measurement.

Note: An instrument's gravity frame will be associated with the instrument and will transform along with it.

When a level measurement is recorded, it is saved as a coordinate frame. It is created on the instrument's base-the "origin" of the instrument, and uses the instrument model frame for clocking. The Zaxis of this frame represents the measured gravity vector.

Saving a level measurement as a frame rather than a plane (which is an alternative convention) was done deliberately for a couple of reasons:

1. The measured level frame can easily be set as the working frame in the job, which sets all values to be reported relative to gravity.
2. By saving a gravity measurement as a frame it is easy to directly compare this frame with the Instrument's Base frame (created by Construct>Frame on Instrument> Base)
3. Multiple measurements can easily be averaged, using Construct>Frame>Average of Other Object Frames.
4. Degree of Freedom controls within an alignment reference frame components.

Leve Measurement Settings

Note: These settings vary from one instrument to another.

To Adjust Level Measurement Settings:

- From the interface menu, select Devices > Level > Set Up.

- Dwell time between. Sets the amount of time the tracker waits after positioning the head before taking level samples. This gives time for the bubble level to stabilize before measurement.
- Samples per measurement. The number of samples to average when measuring gravity.
- Deviation Tolerance. Samples that exceed the specified tolerance (as a magnitude) are not included in the averaging operation.

Monitoring Level

Note: Some instrument
OEMs have their own windows for monitoring level. SA will call these windows up in those cases.

Several settings can be adjusted for the level measurement (Figure 14-37) which affect how the measurement is acquired.

Figure 14-37. Modifying settings
for level measurement.

Monitoring level provides live readings from the level device and can be obtained by using the command Devices>Level>Monitor.

Monitoring level is useful for two primary reasons:

1. To ensure that the inclinometer is in range for a level measurement.
2. Monitoring changes in level to determin if a station move is needed.

Figure 14-38. Monitoring a tracker's inclinometer.

While extremely accurate inclinometers typically need to be approximately level in order to operate properly. The instrument must be manually adjusted until the inclinometer is reading in-range while a tracker's head rotates through a 360 degree rotation. The Level Monitor (Figure 14-38) displays 3 values:

TkrAz - Displays the current rotational angle of the trackers head in degrees. This value is typically counter clockwise from a standard starting location direcly away from the home position.

LeveIX - Displays the deviation in arc sections from vertical along the primary or X axis of the trackers level. This value is therefore a live reading along the X axis in the trackers current head rotation (TkrAz).
LevelY - Displays the deviation from vertical along the secondary or y axis of the trackers level, perpendicular the the X axis if available (API trackers typically only have a single axis level built in).

The level values reported for the X or Y axis should not be trusted independantly because any variation in the mouting of the level device relative to the trackers rotational center will influence the readings. Best practices should include verifying the readings after a full 180 degree rotation and the average of these two readings used in estimating the actual deviation.

Level Monitor Controls

- Update Rate. Sets the rate at which updates are displayed in the interface.
- Show X Decimal Places. Controls the number of decimal places displayed in the window.
- Alarm. When enabled, the computer will beep and a message will be written to the log file when the specified angular tolerances are exceeded. The alarm will not sound when this win-
dow is closed.

Warning: Inclinometers are advanced bubble lev-els-they have angular limits beyond which the level is no longer accurate. Ensure that the inclinometer is within range by monitoring the level and manually leveling out the instrument prior to attempting to measure level from the interface.

- Set Baseline. When clicked, the current values become the baseline or "reference" for establishing deltas for out-of-tolerance determination.
- Display Level Values. The display is updated with raw level readings.
- Display Deltas (Threshold). Shows angular deltas instead of absolute angular values. The threshold controls the limit that sets off the alarm.

To Monitor The Tracker's Level:

- From the interface menu, select Devices > Level > Monitor.

To Measure Level With A Tracker:

1. Ensure the tracker is equipped with an inclinometer or other leveling device.
2. After setting up the instrument on a stable mount, monitor its level indication by selecting Devices > Level > Monitor from the interface menu.
3. Manually adjust the tracker (using body or tripod adjustments) until the monitor consistently reads in-range for all

Warning: The tracker must be mounted to a stable, motionless base in order to acquire accurate level measurements. azimuthal positions of the tracker head.
4. Close the level monitor and initiate measurement by selecting Devices > Level > Measure from the menus.

Monitoring Part Temperature

Some trackers are equipped with part temperature sensors which allow you to compensate for thermal expansion or monitor the part temperature and take action if environmental conditions might generate invalid measurements.

The Part Temperature dialog (Figure 14-39) is used for this purpose, and can be kept on-screen if desired.

- Update Rate. Sets the rate at which updates are displayed in the interface.
- Show X Decimal Places. Controls the number of decimal places displayed in the window.
- Alarm. When enabled, the computer will beep and a message will be written to the log file when the specified temperature thresholds are exceeded. The alarm will not sound when this window is closed.

Figure 14-39. Monitoring a part's temperature.

Instrument Checks

The SA tracker interface has a number of check routines to verify performance of the tracker. It is important to note that none of these checks in the interface actually modify the compensation values for the tracker. The instrument manufacturer knows best how to compensate their own instrument, so actual modifications are performed in the OEM's tracker compensation software.

Two Face

in

- Set Baseline. When clicked, the current temperature reading become the baseline or "reference" for establishing deltas for out-of-tolerance determination.
- Display Temperature Values. The display is updated with raw temperature readings.
- Display Deltas. Shows the change in temperature from the baseline instead of the current temperature. The Hi and Lo thresholds control the limits that set off the alarm.

The Two Face check (Figure 14-40) gives an indication of orthogonality of the azimuth and elevation axes in the tracker. It measures discrete positions from both the front and back faces, and presents the angular discrepancies in each measurement pair.

It is generally recommended that this check be performed with the instrument using IFM measurement mode to minimize distance error, although the primary purpose of this check is to gauge errors in the azimuth and elevation readings between the front and back faces. Instrument manufacturers provide recommended passing thresholds for instrument operation.

- Check Current Location. Takes a front- and back-face measurement at the current reflector position.
- View/Edit Acquisition. Provides control over how the mea-
sured point is acquired.
- Threshold. Angular values exceeding the provided delta threshold will be marked as out of tolerance.
- Apply Thresholds. Click this button to apply the specified thresholds to the data.
- Warning Band. A percentage of the threshold that triggers a warning indication.
- Home. Homes the tracker.
- Remote. Sends the tracker to the defined remote home position (if defined).
- Closure. Initiates a closure check. (Checks the current position of the target against the home position).
- OK/Log. Writes results to the log and closes the window.

Figure 14-40. The Two Face check.

To Perform A Two-Face Check In SA:

1. From the interface menu, select Check/Cal > Two Face.
2. Home the tracker by clicking the Home button (IFM-enabled trackers only).
3. Track the target out to a puck and set it down.
4. Click the Check Current Location button. The tracker will acquire front and back measurements, then report the deviations between the two.
5. When finished, click $0 K / L o g$ to log the results.

ADM Check
An ADM check is used to measure the difference between corresponding IFM and ADM distance measurements. A new ADM offset can be created and applied to a given reflector.

To Initiate an ADM Check:

1. From the interface menu, select Check/Cal > ADM.
2. For more information, refer to "User Definitions" on page 316.

IFM Check
IFM checks validate IFM distance measurements using a two-station method or scale bar. The check geometrically eliminates error based on expected birdbath position to give an indication of IFM distance error. All measurements must be obtained in IFM distance mode.

In the two-station check, two reference points are mounted in a fixed location. The tracker is placed between the two points (as close to the line connecting them as possible), and each reference point is measured. The tracker is then moved to a new position outside of both reference points, and the two points are measured again. Geometrically, one of these sets of measurements includes IFM error, whereas the other does not. The check involves determining the difference between both sets of measurements.

In the Scale Bar check, the tracker is only set up between the reference points, and the reference length of the scale bar is used as the baseline. The difference between the measurements and the scale bar length indicates IFM error.

To Perform an IFM Check:

1. From the interface menu, select Check/Cal > IFM.
2. Place the desired reflector in the home nest.
3. In the Reflectors and Targets dialog, selected the applicable reflector and click the IFM (Home Distance) Check - Selected Reflector button.
4. When the IFM (BirdBath) Check/Cal dialog appears (Figure 14-41), click the button appropriate to the check method you'd like to use.
5. Measure the points as indicated by the dialog.

Figure 14-41. Performing an IFM check.

Drift Check

Figure 14-42. Performing a drift check.

Use this check to create a database of points for monitoring drift. SA keeps track of the nominal points, and when remeasured the deltas (as well as the distance measuring mode) are displayed (Figure 14-42).

- Add. Adds a drift reference point to the set and measures its baseline position.
- Measure. Measures the selected reference point.
- ADM Measure. Measures the selected reference point using ADM distance mode.
- Point At. Points at the selected reference point.
- Clear. Clears the reference points from the list.
- Home. Homes the tracker.
- Remote. Sends the tracker to a remote home (if defined).
- ADM Reset. Searches for the target using an ADM search.
- ADM Drive. Use to drive the tracker head to a specific position.
- View/Edit Acquisition. Modifies the parameters used for acquiring the drift measurements.
- OK/Log. Closes the dialog and writes the results to the log file.

To Perform a Drift Check:

1. From the interface menu, select Check/Cal > Drift.
2. Click Add to add each reference point to the list, entering a name and measuring the point in the process.
3. At some point in the future, reopen the dialog, select a point, and click Measure. The deltas and distance measurement modes will be displayed for inspection.
4. When finished, click $0 K / L o g$ to write the results to the log file.

Closure Check

Figure 14-43. The Closure check.
The closure check (Figure 14-43) compares the measured home position to the defined home position.

- Recheck. Measures the reflector in the nest and compares the measured position to the reference position.
- Log. Writes the results to the log file.
- View/Edit Acquisition. Provides access to the discrete point parameters for measuring the point.

To Perform a Closure Check:

1. Place the selected reflector into the home position (birdbath).
2. From the interface menu, select Check/Cal > Closure.
3. In the Closure Check dialog, click the Recheck button. The tracker will home on the reflector and take a measurement. Deviations should be very small.

Reflector Center Check

SMRs do not perfectly center the beam inside the sphere. Therefore, if the centering is slightly out, then taking multiple measurements while rotating the SMR in a nest will yield measurements that move slightly (runout). This test is particularly important if an SMR is dropped or jostled. It may appear fine, but the adhesive and reflective surfaces may have shifted on impact, putting the reflector out of tolerance.
Reflector center checks are carried out in the Reflector Center Check dialog (Figure 14-44). An initial measurement baseline point is acquired, then the test is started. Measurements are taken periodically as the SMR is rotated in the nest (ideally no rotation occurs while a specific point is being measured).

- Set Baseline. Measures the initial reference point for comparison.
- Edit Baseline Acquisition. Defines how the baseline (reference) point is acquired.
- Edit Main Acquisition. Defines how the comparison points
are acquired.
- Show X decimal places. Indicates the number of decimal places to show in the results.
- Cartesian. Displays the results in Cartesian Coordinates.
- Polar. Displays the results in Polar Coordinates.
- Measure at X second intervals. Indicates how frequently measurements are taken.
- Save Results. Stores the results to the log file.
- View Results. Shows the results of the test.
- Clear Results. Removes test results to prepare for a new test.
- Start. Initiates measurement of the reflector.

Figure 14-44. Performing a reflector center check.

To Perform a Reflector Center Check:

1. Place the reflector into a stable drift nest.
2. From the interface menu, select Check/Cal > Reflector Center Check.
3. In the Reflector Center Check dialog, click the Set Baseline button.
4. Click the Start button to begin measurement.
5. Between each measurement, rotate the reflector in the nest. The current and largest deltas relative to the baseline will be reported.
6. Click Stop when finished.
7. Click Save Results to log the results of the test.

The interface provides a convenient link to the manufacturer-provided checking and compensation routines. These compensation rou-
tines are the only place where true modifications to the instrument's compensation parameters are made.

To Access the OEM-Specific Checking \& Compensation Routines:

- From the interface menu, select Check/Cal > Tkr Specific (Mfrr).

Tracker Utilities

System Information
The System Information dialog (Figure 14-45) displays diagnostic tracker information, such as the SA tracker driver version, firmware and serial number, and OEM driver version information. This is primarily useful when diagnosing issues with SA customer support.

Figure 14-45. The tracker's vital system information.

To Display The Tracker's System Information:

- From the interface menu, select Utility > System Info.

Restarting the Laser Tracker
If you experience unexpected behavior, you can perform a warm (non powered-off) reboot of the tracker controller.

To Perform a Warm Reboot of the Tracker Controller:

- From the interface menu, select Utility > Tracker Utilities > Restart Tracker.

Reinitializing the Laser Tracker

Note: This is not available
on all tracker brands.

You can issue a command from the tracker interface to reinitialize a laser tracker. The specific tasks performed during an initialization of a tracker are manufacturer-specific, but in general this can help resolve some accuracy and tracker performance issues.

To Reinitialize the Laser Tracker:

- From the interface menu, select Utility > Tracker Utilities > Reinitialize Tracker.

Manufacturer-Specific Utilities
You can access manufacturer-specific utilities directly through the tracker interface.

To Access OEM-Specific Utilities

- From the interface menu, select Utility > Tracker Utilities > Tracker Specific.

Tracker Status

Note: The information dis-
played in the tracker status dialog depends on the specific instrument in use.

You can view the overall status and health of the laser tracker by viewing the tracker's status (Figure 14-46). This typically includes information such as battery state of charge, ADM/IFM beam intensity, servo motor status, and other diagnostic functionality.

To View a Tracker's Status:

- From the interface menu, select Utility > Tkr Status.

Current Position

In the Current Position dialog (Figure 14-47), you can view the current position of the reflector in both Cartesian Coordinates (expressed relative to the working frame in SA) or Spherical Coordinates (expressed in the tracker's native frame).

Figure 14-47. Live data from the tracker.

Dist 6.0783 in
Az 179.8753 deg El 139.5113 deg

Importing Spherical Data

Note: Currently, if source
data is delimited by commas, it will not import. The data must be delimited by spaces or other whitespace.

Figure 14-48. Settings for importing spherical data to a tracker.

Occasionally, you may have measured data from a tracker that has been exported to an ASCII file. If this data is in spherical format (contains azimuth, elevation, and distance components), it can be imported and associated with a tracker. These imported points are automatically treated as measured points (although they will not have any measurement metadata). The import dialog is shown in Figure 14-48.

- Format. Choose the appropriate format for the source
data.
- Distance Units. The length units for the source data.
- Comment Character(s). Any lines starting with any of the provided characters are considered to be comments and are ignored.
- Angle Units. The angular units for the source azimuth and elevation angles.
- Azimuth is Counter-Clockwise. Specifies that the data was recorded on a tracker whose azimuth direction increases as the head rotates counter-clockwise as viewed from above.
- Azimuth is Clockwise (reversed). Specifies that the source data comes from a tracker whose horizontal angle increases as the head rotates clockwise as viewed from above (not common).
- Vertical Angle is Zenith (0 is vertical). Indicates that the source spherical coordinate system has 0° pointing straight up (zenith referenced).
- Vertical Angle is Elevation (0 is horizontal). Indicates that the source spherical coordinate system has 0° level with the horizon.
- Write Resulting Cartesian Data to a Text File. Upon import, the points will be written out to a text file in Cartesian coordinates.
- Collection. The destination collection for the points.
- Group. The destination group for the points.
- First Target. The name for the first target. This name will be incremented for following targets. If the source data already has point names, this field is ignored.

To Import Polar ASCII Data:

1. From the interface menu, select Utility > ASCII Import.
2. Select the source file from the browser.
3. Choose the appropriate format, units, and options for the import, then click 0K/Import.

Streaming Tracker Data Over The Internet

The tracker interface has the capability of streaming real-time measurement data (3-DOF or 6-DOF) over the internet, using UDP (User

Figure 14-49. Properties for setting up UDP Data Streaming from the tracker interface.

Datagram Protocol) broadcasting. Unlike TCP/IP network communications, UDP broadcasting does not require "handshaking" for data transmission. There is no guarantee that transmitted data is received, and it can be broadcasted "into the wild" so that any network device can listen to the broadcast.

UDP Data Streaming opens a vast array of possibilities for harnessing tracker data in custom ways. For example, you can write applications to intercept this tracker data and perform custom analysis for hardware control, or you could even write your own watch window.

There are a few limitations to keep in mind with regard to UDP Data Streaming:

- Data flows only in one direction-from the interface. You cannot transmit commands to the tracker interface.
- Data transmission is of course subject to some finite amount of latency. It will not be received "real-time" in a hardware sense.
Tracker data is transmitted as an ASCII-formatted packet. The format of the packet is dependent on settings in the SA UDP Data Stream Properties dialog (Figure 14-49).

- 3D Coordinates. Transmits 3-DOF (XYZ) data.
- 6D Transformations. Transmits 6-DOF (XYZ, $\left.R_{x} R_{Y} R_{z}\right)$ data.
- Frame of Reference. Data can be transmitted relative to the Instrument frame, the Working frame, or the World frame.
- Instrument Time Stamp (seconds). If the instrument supports it, time stamps can be transmitted along with the data. This is often an approximately millisecond-accurate timestamp from the tracker hardware indicating when the measurement was taken.
- Send To. The broadcast packets can be sent to the Entire Subnet (Broadcast) or to a Single Destination. In the former case, data is transmitted "to the wild" for any and all devices on the appropriate subnet to receive. In the latter, the data stream is routed to a specific IP address on the network.
- Computer Name or IP. Enter the IP address or computer name for the destination device (if broadcasting to a Single Destination).
- Port. Every UDP broadcast must be directed to a destination port. This is the port on which the receiving device must listen for the appropriate broadcasts.

Viewing The Upcoming Group and Target

When working with a tracker a long distance from the computer, it is difficult if not impossible to read the name of the next target that will be measured. Although this problem is addressed by the SA HUD settings, you can also open up a Group and Target dialog.

This dialog can be resized and positioned anywhere on screen, and will always display the group and target of the point that is about to be measured.

To View the Group and Target Window:

- In the tracker interface, click the button encompassing the Group: and Target: labels (Figure 14-51).

Figure 14－51．The Group and
Target button．

Instrument Toolbar

The Instrument Toolbar（Figure 14－52）is a greatly－streamlined version of the laser tracker interface．Once properly configured，you＇ll likely find that the majority of your measurement work can be performed in this simpler interface．

Figure 14－52．The Instrument Toolbar for laser trackers．

To access the Instrument Toolbar from the tracker interface，click the Switch to Instrument Toolbar button 䍖置．To switch from the Instrument Tool－ bar back to the tracker interface，click the Switch to Instrument Interface but－ ton ${ }^{4}$ 首．

The different functions of the Instrument Toolbar are described be－ low．

Beam Status

A colored light（similar to the＂traffic light＂in the laser tracker inter－ face provides feedback on beam state and measurement status．The different statuses indicated by the light are as follows：

Locked．The beam is locked on the target and valid distance information is being received．

Measuring．The tracker is currently measuring．（A glowing in－ dicator spins in this mode）．

詮， valid distance measurement is not available．

No Lock．The tracker does not have a lock on the reflector．
筑Waiting for Lock．A measurement mode has been initiated， but SA is waiting for a lock on the beam．（A glowing indicator spins in this mode）．

Waiting for Move．A stable point measurement trigger is be－ ing used，and SA is waiting for the reflector to move．（A glowing indicator spins in this mode）．

Waiting for Stable．A stable point measurement trigger is be－
ing used, and SA is waiting for the reflector to stabilize. (A glowing indicator spins in this mode).

Clicking on the beam status light will initiate a reflector search to lock on a target. It is equivalent to the Find Target button in the laser tracker interface.

Homing the Tracker

Click the Home button to send the tracker to the birdbath for the currently-active reflector. This icon not available for trackers that have no home nest.

Driving the Tracker

Click the Drive Beam button $\xi_{\text {to drive the tracker head to the desired }}$ position. Drive operation is tracker-specific and described in "Drive Head/OVC" on page 314.

Toggling Motors

Tilt Compensation

For instruments that support it, you can engage and disengage the tracker head motors by toggling the Motors button . (This icon is not shown for instruments that do not support motor toggling).

Some instruments support tilt compensation. When turned on, the instrument automatically adjusts all measurements such that the standing axis of the instrument in SA is aligned with gravity. (That is, the instrument's internal reference frame is always oriented to gravity). For instruments that support this, the motor toggle button (see "Toggling Motors" on page 360) is replaced by a tilt compensator toggle button \backsim. Clicking this button toggles tilt compensation on and off.

Active Target

Figure 14-53. The target quickselect buttons.

You can select the active target by clicking on one of the target quickselect icons (Figure 14-53).

$$
0981
$$

The reflectors are defined in the laser tracker interface (see "Targets and Retros" on page 315) or can be defined directly from the tracker toolbar. Right-clicking any of the four quick-select buttons will allow you to assign a different tooling definition to the button. You can also select define new target from the drop-down to create a new tooling

Figure 14-54. The planar and radial offsets are displayed, along with a target name tooltip.

Point Naming

Measurement Modes

Figure 14-55. The measurement mode buttons.
definition.
Hovering the mouse cursor over a button momentarily will show a tooltip indicating the name of the target, and the offset (diameter if spherical, planar and radial if not) is displayed next to the quick-select buttons (Figure 14-54).

The name of the next measured point is displayed above the target quick-select icons. To change the name of the next selected target, click this field. This will open the Instrument Interface Point Naming dialog, allowing you to type a new collection, group, and target name.

The Instrument Toolbar has eight buttons, each corresponding to a specific measurement mode (Figure 14-55).

The first four buttons are assigned to Single Point, Stable Point, Spatial Scan, and Tooling Ball measurement modes, respectively:

- Single Point. Measures a discrete point when clicked.
- Stable Point. Waits for the reflector to move-then become stable-before measuring the point.
- Spatial Scan. Initiates a spatial scan measurement. The increment can be set by right-clicking the button.
- Tooling Ball. Initiates a spatial scan measurement, then fits a sphere to the points and creates a center point on the sphere. Both the spatial scan increment and the radius of the sphere fit can be controlled by right-clicking the button.
The last four buttons (denoted by the silhouette icons) are user-defined measurement modes. You can assign any measurement mode you've created in the laser tracker interface to these buttons by rightclicking them.
Measurement modes can be initiated with or without a beam lock. If started without a beam lock, SA will wait for a beam lock before starting measurement. While in a measurement mode, press the button again to stop the measurement mode.

To access a few additional parameters related to the first four measurement modes, right-click the target button.

[^7]
Laser Tracker Quick-Start Guides

API Trackers"Automated Precision (API)" on page 363
Faro Trackers "Faro Laser Trackers" on page 368
Leica Trackers "Leica Laser Trackers" on page 371

Automated Precision (API)

API Radian \& OmniTrack2

Figure 14-56. Radian \& $0 T 2$

Hardware Setup
Set up the unit following the manufacturer's directions. The API Radian and OmniTrack2 trackers are networked TCP/IP connected devices and should be connected directly to a computer with an Ethernet crossover cable or through a network switch.

Connect the temperature probe and ensure that it is well clear of any external heat sources (such as the heat fan on the back of the power supply). Ensure that the instrument is powered on and that a reflector is in the home position at startup.

Software Setup
Each version of SA is built with the most current version of the API software development kit (SDK). This driver set provides the tools to interface with the instrument. Check the Readme file to see which SDK version is being used. No additional software installation is necessary.
Set the IP address on your computer to be compatible with the address set on the tracker. The default API IP address is: 192.168.0.168 with the subnet mask 255.255.255.0.

1. Select Instrument>Add and choose API Radian or API OmniTrack2 from the Add Instrument to SA dialog (Figure 14-57).

Figure 14-57. Adding a Radian tracker.

2. Run Interface Module without connecting (Instrument>Run Interface Mode) and choose API Device Interface (do not use the Laser Trackers interface for either the Radian or the Omnitrack2).
3. Within the Connect to SpatialAnalyzer dialog, select the instrument station (computer name, job name, Collection::Instrument Name: Serial Number) you wish to connect your instrument to from the network list.
4. In the API_DI Connection dialog, enter the tracker's IP address (if different than the default) and use the Ping button to test the connection if needed. Once satisfied, click OK. The next time you connect this instrument to the instrument, you can just select Run Interface and Connect. This will utilize the last saved settings and automatically connect the instrument.

Please refer to the current API Intelliprobe 360 or V-probe user's manual for setup and calibration instructions. A version is available on our webpage: http://www.kinematics.com/ftp/SA/Install/Driver\ Downloads/Laser\%20Trackers/API/Radian/.

Figure 14-58. Iprobe \& Vprobe

Note: Conducting the Virtu-
al Level measurement will transform subsequent tracker data. If you have taken measurements from this instrument station previously, a new instrument station must be added.

Figure 14-59. Check/Cal Menu

1. Ensure the probe has been fully unpacked, configured to communicate with the controller, and calibrated within API's software. A *.prm file will be available with the I-probe and should be placed in the C:IAnalyzer DatalPersistence directory.
2. Place a $1.5^{\prime \prime}$ inch reflector in the nest.
3. Run a virtual level measurement (Check/Cal> Virtual Level). This will align the instrument with gravity, allowing the I-360 pendulum measurements to be correctly interpreted.

4. Set up the probe tip and perform calibrations as necessary (Check/Cal>Probe Offset)
5. The Probe target should be detected and assigned automatically.
6. Specific measurement profiles have been added for the !and must be used to take data from the device (Figure 14-60). Start the measurement profile so that it is running in the background and then use the probe to trigger measurements.

Figure 14-60. I-360 Measurement profiles.

The API T3 is a unique instrument in that it can be run with either of 2 separate interfaces. To run the T3 with the API Device Interface follow the procedure outlined for the Radian. To take advantage of the legacy interface follow the directions outlined below for connection to the API T2+. The parameter file is stored on the controller for the API T3 tracker. Like the API T2+, you will see a default location for a parameter file. In the case of the T3, this is only the location where a back-up copy of the parameter file will be written from the controller. To change this location, just press the Browse button in the tracker connection dialog.

The parameter file, [tkr serial\#] . prm contains the kinematic correction info, home location, etc. for the tracker. For example, if your tracker serial number is 3827 , the file name will be 3827 . prm. This file must be located successfully by the tracker initialization for the tracker to run. By default the parameter file should be located in C: \} Analyzer Data \Persistence. To change this location, just press the Browse button in the tracker connection dialog, as pictured in Figure 14-61.

The parameter file is edited when an API calibration is run. Ensure that the file attributes are NOT set to read only.

You must have a working serial port for the connection to the tracker. Use the lowest available serial port number for the tracker connection.

CHAPTER 14 - MEASURING WITH LASER TRACKERS

Faro Laser Trackers

Faro Vantage / Faro Ion / Faro Xi

This guide applies to the setup of the SMX 4000, 4500, Faro X, Xi, Ion and the Vantage.

Set up the unit following the manufacturer's directions. Faro trackers are networked TCP/IP connected devices and should be connected either to a network or directly to a computer with an Ethernet crossover cable.

Connect the temperature probe and ensure that it is well clear of any external heat sources (such as the heat fan on the back of the power supply). Ensure that the instrument is powered on and that an SMR is in the home position.

The Faro Vantage requires SA version 2012.09.14 or later and a minimum of JRE version 4.0.2 or later.

Software Setup
Set your computer's Local Network Connection to be compatible with that of the Faro tracker. Faro trackers are shipped with a standard IP address of 128.128.128.100.

Download the latest java drive from: http://www.kinematics. com/ftp/SA/Install/Driver Downloads/Laser Trackers/ Faro/. Extract the files to the C:\drive. This should create a directory structure with the Faro Java files contained in C:\FaroJRE.

If you plan to use the video (overview) camera, you must get 'Faro Tracker v.4.0.2 (or later) Camera files.zip' (search the SA readme for "java" to ensure correct version for your install) from ftp://ftp.kinematics.com/pub/SA/Install/Driver\ Downloads/Laser\ Trackers/ Faro/ . Unzip the file and follow the instructions contained in ReadMe Faro Camera.txt. Note that cameras are wireless. If your camera has the default IP address, you can set your PC's wireless connection's address to 129.129.0.1.

Starting the Interface

1. Select Instrument $>$ Add and choose the appropriate Faro tracker from the Add Instrument to SA dialog (Figure 14-62).

2. Run Interface Module without connecting (Instrument > Run Interface Mode) and choose Laser Trackers. This will bring up the Faro Connection dialog (Figure 14-63). Within it you will see all the available instruments on the network.

Figure 14-63. The Faro Connec-
tion dialog
3. Select the instrument station (computer name, job name, Collection::Instrument Name: Serial Number) you wish to connect your instrument to from the network list.
4. Enter the tracker's IP address (if different than the default) and use the Ping button to test the connection if needed. Once satisfied, click OK. The next time you connect this instrument to the instrument, you can just select Run Interface and Connect. This will utilize the last saved settings and automatically connect the instrument.
5. To use the camera, click the ADM Drive button in the SA interface. The tracker pad will pop showing the drive options. Select Camera Drive to use the Faro camera interface.
The interface is now connected and ready for use. Please refer to the Measurements chapter of the manual for more details on the tracker interface and instrument settings options.

Leica Laser Trackers

Leica AT402 / AT401

Prerequisites

Compensation

Figure 14-64. Running a compensation routine in TrackerPilot.

The Leica AT401 connects via a wired Ethernet connection or a wireless connection. In either case, the IP configuration must be correct before the PC and instrument can communicate. The default Leica AT401 IP address is 192.168.0.1. To learn more about configuring IP address see the IP Address Basics section.

The Leica AT401 compensation is performed in the Leica Tracker Pilot application. This is supplied by Leica and should be performed before running the instrument in SA.

Starting the Interface

1. Select Instrument>Add and choose the Leica emScon AT401 from the Instrument List (see Figure 14-65 on page 372).

Figure 14-65. Adding an AT401
tracker.

Note: If the Initialize Tracker option is chosen, be sure a reflector is in the tracker's view and at a distance of 1.5 meters or greater.

Figure 14-66. The Leica AT401 Connection dialog.

2. Now run the instrument interface module under Instrument > Run Interface Module and choose Laser Trackers.
3. Enter the tracker's IP address and use the Ping button to test the connection if needed (Figure 14-66). Once satisfied, click OK. The next time the interface is started, you can simply click the Run Interface and Connect $\not \boldsymbol{\lambda}^{\ddot{r}}$ icon. This will use the last saved settings and automatically connect the instrument.

4. The interface is now connected and ready for use. Please refer to the "Measuring With Laser Trackers" chapter for details on the laser tracker interface.

To access the AT401's settings, use Settings > Tracker > General Settings or press the ${ }^{\text {os }}$ button. Then press the Tracker Specific button at the bottom. This will expose the AT401's specific options (Figure 14-67).

Figure 14-67. The Leica AT401
tracker settings.

Figure 14-68. Setting the programmable buttons for the AT401.

Battery Status

Figure 14-69. The AT401 battery status dialog.

The AT401 utilizes a programmable remote (Figure 14-68).

To view the battery status go to Utility > Tracker Status (Figure 14-69).

Leica AT960 / AT930 /AT901

Prerequisites

- Newer emScon controllers require a Leica dongle. Ensure that the dongle is installed on the controller's parallel port.
- All Leica trackers are shipped with 192.168.0.1 as the IP address as default. The Leica AT960/930 also offer a wireless connection option. To learn more about configuring IP addresses, see the IP Address Basics section.

Compensation

The AT960/930 trackers and accessories can be compensated within Tracker Pilot (if you need the current Tracker Pilot you can browse directly to http://192.168.0.1 (or the trackers IP) and download Tracker Pilot from the controller).

The AT901 is an emScon tracker and accessories can be compensated per Leica through emScon (Figure 14-70). EmScon can be accessed via the shortcut on the desktop or use the following address http://192.168.0.1:8099/emscon/default.aspx. If your tracker address is not the standard 192.168.0.01, change that component of the address in your browser.

Figure 14-70. The main EmScon window.

Embedded System Control

- When it Has to Be Right

Base User Interface

This module provides the general functionality to control the Leica laser tracker with and without T-Products (Execute measurements, property settings of Laser Tracker, displays measurement results,...)

Field Check

This module provides the functionality for field checks of the Leica Laser tracker with and without T-Products (Field checks: Two face, Ball Bar, ADM, Scale Bar, Probing,...)

Compensation

This module provides the functionality for compensations of the Leica Laser tracker with and without T-Products (Compensation: Full and Intermediate, ADM, Reflector Definition, Overview Camera Compensation, T-Products Compensations,...)

Tracker Server
This module provides the functionality to configure the tracker server (TCP/IP Network Configuration, Access Rights)

You are connected to
Tracker Type: AT901 LR
Tracker: 3586

- Compensation Password: Expert (Full and Intermediate, ADM, Reflector Definition, Camera Compensation, etc.)
- Server Settings Password: Administrator (TCP/IP address, Time/ Date, etc.)

1. Select Instrument > Add and choose the respective Leica Tracker from the Add Instrument to SA dialog.

2. Now run the instrument interface module under Instrument >

Run Interface Module and choose Laser Trackers.

3. Enter the tracker's IP address and use the Ping button to test the connection if needed. Once satisfied, press OK. The next time the interface is started, you can simply click the Run Interface and Connect $\ddot{\sim}$ icon. This will use the last saved settings and automatically connect the instrument. The AT960/930 also offers an IP discover utility.

4. The interface is now connected and ready for use. Please refer to the Laser Tracker section for details on the laser tracker interface ("Laser Tracker Interface" on page 306).

Tracker Settings
To access the custom settings, use Settings > Tracker > General Settings or
 tom. This will expose the Tracker options (Figure 14-73). These options are the same ones that exist in emScon. This dialog gives you access without having to enter emScon.

Figure 14-73. EmScon-specific tracker settings.

ADM Parameters

Parameters for recapturing the beam in ADM.
Sensor Configuration
Choose which peripheral devices are being used. Overview camera, Nivel Level and Weather Station.

Laser Temperature Range

Select the temperature range in which the tracker will be operating.

Beam Break Behavior

- Go to Safe Position. The head will point directly up toward the overview camera when the beam is broken.
- Hold Last Position. The beam will sit still when the beam is broken. This is needed for ADM beam break reset mode to work. If not, each time the beam is broken the tracker will return to its safe position.

Trigger

- Select the type of trigger, if applicable, for triggering measurements.

T-Probe

- Allows for the programming of buttons and the option to measure without a tip.
Home Exit Direction
- Choose which direction for the tracker head to unwrap when
leaving the birdbath.
PowerLock/ATR settings
Ability to turn on/off PowerLock and Spiral Search.
Tracker Status

Figure 14-74. The Leica Tracker
Status dialog.
To view the tracker status (Figure 14-74) go to Utility>Tracker Status.

T-Probe
If you get a 'usage conflict' error when trying to use the T-Probe, run the emScon BUI. In it, there is a setting for stylus usage:

- Stylus required
- Stylus not required
- Compensated shank

For standard T-Probe usage, you MUST select 'stylus required'.

T-Scan Interface

Hardware Setup

Figure 14-75. AT901 Cable Configuration

This Quick-start guide can be used for the initial setup of the Leica T-Scan5 system for operation within SA in conjunction with either an AT960 or AT901.

- Set up the unit following the manufacturer's directions. The AT960 users the MCA-47 Cable between the T-Scan and Tracker controllers while the AT901 uses the MCA-36 cable which has a dual end for the tracker signal line and input connections. A single network cable should be connected from the computer to the t-scan controller and a second Ethernet cable connects the tracker and t-scan system along with a signal cable (Figure 14-75).

- Ensure that you have the T-Scan License key to operate the sys-
tem.
- Ensure that you have the USB drive containing the *.mtx and *.emsys files (calibration files) which should also contain the Leica setup manuals and a version of the required software (TScan Collect or T-Scan Interface and TwinCat Engineering).

Tracker Configuration

TheT-Scan target definition must be defined on the tracker controller. The procedure to do so depends on the tracker type:

- AT960 Configuration:

1. Open Tracker Pilot, and connect to the AT960 using the "Advanced" permissions (if you need the current Tracker Pilot you can browse directly to http://192.168.0.1 (or the trackers IP) and download Tracker Pilot from the controller).
2. Go to targets and ensure the T-Scan is defined. If not use the Import Targets button and browse to the *.emsys file for the t -scan provided on the USB disk.
3. Once defined Exit Tracker Pilot.

- AT901 Configuration:

1. Open the Emscon TransferTool, enter the tracker IP and press Test.
2. In the Transfer to emScon section press Parameter File and browse to the *.emsys file for the t-scan provided on the USB disk.
3. Save and Exit

Software Setup and Initial configuration

Directory Setup:

1. Determine if you have a license key for either the T-Scan Interface or the full T-Scan Collect Software (Either one or the other should be installed as require but not both), and install the correct one on your machine.
2. Transfer the *.mtx files from the USB drive to the T-Scan directory. T-Scan looks for the files in a particular spot (C:\Program-Data\Steinbichler\T-SCAN\Calibration) you will need to build the Calibration directory and place the files in this folder.
TScanCol.ini Edit Process:
3. Within the C:\ProgramData\Steinbichler\T-SCAN\T-SCAN Interface $10.30 \backslash$ folder (or T-Scan Collect 10.3 folder) you will find a file called "TScanCol.ini". Open and edit this file as follows (it's a long file so scroll through it to the correct section):
4. Verify the Specific IP address of your tracker (192.168.0.1 by
default)
5. Enter the TrackerInterfaceType (EMSCON for AT901 or LMF for AT960)
6. Enter the ScannerAlignmentBaseName (such as LLS1100271). This number is on the front of the T-Scan.
7. Enter the AMSNETID for theT-Scan Controller. Which should be printed on the front of the controller (Such as 5.29.142.116.1.1)
8. Once complete save and close the TScanCol.ini file (see Figure 14-76).

Network Configuration:

1. Configure your local area network connection as follows:
2. Go to Control Panel> Network and Internet> Network and Sharing Center
3. Open the Local Area Network Connection properties (ensure the cable is connected to the T-Scan Controller if you don't see it)
4. Go to the properties for the Internet Protocol Version 4 (TCP/ IPv4)
5. Set the IP address to use the following IP: 10.168.2.2XX (enter 201-250 only) and subnet 255.255.255.0.
6. Press Advanced and add a second IP (for the tracker). Enter 192.168.0.XXX (enter 2-250 for the IP), again using 255.255.255.0 for the subnet mask(see Figure 14-77).

Figure 14-77. Network Configuration settings

7. Click OK and close out of all dialogs and exit out of the network Sharing Center when done.

TwinCAT Software:

1. Install the TwinCAT Engineering Software (which will manage the dual network communication between the tracker and the T-SCAN system). This software should be available on your USB drive and will be called "Tc211x64Engineering_2110_2209.exe" or something similar.
2. From the Windows task bar launch the TwinCAT System Manager and configure it to talk to the T-Scan Controller.
3. Select Choose Target(see Figure 14-78):

4. Perform a Broadcast Search and look for the AMS NetID of the controller which should show up on the network list. When it does, select it and set it to use IP Address as follows(see Figure 14-79):

5. You can tell you have a successful connection to both the TScan Controller and the Tracker once you see the Status indicator in the bottom right of the TwinCAT software report a green connected status. At that point you can close out of TwinCAT.

Running the T-Scan Interface in SA:

1. Add the Instrument (Instrument>Add...) and choose the appropriate Leica Tracker (AT901 or AT960)
2. Start the Interface through the menu Instrument>Run Interface Module and choose Leica TScan. (Do not connect using the Laser Tracker Interface) (see Figure 14-80):

Laser Trackers
API Device Interface
Portable CMM Arms
Metris Laser Radar (LRDriver)
Theodolite Manager
AICON ProCam 3D Probe
Metris GPS Surveyor v2
Metris GPS Surveyor
GSI V-STARS Photogrammetry System
Metris K-Series (K-Scan,SpaceProbe,MCA)
AssemblyGuidance Laser Projector
LPT Laser Projector
Virtek Laser Projector
LAP Laser Projector
Leica T-Scan
Leica T-Probe Scanner
Surphaser
Faro Scanner Photon/LS/Focus 3D
Creaform HandyScan 3D
Creaform HandyProbe
NDI OptoTrak

T-Scan Interface in SA:

When you start the Leica T-Scan interface it will automatically connect to either T-Scan Collect or the T-Scan Interface which will run in the background. The T-Scan interface in SA is designed to be as simple as possible while providing full control (see Figure 14-81):

- Collection and Cloud Name control is provided and a new cloud name will be incremented automatically with each separate scan.
- A progress report will be displayed in the connection window
- T-Scan control is provided through the Settings button. Control for both the TS50 and the new Tscan5 is available in sections in the left hand column, the following Tscan5 controls are provided:
- Exposure Time can be set manually from 0.25 to $\mathbf{2 0 . 0}$ milliseconds
- Line Width Set can be set from 0-12 ($0=100 \%, 12=40 \%$). This reduces the width of the line as you increase the integer value (set as an integer for scripting purposes).
- Reflection Filter intensity setting (1 = Standard, 2 = Low, 3 $=$ Medium, 4 = High). Again this value is set as a simple integer for easy scripting control.

T-Scan MP Controls SA:

- Start Instrument Interface. - Argument 3 controls the allowable interface types. Include 0 (laser tracker), 1 (Leica Automation Interface Control interface), or 2 (Leica T-Scan).
- Instrument Operational Check -
- Select Device T-Scan. - Set AIC Device Selection to T-Scan
- Select Tracker \# - Set AIC Tracker \#, Jump SA Instrument to designated Collection::Instrument Index (set in AIC Driver), Connect and Start Interface to T-Scan or emScon based on current MUX and AIC Device Selection.
- Increment Group/Cloud Name - Increment the current Group/Cloud Name by 1.
- Release Motors - Releases motors if there is a current emScon or T-Scan connection.
- Is Laser Locked - Returns success if the beam is locked. Status window will indicate the kind of target the laser is locked onto.
- Set Scan Point to Point Distance - T-Scan Point to Point Distance Control
- Set Scan Line to Line Distance - T-Scan Line to Line Distance Control
- Set Scan Maximum Angle of Incidence - T-Scan Maximum Angle Control in Degrees
- Set Scan Exposure Time [] - Set the scanner expose to a value from $0.25-20.0 \mathrm{~ms}$.
- Set Scan Width Iteration []- Sets the width of the scan line as a reduction factor from 0-12 (where $0=100 \%$ and $12=40 \%$ of the full scan width)
- Set Scan Reflection Filter [] - Sets the reflection filter type from 1-4 ($1=$ Standard, $2=$ low, $3=$ Medium, $4=$ High)
- Close Scan Gaps Up To [] - Tells T-Scan collect to close gaps in scan data to the specified mm distance. Enter 0 to not close gaps.
- Scanner Power On - Turn T-Scan On
- Scanner Power Off-Turn T-Scan Off
- Set Instrument Group and Target - The Group name is used as the Cloud Name when using the T-Scan
- Measure - Causes the T-Scan to start scanning.
- Stop Active Measurement Mode - Causes the T-Scan to Stop Scanning.

Leica Automation Interface

Hardware Setup

Before starting the AIC driver, it's necessary to ensure that all hardware connections are complete:

- The AT-901 tracker controllers should be connected to the AIC hardware.
- The auxiliary device (T-Mac, T-Probe, external trigger, etc.) should be connected to the AIC hardware.
- The AIC hardware should be directly connected to the computer on which the interface will be run.
Starting the AIC Driver Manually

1. First, add up to four Leica AT-901 trackers to the SA job.
2. From the appropriate SA folder in the Windows Start Menu, navigate to Interfaces and select Leica Automation Interface (Figure 14-82).

3. In the Connect dialog, select the tracker you'd like to connect

Figure 14-83. Connecting to a tracker.

Figure 14-84. The AIC Driver window.

Note: If we'd had a T-Mac connected, the MUX (multiplexer) would show T-Mac and the Device would be Trigger Probe.

Using the Interface
to (Figure 14-83).

4. The Leica AIC Driver interface will appear, automatically connect to the AIC, and immediately be ready to use. Note that the AIC Driver will detect the current AI Controller's connection to hardware at the Multiplexer--it is the T-Scan in this case (Figure 14-84).

Each tracker in use requires an assigned IP address and collection/index, which indicates which instrument in the SA file is associated with the corresponding hardware. Use the radio button to switch between
different trackers.
All settings appropriate to the current device will be automatically set. Measurement parameters can be set via Measurement Plans.

- The Record Position button is used to teach positions for automatically locking on the T-Scan via an MP command. The Collection::Group::Target name is used for the storage of the auto-lock position in SA.
- The Release Motors button will release the motors on the active tracker so that it can be pointed by hand.
- The Find Reflector button will initiate a search for a reflector in order to lock onto the selected device. The distance field next to this button is used to provide the controller with an idea on how far to search for the reflector based on its distance from the tracker.
Running the AIC Driver In Automation Mode
The Program I/O button is used to program the digital I/O signals for Automation Mode. In this mode, the AIC Interface expects to receive signals from the robot, and will send signals to the robot, for handshaking. The Program I/O button allows communication between the AIC interface and the device with which it is working--typically a robot. You can define the meaning for up to 6 input channels coming in from the robot, and up to 3 channels going out to the robot (Figure 14-85).

A series of Instrument Operational Check Measurement Plan command strings are available for interacting with the AIC in automation mode. Refer to the "MP Command Reference" document for de-
tails.
Leica Absolute Scanner (LAS) 20-8

Cable Connections:

1. LAS scanner connects to the LAS controller
2. Connect both the trigger cable and the sensor cable from the LAS control to the Tracker Controller.
3. Connect both controllers via Ethernet to the host computer or network switch.

Requirements:

- AT960 with firmware V 1.2.0.4215 or newer
- RDS V4.1 RC3 or newer
- SA version 2016.02.18 or newer

Software configuration:
Computer Configuration:

- Verify that the Computer Network Connect is set to 192.168.0.\# (>2 and <254)
- The Tracker IP defaults to 192.168.0.1
- \quad The LAS system $=192.168 .0 .2$ (fixed address)

RDS Configuration:

- Within RDS go to the Connections pannel on the right hand tab and configure RDS to run with the AT960 as shown in below (Figure 14-86).

Figure 14-86. RDS Configuration.

Tracker configuration through Tracker Pilot:

- Ensure that the AT960 has the current firmeware V 1.2.0.4215 or newer.
- Import the Scanner .emsys files which contain the LAS face compensations and define the target.
Connection Process:
- Connect to the AT960 following the standard connection procedure. For more details refer directly to the tracker Quick-Start guide (see"Leica AT960 / AT930 /AT901" on page 374)
Using The LAS

The laser tracker interface will automatically detect the LAS as a reflector type once all configuration is complete. This is done automatically just like a T-probe or T-mac is auto-detected.

The scanner will initiate as it connects and you should then be able to begin and stop scanning using the trigger button (Figure 14-87).

Cloud Naming
Cloud naming is based upon the "group" name specified in the tracker interface. By default the cloud name will increment automatically each time the Scanner Button is Released. This auto-incrementing can be turned off through the tracker settings menu (Tracker>Settings>Leica AT960/930)

Measuring With Arms

Portable arms are ideal instruments when measuring small volumes where high accuracy is required and line-of-sight measurements are difficult to achieve. This chapter discusses how to properly and effectively measure with portable CMM arms in SA.

This chapter covers PCMM Arm operation in detail. For a selection of quick start guides which provide a reference for connection and basic operation for specific arm models refer to "Portable CMM Quick-Start Guides" on page 428.

There are two ways to measure with the ortable CMM Arms interface in SA. The first is through the conventional ortable CMM Arms interface, which provides access to advanced functionality and settings and allows complete control over the instrument, target definitions, and measurement modes. The second method is through the simpler Instrument Toolbar, which provides an easy-to-use, streamlined approach to laser tracker measurement.

Note: For information on connecting to a particular arm refer to the quick start section at the end of the chapter.

You'll find that most arm measurement can be carried out in the Instrument Toolbar, which provides accelerated workflow for common tasks such as discrete and stable point measurement and scanning. However, when more control is needed-or when detailed settings or profiles need to be created or modified-the traditional arm interface provides the ability to work at a deeper level.

We'll first cover the arm interface in detail, then cover the Instrument Toolbar.

Portable CMM Arms interface

The Portable CMM Arms interface (Figure 15-1) provides unified access to all measurement parameters associated with measurement using a PCMM arm. The arm interface is divided into three primary sections: Target and Geometry Naming, Measurement Modes, and Settings.
At the very top of the interface, an interface docking button 国toggles between docking the interface to the SA window or letting it float as a separate window. If the instrument interface is opened without running SA, this button is unavailable (as there would be no instance of SA on the machine to dock with). If more than one interface is running, docking an interface will replace any currently docked interface.

Figure 15-1. The portable CMM arm interface.

Target \& Geometry Naming

Figure 15-2. Target and geometry
naming.

The Target \& Geometry Naming section (Figure 15-2) is used to define how measured targets and constructed geometry will be named.

Collection

Measured targets and geometry constructed by the instrument interface are sent to SA. The collection field is where you specify the destination collection for measured entities. If a collection name is not specified, entities are by default placed into the active collection.

Group Name

The point group name for measured targets is specified in the field next to the "G". To assign measured targets to a specific group, enter the name into the field. To assign measured targets to an existing point group, select it from the drop-down list, which shows all point
groups in the active collection.
To Increment the Current Group Name:

- Left-click the $G^{ \pm}$button.

To Decrement the Current Group Name:

- Right-click the $G^{ \pm}$button.

Target Name

Target naming is managed in the field next to the "T". Enter the desired target name in this field. After each measured target, this name will automatically increment by one.

To Increment the Current Target Name:

- Left-click the $T \pm$ button.

To Decrement the Current Target Name:

- Right-click the $\underline{T \pm}$ button.

Geometry Name

The arm interface supports real-time geometry construction. The Geom field is used to name this constructed geometry. After each geometrical entity is constructed, this name will automatically increment.

Button Control

The SA Arm interface supports the use of button commands from the buttons equipped on the Portable Arm. These buttons can be assigned different functions in the Edit Arm Settings window. One common use of the arm buttons is to move through the different measurement modes, which makes it possible to change measurement methods without the need to return to the computer keyboard. (The SA ArmPad enhances this functionality even further).

Measurement Modes

Measurement modes are extremely powerful and functional. They allow a user to take measurements and process data in one step. The arm interface supports 17 different measurement modes: Discrete Points, Stream Points, Patch (Projected Pt.), Pin, Hole, Slot, Line, Circle, Plane, Sphere, Section Cross, Frame, Batch (Guided Points), Scanner, Average Discrete Points, Geometry Trigger, and Cone. A special method for selecting measurement modes can be accessed as well. These modes are discussed below.

Discrete Points

Discrete Points mode is used to take individual measurements (Figure 15-3). When in this mode (signified by the appearance of the Points

Figure 15-3. This window indicates you are in discrete point measurement mode.

Figure 15-4. Streaming points
temporally to the interface.

Measurement window below), the assigned Record button will take a measurement, and the assigned Delete Last button will delete the last measured point (if applicable). Point names will be incremented and decremented automatically.

To manually increment/decrement the group or point name, left- or right-click the $G^{ \pm}$or $T_{ \pm}^{ \pm}$buttons.

When finished with this mode, press the assigned Accept or Cancel buttons on the arm--or click the Done button--and the Points Measurement window will close, returning you to the interface.

$\because \subset$ Stream Points

Stream Points mode is used to take measured data at specific spatial or temporal increments (as specified in the Edit Arm Settings window). It is extremely important to recognize that the actual measured data will not be spaced by the specified increments exactly--the increment will be limited by such factors as the hardware's measurement update speed, the connection speed between the instrument and SA, the computer's performance, and the speed at which the probe is moved.

When in this mode (signified by the appearance of Figure 15-4), pressing the assigned Record button will begin or continue measurement, and the assigned Delete Last button will pause measurement.
To manually increment/decrement the group or point name, left- or right-click the $\underline{G_{ \pm}}$or $\underline{T} \pm$ buttons.
When finished with this mode, press the assigned Accept or Cancel button--or click the OK button--and the Stream Points Measurement window will close, returning you to the interface.

- Patch (Projected Pt.)

Patch (Projected Pt.) mode (Figure 15-5) will project measured points
to a plane, with an optional offset (set in the Edit Arm Settings window). After starting this measurement mode, you can either select a plane to project to (by clicking the Select button) or you can measure plane points yourself by pressing the assigned Record button. Statistics for the measured plane will be displayed as you measure points. Note that you can delete a measured point by pressing the assigned Delete Last button, and the plane will automatically re-fit.

When you've defined the plane, press the default Accept button to accept it. Every subsequent measurement will be projected to the selected plane (or offset plane). The projected point's coordinates will be displayed in the window with each measurement. When finished, press the assigned Accept or Cancel button--or click the Done button--and you will be returned to the interface.

Figure 15-6. Pin measurement mode.

Pin mode (Figure 15-6) will project measured points on the outside of a cylinder to a plane, and create a circle representing the pin diameter. This is useful for determining, for example, the diameter of a pin. When in this mode, you first define the plane to which you'd like to project. As in Patch (Projected Pt.) mode, you can either select a plane to project to (by clicking the Select button) or you can measure plane points yourself by pressing the assigned Record button. Statistics for the measured plane will be displayed as you measure points. Note that you can delete a measured point by pressing the assigned Delete Last button and the plane will automatically re-fit.

Once the plane is defined, press the assigned Accept button to accept it. Subsequent measurements should be taken around the outside of cylindrical geometry (such as a pin or shaft), and these measured points will be projected to the defined plane. Once 3 measurements have been taken, statistics for the constructed circle (radius, fit error, etc.) will be displayed. To accept the Pin measurement, press the assigned Accept button or click the Accept Pin button. To cancel geometry creation, press the assigned Cancel button or click Cancel.

You can right-click this measurement mode button in order to inspect a pin feature that already has nominal geometry in your file. The inspect mode will compare your measured feature to the geometry selected as the reference. To inspect a pin, first right-click on the Pin button. When prompted, choose the circle to inspect. You'll then be prompted to measure plane points. After measuring and accepting the plane points, you'll be prompted to measure the pin itself. When complete, and after pressing the assigned Accept button, you'll get a
comparison of feature characteristics (Figure 15-7).

```
\ Comparison Results +
Nominal Center = 104.311 0.470 -7.002 in.
Actual Center = 104.311 0.469 -7.002 in.
Delta Center = -0.000 -0.001 0.000 in.
Nominal Diameter = 0.503 in.
Actual Diameter = 0.501 in.
Delta Diameter = -0.002 in.
Normal Direction Deviation \(=0.0304\) degrees
```

OK

QHole

Figure 15-8. Hole measurement.
Hole mode (Figure 15-8) will project measured points on the inside of a hole to a plane, and create a circle representing the hole diameter. When in this mode, you first define the plane to which you'd like to project. As in other modes, you can either select a plane to project to (by clicking the Select button) or you can measure plane points yourself by pressing the assigned Record button. Statistics for the measured plane will be displayed as you measure points. Note that you can delete a measured point by pressing the assigned Delete Last button, and the plane will automatically re-fit.

Once the plane is defined, press the assigned Accept button to accept it. Subsequent measurements should be taken around the inside of

Figure 15-9. Comparison results.
cylindrical geometry (such as the inside of a hole or pipe), and these measured points will be projected to the defined plane. Once 3 measurements have been taken, statistics for the constructed circle (radius, fit error, etc.) will be displayed. To accept the Hole measurement, press the assigned Accept button or click the Accept Hole button. To cancel geometry creation, press the assigned Cancel button or click Cancel.

You can right-click this measurement mode button in order to inspect a hole feature that already has nominal geometry in your file. The inspect mode will compare your measured feature to the geometry selected as the reference. To inspect a hole, first right-click on the Hole button. When prompted, choose the circle to inspect. You'll then be prompted to measure plane points. After measuring and accepting the plane points, you'll be prompted to measure the hole itself. When complete, and after pressing the assigned Accept button, you'll get a comparison of feature characteristics (Figure 15-9).

| Comparison Results |
| :--- | :--- | :--- |
| Nominal Center $=104.311$ 0.470 -7.002 in.
 Actual Center $=104.311$ 0.469 -7.002 in.
 Delta Center $=$ -0.000 -0.001 0.000 in.
 Nominal Diameter $=$ 0.503 in.
 Actual Diameter $=0.501 \mathrm{in}$.
 Delta Diameter $=-0.002 \mathrm{in}$.
 Normal Direction Deviation $=0.0304$ degrees

 OK |

Slot
Slot mode (Figure 15-10) will project two measured inside diameters of a slot to a plane, and construct circles and a slot midpoint (if specified). When in this mode, you first define the plane to which you'd like to project. As in other modes, you can either select a plane to project to (by clicking the Select button) or you can measure plane points yourself by pressing the assigned Record button. Statistics for the measured plane will be displayed as you measure points. Note that you can delete a measured point by pressing the assigned Delete Last button and the plane will automatically re-fit. mode.

Figure 15-10. Slot measurement

Once the plane is defined, press the assigned Accept button to accept it. You should then measure the points defining the inside diameter of one end of the slot (Circle A). Once 3 measurements have been taken, statistics for the constructed circle (radius, fit error, etc.) will be displayed. To accept the measurement, press the assigned Accept button. Next, measure the points defining the inside diameter of the other end of the slot (Circle B). To accept the slot measurement, press the assigned Accept button again, or click the Accept Slot button. To cancel geometry creation, press the assigned Cancel button or click Cancel.

Figure 15-11. Line measurement mode.

When finished measuring, press the assigned Accept button or click the Accept Line button. This will create a line in the SA job. To cancel the measurement mode, press the assigned Cancel button or click the Cancel button.

†Circle

Figure 15-12. Circle measurement mode.

Circle mode (Figure 15-12) creates a best-fit circle to the measured points. The difference between this mode and $\mathrm{Pin} /$ Hole modes is that the measured points are not first projected to a plane. This mode allows you to specify whether you're measuring an inside radius (hole), outside radius (pin), or face radius (no offset). Probing direction is used to define the normal direction of the resulting circle. After 3 points have been measured, statistics for the fit of the resulting circle will be displayed. You can remove the previously-measured point from the fit by pressing the assigned Delete Last button.

When finished measuring points, press the assigned Accept button or click the Accept Circle button. To cancel geometry creation, press the as-
signed Cancel button or click the Cancel button.
Plane

Figure 15-13. Plane measurement mode.

Plane mode (Figure 15-13) creates a best-fit plane to a series of measured points. Once 3 points are measured, the Plane Measurement window displays statistics for the fit and the resulting plane. The normal direction of the plane is determined by the probing vector. You can remove the previously-measured point from the fit by pressing the assigned Delete Last button.

When finished measuring points, press and hold the assigned Accept button or click the Accept Plane button. To cancel geometry creation, press the assigned Cancel button or click the Cancel button.
You can right-click this measurement mode button in order to inspect a plane that already exists in your file. The inspect mode will compare your measured feature to the geometry selected as the reference. To inspect a plane, first right-click on the Plane button. When prompted, choose the plane to inspect. You'll then be prompted to measure plane points. After measuring and accepting the plane points, you'll get a comparison of feature characteristics (Figure 15-14).

Figure 15-14. Comparison results.

```
, Comparison Results
Plane Inspection - Main2_P15
MaxDeviation = 0.007 in.
Mean Deviation = -0.002 in.
RMS Deviation = 0.004 in.
Nominal ijk = 0.0073 0.0120 0.9999
Actual ijk = 0.0044 0.0117 0.9999
Normal Direction Deviation =0.1693 degrees
```


OK

Sphere mode (Figure 15-15) creates a best-fit sphere to a series of measured points. Once 4 points are measured, the Sphere window displays statistics for the fit and the resulting sphere. You can remove the previously-measured point from the fit by pressing the assigned Delete Last button.

4 Sphere 1 Hexeen x		
5 Samples	Tip Dia: 0.236134 in .	
Center: 50.711775, -2 Radius: 3.373273 in. Pct Coverage: 1.667	$96900,4.161006$ RMS Error: 0.09	
Accept Sphere	Cancel	

When finished measuring points, press the assigned Accept button or click the Accept Sphere button. This will create a sphere and a point representing the center of that sphere. To cancel geometry creation, press the assigned Cancel button or click Cancel.

Cross Section mode (Figure 15-16) will automatically trigger measurements when the probe crosses a specified coordinate frame axis value (plane). This is useful, for example, when creating measured cross-sections of complex geometry. After initiating this mode, the Section Specification dialog will appear, in which you specify the axis (X, Y, or Z) and plane on that axis that you would like to use to trigger measurements:

Figure 15-16. Cross section mode.

Figure 15-17. The section measurement dialog.

Figure 15-18. Measuring at a specific cross-sectional value.

Once the plane is defined, click the OK button or the assigned Accept button. This will bring up the Section Measurement dialog (Figure 15-17).

When ready to begin measurement, press the assigned Record button. The arm will begin streaming data to SA (Figure 15-18). When the probe crosses the specified plane, a measurement will be fired. Notice that the result of this measurement will be an interpolated point that lies directly on the specified plane. (Due to limits of hardware sampling frequency, network speed, computer speed, and other restrictions, it is highly unlikely that the instrument's measurement will lie perfectly on the specified plane).

To pause measurement, press the assigned Delete Last button, which will put the arm back into a mode in which the graphical view will be continuously updated with the arm's position, but no measurements will be taken. When finished measuring, press the assigned Accept or

Cancel button, which will return you to the interface.
人Frame
Frame mode (Figure 15-19) constructs a frame based on the probing direction (final joint position) of the arm. The origin is placed at the probe position, and the constructed frame's Z-axis is along the direction of the probe.

Figure 15-19. Measuring a frame with the arm.

To specify a name for the constructed frame, fill in the Frame Name field. To measure a frame, press the assigned Record button. When finished measuring, press the assigned Accept or Cancel button.
$\checkmark \rightarrow$ Batch (Guided Points)
Batch, or Guided Points mode, guides the user to a series of selected points using dynamic zooming and audio cues. When entering this mode, you are first prompted to select the points to guide to (usually nominal points). Select these points in the order in which you'd like to measure them, then press Enter. Next, you will be presented with the Measure a Batch of Points dialog (Figure 15-20).

Figure 15-20. Settings for measuring a batch of points.

Figure 15-21. Measuring a batch of points.

- Group Suffix. Attaches the specified suffix to the group of measured points.
- Target Suffix. Attaches the specified suffix to each measured target.
- Drive Tolerance. Specifies the radius around the current point that is considered to be "good" or "in-tolerance". When the probe is within this radius, it turns green and the tone reflects an in-tolerance position (see below image).
- Warbler Tone ramp start zone. Specifies the radius at which the audio tone begins to ramp up in pitch to signify that the probe is approaching the desired position.
When the desired parameters are entered, click Transmit Batch to Instrument to begin measurement. While in the actual measurement mode (Figure 15-21), press the assigned Record button to measure the point and the assigned Delete Last button to delete the previous point. Note that as the probe is moved closer to the desired position, the tone increases in pitch and the view zooms in closer to the reference point.

When all of the batch points have been measured, this mode exits automatically. You can also exit the mode prematurely by pressing
the assigned Accept or Cancel button.
Scanner
Scanner mode activates the laser line scanner on the arm, if equipped. Typically, the assigned Record button starts and stops scanning, while pressing the assigned Accept or Cancel button will end scanning mode. The specific display for this mode is dependent on the hardware being used to execute the scan.

工. Average Discrete Points

Average Discrete Points (Figure 15-22) mode creates an averaged point from a number of measured points. This mode is useful when you want to average out a series of potentially noisy measurements (perhaps from vibration or other issues).

When in this mode, press the assigned Record button to begin taking samples. The number of samples that are averaged to determine the ultimate measurement position is determined in the Edit Arm Settings window.

While taking samples, the assigned Delete Last button will pause sampling. Press the assigned Record button to resume. At the completion of the desired number of samples, the resulting point (and RMS error) will be displayed. Press the assigned Delete Last button to reject the point, the assigned Record button to take another measurement, and the assigned Accept button to complete the measurement mode.

Geometry Trigger

Geometry Trigger mode allows you to define planar, cylindrical, or spherical cross sections that, when crossed by the probe, trigger measurement. By default, these geometric triggers are not defined. You first need to define them by right-clicking on the Geometry Trigger button, which will take you to the Make Geometry Crossing Triggers dialog (Figure 15-23). The top of this dialog (separated into Add Planes,

Add (ylinders, and Add Spheres sections) is where the geometry triggers are defined. The active geometry triggers are displayed in the list in the center of this dialog.

Add Planes:

- Cartesian. Creates planar triggers (Figure 15-24) along the X, Y, and/or Z axes:

Figure 15-24. Planar geometry triggers.

After clicking this button, you are presented with the Cartesian Along Working Axes dialog (Figure 15-25).

Figure 15-25. Defining the extent
of planar geometry triggers.

In this dialog, check the axes along which you'd like to create planes, and also specify their start and stop position (in active units), as well as their spacing. In this example, planes will be placed along the active Z axis, from $Z=0$ " to $Z=20 \prime$ ", spaced by $2^{\prime \prime}$ (see image above).

It is important to realize that, due to a number of limiting factors such as hardware sampling speed and computer speed, the sampled data will almost never be taken exactly on the geometry's boundary. In the Cross Sampling section, choose Interpolate to have SA interpolate between two sampled points on each side of the geometry trigger, and Closest Pt. to have SA use the closest sampled point to the trigger. The Interpolate option will result in a point lying directly on the geometry trigger (although it will not have been an actual sampled point), whereas Closest Pt. will be a true sampled point, but will likely not lie directly on the defined trigger.
You can also specify the width and height of the planes (for drawing purposes only) if they are going to be drawn in the graphical view.

- Cylindric. Creates planar triggers that pivot about the working frame's Z axis. Clicking this option brings up the Cylindric About Z in Working dialog (Figure 15-26). Here, you can define the start angle, stop angle, and angular spacing of the planes. Note that the X-axis defines the 0-degree plane for these values.

Figure 15-26. Defining cylindric geometry triggers.

Figure 15-27. Cylindrically oriented planar triggers.

It is important to realize that, due to a number of limiting factors such as hardware sampling speed and computer speed, the sampled data will almost never be taken exactly on the geometry's boundary. In the Cross-Sampling section, choose Interpolate to have SA interpolate between two sampled points on each side of the geometry trigger, and Closest Pt. to have SA use the closest sampled point to the trigger. The Interpolate option will result in a point lying directly on the geometry trigger (although it will not have been an actual sampled point), whereas Closest Pt. will be a true sampled point, but will likely not lie directly on the defined trigger.

You can also specify the radius (width) and length of the planes (for drawing purposes only) if they are going to be drawn in the graphical view. The settings in Figure 15-26 were used to create the trigger planes in Figure 15-27.

- Select. Allows you to add an existing plane to the list of trig-
gers by clicking in the treebar or the graphical view.
- Cross-Sampling. This applies to triggers added via the Select method (see previous). It is important to realize that, due to a number of limiting factors such as hardware sampling speed and computer speed, the sampled data will almost never be taken exactly on the geometry's boundary. Choose Interpolate to have SA interpolate between two sampled points on each side of the geometry trigger, and Closest Pt. to have SA use the closest sampled point to the trigger. The Interpolate option will result in a point lying directly on the geometry trigger (although it will not be an actual sampled point), whereas Closest Pt. will be a true sampled point, but will likely not lie directly on the defined trigger. Note that the desired option must be chosen prior to selecting the plane.
- Draw In SA. This option will physically create the trigger planes in the job upon clicking the OK button for the Make Geometry Crossing Triggers dialog.

Add Cylinders

This section is used to add cylindrical geometry triggers.

- Select. Allows you to add an existing cylinder to the list of triggers by clicking in the treebar or the graphical view.
- Cross-Sampling. It is important to realize that, due to a number of limiting factors such as hardware sampling speed and computer speed, the sampled data will almost never be taken exactly on the geometry's boundary. Choose Interpolate to have SA interpolate between two sampled points on each side of the geometry trigger, and Closest Pt. to have SA use the closest sampled point to the trigger. The Interpolate option will result in a point lying directly on the geometry trigger (although it will not be an actual sampled point), whereas Closest Pt. will be a true sampled point, but will likely not lie directly on the defined trigger. Note that the desired option must be chosen prior to selecting the cylinder.

Add Spheres

This section is used to add spherical geometry triggers.

- Select. Allows you to add an existing sphere to the list of triggers by clicking in the treebar or the graphical view.
- Cross-Sampling. It is important to realize that, due to a number of limiting factors such as hardware sampling speed and computer speed, the sampled data will almost never be taken exactly on the geometry's boundary. Choose Interpolate to have SA interpolate between two sampled points on each side
of the geometry trigger, and Closest Pt. to have SA use the closest sampled point to the trigger. The Interpolate option will result in a point lying directly on the geometry trigger (although it will not be an actual sampled point), whereas Closest Pt. will be a true sampled point, but will likely not lie directly on the defined trigger. Note that the desired option must be chosen prior to selecting the sphere.

Trigger List

Figure 15-28. A list of the defined geometry triggers.

The Make Geometry Crossing Triggers dialog displays a list of the currently active triggers (Figure 15-28). You can single or multi-select active triggers, then remove them from the trigger list using the Delete Selected button. Or, you can delete all active triggers using the Delete ALL button.

Type	Sample	Name	
Plane_Selected	Closest Pt.	Cylindric 30.000000 degrees , Plane Selecte...	
Plane_Cartesian	Closest Pt.	Cartesian Z 0.000000 in.	
Plane_Cartesian	Closest Pt.	Cartesian Z 2.000000 in.	
Plane_Cartesian	Closest Pt.	Cartesian Z 4.000000 in .	Delete
Cylinder_Select...	Closest Pt.	Cylinder, Cylinder Selected from SA	Selected
			Delete ALL

- Group Separately (Append Trigger Name). When this option is checked, measured points will be separated into point groups based on their respective triggers (Figure 15-29). The trigger name will be appended to the end of the group name as appropriate. Once the geometry triggers have been defined, click OK to return to the interface. At this point, left-clicking the Geometry Trigger button will take you into the measurement mode. Pressing the assigned Record button will begin (or continue) streaming points, and only those triggered by the geometry triggers will be recorded. To pause streaming, press the assigned Delete Last button. To exit measurement mode, press the assigned Accept or Cancel button.

Figure 15-29. Separately grouped measurements on different geometry triggers.

Cone

Cone mode (Figure 15-30) creates a best-fit cone to a series of measured points. Once at least 12 points are measured, the Cone window displays statistics for the fit and the resulting cone. You can remove the previously-measured point from the fit by pressing the assigned Delete Last button.

Fit parameters (Figure 15-31) can be accessed by right-clicking on the Cone icon.

Figure 15-31. Fit settings for a cone.

- Lock Angle. Allows you to specify the apex angle and lock it, so that the resulting cone matches the specified angle.
- Measured. Indicate whether you measured the outside of the cone, inside of the cone, or have zero offset.
- Offset. Use the current probe offset, or override it with a custom value.
- Perform Guess First. When checked, as each additional point is measured the fitting algorithm will re-evaluate all of the measured points. If unchecked, the initial guess parameters will not necessarily be re-evaluated as additional points are measured. In general, leave this option checked, unless computation times become unreasonable.
- Angle. Define the apex angle used for the initial cone fit guess.

When finished measuring points, press the assigned Accept button or click the Accept Cone button. To exit the dialog, press the assigned Cancel button.

The SA ArmPad (Figure 15-32) is a patent-pending input method that takes advantage of a calibrated pad (like a mousepad) that can be placed on any work surface. Once calibrated, you can tap any function on the pad with a probing device, instantly performing an action or entering the selected measurement mode. You can then perform various interactive actions with SA without using the computer or setting down the arm/probe.

Figure 15-32. The SA ArmPad.
By measuring three calibration points (A, B, \& C below), SA will recognize the position and orientation of the pad, as well as which pad is being used. (Multiple variations of ArmPads, each with different functionality, are possible). As long as the pad is not moved relative to the instrument, its functions can be activated.

Calibrating the ArmPad is a straightforward process. It only needs to be performed once for a given instrument/pad orientation. That is, as long as the relative position between the instrument and the pad remain fixed, there is no need to recalibrate. Calibration results are stored with the instrument interface persistence files, so if an interface is shut down and restarted, the calibration is stored and recalled.

1. In the instrument interface (but without any measurement modes active), click the SA ArmPad button 䨌, or hold button 2 on the arm for a brief moment.

2. The ArmPad Calibration dialog will appear (Figure 15-33). Follow the prompts and touch the probe to each calibration point on the pad, measuring a single point at each.

Contact NRK Support to request a free pad. Or, click the Print Pad button to bring up a PDF of the pad which you can print out yourself on a letter-sized sheet of paper to use. (Note that the PDF should be printed at full scale, ensuring Page Scaling is set to NONE.

The Cancel and Done buttons have various uses (which are intuitive) based on context--they are equivalent to the Cancel or Accept buttons on the arm itself. The Prev and Next buttons have several meanings depending on context as well. For example, they switch to the previous or next feature when performing a GD\&T Inspection, and they move
to the previous or next relationship when trapping measurements.

To Select a Measurement Mode Using the ArmPad:

- With the arm interface running, tap the probe onto the desired measurment mode on the pad. (Note: you do not need to press a button to select the mode).
To Change Views Using the ArmPad:
- With the arm interface running, tap the probe to the Top, Front, Side, or Oblique boxes on the pad.
To Autoscale the View Using the ArmPad:
- With the arm interface running, tap the probe to the Autoscale button (similar to the \ddagger button) on the pad.

To Delete the Last Measured Point Using the ArmPad:

- With the arm interface running, tap the probe to the Delete Last Point button on the pad.

准Edit Arm Settings

To access the SA Arm interface options, press the Edit Arm Settings button $\sqrt{\circ}$ in the bottom left-hand corner of the interface. This takes you to the Options dialog (Figure 15-34).

Arm buttons 1, 2, and 3 (if available) can be set to perform a series of functions:

- None. Disables the associated button so it performs no action.
- Record/Accept. The associated button will record a point or begin streaming points if pressed momentarily, and accept a dialog, accept geometry creation, or close a measurement mode if held for a few seconds.
- Delete Last/Mouse Toggle. The associated button will delete
the last point or pause streaming if pressed momentarily, and if held for a few seconds, will toggle the use of the arm to control the mouse cursor.
- Delete Last/Cancel. The associated button will delete the last point or pause streaming if pressed momentarily, and cancel a dialog, cancel geometry creation, or close a measurement mode if held for a few seconds.

Units
Instrument interfaces have unit settings in addition to SA itself. Choose the active units (inches, meters, millimeters, centimeters, or feet) in this dropdown.

Sound Options
Clicking the Sound Options button will bring up the Sound Properties dialog (Figure 15-35).

Speech Prompting

- Speech Enabled. If the SA Speech Server is running, this option will add speech prompting to the arm interface.
- Test. This button can be used to verify that the speech feature is operating correctly.
- Server Computer. The IP address of the computer running the speech server (leave blank if running on the current computer).
- Speech Port. The network port used by the speech server (set in the Speech Server's settings).

Arm Sounds

- Test. Play a series of arm sounds to check the volume setting and verify that arm sounds are audible.
- Volume (1-40). Sets the volume of the arm's speaker (if applicable). If the arm is not equipped with an internal speaker, the

Fit/Meas Options

Figure 15-36. The Fit/Scan options dialog.
computer's speaker will be used instead, and this setting will have no effect.

- Use for Plane Sections. When enabled, the arm will sound when the probe crosses a plane section or geometry trigger that results in a measurement.

The Fit/Meas Options button brings up a dialog (Figure 15-36) where you can specify a series of options related to arm measurement and geometry fitting.

Start Up

- Startup In Meas Mode. Check this option and choose a measurement mode to have the interface automatically enter a specific measurement mode after being started.

Fit Options

- Lock Circle Radii to. Check this option and enter a radius to lock the resulting circle from a circle fit to a specific radius.
- Lock Sphere Radii to. Check this option and enter a radius to lock the resulting sphere from a sphere fit to a specific radius.

Stream Points

- Temporal. When in Stream Points mode, points will be recorded at the rate specified under the Arm Settings in the Query Rate During Measurements field. Note that due to hardware, network, and other limitations, the rate will not match the requested rate exactly.
- Spatial. When in Stream Points mode, points will be recorded spaced by the specified increment. Note that due to hardware, network, and other limitations, the spacing will not match the requested increment exactly.

Guided (Batch) Measurement

- 'Good' Threshold. Set the default radius for measurements to be considered "good" (in the "green zone").
- Working Field Threshold. Set the default radius in which the mode begins zooming and emitting an audio cue.

Averaged Discrete Points

- Acquire X Samples per Point. Specify the number of samples that will be averaged to produce the resulting measured point while in Average Discrete Points mode.

Line Scan (Optional Laser Line Scanner)

- Send Cloud Data to SA Every X Seconds. Point cloud data acquired from scanners is sent to SA in batches. This option allows you to control how frequently those cloud point batches are sent to SA.
- Auto Increment Cloud Name. When selected, upon completion of a scan, the point cloud name will automatically be incremented for the next set of scan data.
- Thinning Factor. This setting is applied in addition to the manufacturer's thinning settings in order to determine what portion of the scanned points are actually sent to SA. For example, if the manufacturer's settings are set to send every 2 nd point, and the setting here is to send every 2nd point, then SA will receive every 4th point.

Line Measurement

- Edge Line (eg sheet metal). This option is used for measuring
an edge, typically of a thin plate (such as sheet metal) when in Line measurement mode. For this mode, you first define the plane of the flat surface whose edge you'd like to measure. Then, start measuring and slowly drag the probe tip along the surface until it begins to fall off the edge. This will define one end of the line. Repeat on the other end of the edge, and a line will be created. It is important to move the probe tip very slowly (depending on the measurement query rate) and to ensure that the probe remains in contact with the surface at all times.
- Probe Center. When in Line measurement mode, the line is fit to the probe center points.

Geometry Trigger Measurement

- Set Triggers. This is equivalent to right-clicking on the Geometry Trigger measurement mode button, and allows you to define geometry triggers.

Data to SA

- Query Rate During Measurements. Specify the rate at which the instrument is polled for data while measuring. This controls, for example, the rate at which measurements are recorded during the temporal Stream Points measurement mode, and the rate at which data is transmitted for UDP Broadcasts. Keep in mind that the requested data rate is limited by hardware, network, and other restrictions.
- Send All Points as Cloud Points. All measured points will be sent to SA as cloud points instead of measured targets.
- Send Intermediate Points with Features. For measurement modes that create geometry, if checked this option will also send the measured points that created the geometry. By default, these points are not sent.
- Send Geometries. If disabled, geometries resulting from measurement modes that create geometry will not be sent to SA.
- Increment Group After Measurements. When selected, the group name will increment upon the completion of a measurement mode.
- Increment Point Names By X. Each subsequent measured point will be incremented by the specified amount.

UDP Data Stream
The UDP Data Stream feature (Figure 15-37) enables the instrument interface to broadcast real-time probe position and orientation over the User Datagram Protocol (UDP). This allows the interface to send this data over a network without requiring a specific data connection

Figure 15-37. The arm interface's UDP data stream properties dialog.

Figure 15-38. The SpatialAnalyzer UDP Monitor.
to be established beforehand. This means that other clients on the network can be set up to receive this data and, perhaps, do something useful with it.

For example, you might set up UDP data streaming to broadcast realtime 6D probe information to a custom client application that is listening on the proper port for UDP data packets. This client application could take this 6D information and process it, performing a useful task (such as using the 6D information to control a motorized pan/tilt head camera mount).

- Data to Send. Choose whether to send 3D coordinates (X, Y, and Z probe position) or 6D Transformations (X, Y, Z, and probing vector). You must also choose whether to send this data relative to the instrument, working, or world coordinate frame.
- Destination. Enter the network computer name or IP address to target for the UDP broadcast, or leave it blank to broadcast to the entire local network. You must also specify a port number to target.
To test the data being transmitted via UDP packets, use the SpatialAnalyzer UDP Monitor (available in the SA Install directory as SpatialAnalyzer UDPMonitor. exe. Set it up with the appropriate port, then click the Start button to view the data as it arrives over the network port, as seen in Figure 15-38.

- Diameter. You can override the arm's probe diameter by entering a different value in this field (generally NOT recommended). Click the Apply button to apply the changes.
- Add Additional Patch Shift. Select this option to add an additional thickness for the Patch (Projected Pt.) measurement mode. This can be used, for example, to account for extra material thickness on a measured surface.
- Offset. Enter the desired patch shift offset amount in this field. A positive offset implies that there is extra material on the measured part.

This button is used to load or create a translation file for the arm interface. See Language Translation for more details.

This will display hardware-specific calibration routines and settings. The options provided by this button are strictly controlled by
the instrument manufacturer.

\& Toggle Arm Buttons

Press this button to toggle the arm buttons on and off. Toggling the arm buttons off will render them inoperable until toggled back on again.

Blue Question Mark
This button will display the MP string commands that can be used to set the arm measurement modes or apply additional settings via Measurement Plans.

Instrument Simulation

In simulation mode, you can simulate the different measurement modes, as well as record points to simulate a measurement process. When simulating, you will come across a series of buttons in various parts of the interface (Figure 15-39).

Figure 15-39. The simulation buttons.

$$
\begin{array}{l|l|l|l|}
\hline 1 S & 1 L & 2 S & 2 L \\
\hline
\end{array}
$$

These buttons refer to "First button, short", "First button, long", "Second button, short" and "Second button, long" and refer to simulating pressing the arm buttons momentarily or pressing and holding them.
Instrument Index Number
At the very bottom of the interface is the collection, instrument index number, and name of the active instrument. This index number (which for a given collection begins counting from zero) is used in several places in SA--one of which is Measurement Plans.

Instrument Toolbar

The instrument toolbar is a simpler, easier to learn and use interface for arm measurement than the full arm interface. It is well suited for performing simple point measurement and scanning tasks, for new users, and when performing inspection routines using the SA Toolkit. It does not have any of the geometry measuring routines that are found in the traditional arm interface.

The instrument toolbar is displayed in Figure 15-40. It is accessible from the main arm interface by clicking the 霜icon. (Similarly, the 蜀 icon switches back to the standard interface).

Figure 15-40. The arm instrument toolbar.

Setting the Point Name

To explicitly set the point name for the next measured point, click the text field above the probe diameter listing. This will call up the Instrument Interface Point Naming dialog (Figure 15-41), which allows you to specify the collection, group, and target names. If performing an inspection routine, the SA toolkit will name your data for you.

Figure 15-41. Naming a point in
the arm toolbar.

Measurement Modes

Figure 15-42. (Left to right) Single point mode, stream mode, and scanning mode.

There are three measurement modes available to you in the toolbar: single point measurement, stream measurement, and scanning mode (Figure 15-42).

Click the single point or streaming measurement mode to activate it. For arms that have a scanner device with a switch attached, flip the switch to activate scanning mode. Some instruments may require you to click the scanning measurement mode button.

Measuring In The Toolbar

The following buttons control measurement using the arm toolbar.

- Button 1. A short press moves to the next feature in the SA Toolkit, whereas a long press iterates the measurement mode.
- Button 2. A short press records a measurement, whereas a long press deletes the last measurement.
- Button 3. A short press advances to the next feature in the SA Toolkit, whereas a long press iterates the measurement mode.

Checks/Utilities

By clicking the icon, you can access calibration, scanner, and arm settings (these are the same destinations as found in the traditional arm interface).

Portable CMM Quick-Start Guides

API Arms starting with "API Axxis Arm (6 DOF)" on page 428
Faro Arms starting with "Faro Arms" on page 444
Hexagon Arms starting with "Romer/Cimcore Arms" on page 446

API Axxis Arm (6 DOF)

Note: You must have the proper calibration file for the arm (manufacturer-supplied). The file name will contain the arm serial number and will end with . . .Arm.tab. You will be prompted to browse for the path to this file when the interface starts.

Running the Arm

Figure 15-43. Adding an Axxis 6-DOF arm.

Figure 15-44. The Axxis Connection Settings dialog.

1. Download the Baces3D Install zip from ftp://ftp.kinematics. com/pub/SA/Install/Driver\%20Downloads/PCMM\%20Arms/ API/Axxis/.
2. Unzip the file to your hard drive, and follow the instructions in the Baces3D USB Installation PDF file.
3. Select the API Axxis 6DOF arm (Figure 15-43).

4. With the new instrument added, run the arm interface module.
5. You will be asked to choose a communication method and a parameter file (Figure 15-44). This parameter file should be supplied with the arm.

Axxis Connection Settings	X
Communication Port	OK
USB	Cancel
Parameter File	
C:\|BACES\MO22_5C_2.TAB	\ldots

4. Once connection is established the arm must be initialized. Simply exercise the arm until all encoders have a green status (Figure 15-45).

Figure 15-45. Exercising the encoders on the arm.

Figure 15-46. The Baces3D icon.

Figure 15-47. The Baces3D
calibration dialog.

5. The SA arm interface will now appear. At this point you are ready to perform a point probe calibration. To access the point probe calibration, simply right-click on the Baces3D icon in the system tray (Figure 15-46).

6. Follow the Baces3D calibration dialog (Figure 15-47).

7. With a satisfactory calibration the arm is ready to measure. Simply use the buttons on the arm to trigger measurements, change measurements, etc. The button configuration is available through the arm User Options. For example, a short press of the blue button will toggle through the measurement
modes. A long press of the blue button will activate a measurement mode.

Figure 15-48. Button settings for the arm.

API Axxis Scanner Arm (7 DOF)

Prerequisites

Note: You must have the proper calibration file for the arm (manufacturer-supplied). The file name will contain the arm serial number and will end with ...Arm.tab. You will be prompted to browse for the path to this file when the interface starts.

Note: You must have the proper calibration file for the scanner. The Kreon install will prompt you for the file. It will be named [scanner serial number]. cal.

Note: You must plug in the USB license key for the scanner before use.

1. Download PluginSpatialAnalyzerXXXX.zip from ftp:// ftp.kinematics.com/pub/SA/Install/Driver\ Downloads/ Scanners/Kreon\%20Scanner\%20Plugin/.
2. Unzip the file to your hard drive, and run Setup.exe. The installer will guide you through the process of installing the scanner and the HASP dongle driver.

Network Settings for Running the Scanner

- The scanner's ip address is set to 192.168.244.43 and 255.255.255.0 (subnet mask).
- Your PC's network card MUST have the following address: 192.168.244. x, where x is any number between 1 and 255, except for 43. 255.255.255.0 (subnet mask).
- The above MUST be the ONLY address set on your network card.
- Your network card MUST be configured for 'Speed \& Duplex' = '10Mbps/Full Duplex'

Note: The consequence of the above requirements is of course that you will be unable to run any other device which uses network communications on the computer configured as required, UNLESS the computer has more than one network card.

- You can find this setting in (e.g. for Windows XP) in Device Manager: Control Panel>System>Hardware>Device Manager. Select Network adapter (the one you are configuring), and go to the Advanced tab.
- If you are unable to make this setting change, you will need to consult IT, or someone who can make the change.

Running the Instrument in SA

1. Add an instrument using the menu item Instrument>Add Instrument or use the 禺
2. Select the API Axxis 7DOF arm (Figure 15-49).

Figure 15-49. Adding a 7-DOF
Axxis arm.

Figure 15-50. The Axxis connec-
tion settings dialog.

Figure 15-51. Exercising the encoders on the arm.

3. With the new instrument added run the arm interface module. Simply click the \boldsymbol{R}^{i} icon.
4. You will be asked to choose a communication method and a parameter file. This parameter file should be supplied with the arm. Be sure to select the scanner parameter file (Figure 15-50).

5. Once the connection is established the arm must be initialized. Simply exercise the arm until all encoders have a green status (Figure 15-51).

6. The SA arm interface will now appear. At this point you are ready to perform a point probe and scanner calibration. To ac-

Figure 15-52. Calibrating the arm.

Figure 15-53. Calibrating the touch probe.
cess the calibration routine press the calibration button in the arm interface. Perform a scanner calibration and accept the results (Figure 15-52).

7. If hard probing will be used in conjunction with the scanner be sure to have a valid 6-DOF calibration as the 7-DOF calibration is dependent on the results of the 6-DOF calibration. To define the 7-DOF hard probe press the options \mathcal{A} button in the arm interface. Now press the Cal/Set button to access the calibration dialog.
8. Follow the instructions for defining the point probe (Figure 15-53).

9. With a satisfactory calibration the arm is ready to measure. Simply use the buttons on the arm to trigger measurements, change measurements, etc.

Perceptron Contour Scanner (ScanWorks v4)

The Perceptron interface requires that you install and run Perceptron's ScanWorks application. Make certain the scanner is connected to the arm, and the power to the scanner is on. Run ScanWorks. ScanWorks version 4.4a. 082 is shown in Figure 15-54.

Note the Output data to TCP/IP setting is checked. This MUST be checked in order for the interface to receive data. In older versions of ScanWorks, you must go to the Setup menu, and select User Options. There, you must check Output data to TCP/IP, and select Inches as the units. In ScanWorks v. 4.4 and later, the SA interface sets the units in ScanWorks automatically.

1. Minimize ScanWorks to preserve screen space. In the SA Interface, select to start the scanner measure mode. As with any measure mode, this is normally done by pressing the Record/ Accept button for a short duration to iterate through the measure modes (buttons will appear pressed as you iterate through.) Or you can press the Delete Last/Cancel button to iterate back the other way through the measure modes. Then, a long button press on the Record/Accept button will start the selected measure mode. The scanner laser line will turn on, and the Scanner Measurement dialog will appear (Figure 15-55).

Figure 15-55.

Figure 15-56. Grayed-out controls in the ScanWorks interface.

2. If the ScanWorks window is visible, you'll notice most controls are greyed out in ScanWorks, denoting that control has been taken by the SA CMM Arm interface (Figure 15-56).

3. You'll also notice that ScanWorks will pop a scanner distance indicator bar (see Figure 15-57 on page 436) to help determine whether you are a good distance from the surface to be scanned:

Figure 15-57. Scanner distance guide.

Figure 15-58. Scanning progress is displayed in the Scanner Measurement window.
4. You'll also hear a variable frequency beep giving an audible scanner-to-part distance indication. Both these features can be toggled in the ScanWorks Setup menu under User Options. When you reach a good starting position, simply press and release the scan start/stop button on the arm (this is determined by ScanWorks. For example, on a 7-DOF arm with a trigger style handle, the start scan button will be the center, or trigger, button.).
5. During the scan, Scanner Measurement dialog will indicate that a scan has started (Figure 15-58), and will display progress indicating number of cloud data points and Cloud Name being sent to $S A$.

6. End a scan by again pressing and releasing the arm scan button. When this happens, the Scanner Measurement dialog will indicate the scan stop, and will send and report any left over buffered cloud points.
7. Perform as many scans as are desired in this way. To end the Scanner Measurement Mode, you must press the 'end scan session' button on the arm. Like the start/stop scan button, this is determined by ScanWorks. For example, on a 7-DOF arm with a trigger-style handle, the end scan session button will be either of the outside buttons on the trigger handle.

Figure 15-59. The scan session must be closed via the arm button.

Note that if you try to simply close the Scanner Measurement dialog with the " X " button, it will not close, and the dialog will instruct you to end the scan session from the arm (Figure 1559).

Scanner Measurement
Sending 22256 pts. to Cloud Main480
Sending 22190 pts. to Cloud Main481
Sending 21788 pts to Cloud Main482
Sending 18836 pts to Cloud Main483
Sending 19082 pts to Cloud Main484
Sending 18706 pts. to Cloud Main485
Scan Stop
Sending 5837 pts. to Cloud Main486
>>CLOSE FROM ARM BUTTON

8. Once you do press the appropriate arm button to end the ScanWorks scan session, the Scanner Measurement will report that the ScanWorks connection is closing, and will close once ScanWorks is disconnected. If the ScanWorks window is visible, you'll notice that its controls are re-enabled, indicating that scanner control has been passed back to it.

Scanner Settings
You can edit the scan data handling and naming in the Arm Settings dialog. Press $\sqrt{\circ}$ to edit arm settings. Note that if you still have the Perceptron scanner connected, you will briefly see an error message from CimCore (Figure 15-60).

This is expected, since the CimCore Validate Probe function is called, and CimCore has no knowledge of the Contour Scanner as a valid probe definition. Indeed, this error will be generated any time a measurement other than scanning is attempted while the scanner is connected to the arm. The arm Options dialog will appear (Figure 15-61).

Figure 15-61. Arm options.

Press the Fit/Scan Options button to show the Fit/Scan Options dialog (Figure 15-62).

Figure 15-62. The Fit/Scan options.

Under Line Scan (Optional Laser Line Scanner), you can control the interval at which scan clouds are sent to SA (Perceptron Contour can acquire up to $\sim 23,000 \mathrm{Pts} / \mathrm{sec}$), by editing the field labeled Send Cloud Data to SA Every
\qquad Seconds. The Cloud Name is taken from the current Group Name in the main dialog. If Auto Increment Cloud Name is checked, then the name will automatically increment after each cloud data packet is sent to SA. The Scanner Measurement dialog is modeless, meaning the Group Name (and therefore Cloud Name) in the main dialog can be edited any time, even during a scan session. The scanner measurement progress shown earlier in this section was performed with the settings as shown here. To apply settings, simply press 0K.

The ScanWorks User Guide includes detailed instructions for calibrating the scanner to the arm. Read the instructions through before attempting to calibrate the scanner. If you need to change computers, but will be using the same scanner and arm, you can transfer the existing calibration to the new computer. The calibration file is stored in the ScanWorks install on the application PC. For example, if you used the default location for the ScanWorks install, the calibration file will be stored in C: \Program Files \backslash Perceptron\ScanWorks \CimCore\data\.

The name of the file is xform_[scanner serial number].dat where [scanner serial number] will match the number printed directly on the scanner. Simply copy this file to the same location in the ScanWorks install folder on the new PC, and you are ready to run using the existing scanner calibration.

Perceptron Contour Scanner (ScanWorks v5)

Running the Perceptron Scanner requires Scanworks (version 5.21.116 or later) to be installed and running (Figure 15-63). Please refer to Scanworks documentation for details and settings. The Scanworks interface is controlled by a console application. The console can be set to start on system startup or manually started when needed.

The below options in the console (Figure 15-64) must be set accordingly to allow SA to communicate with the arm and scanner. If settings are not set correctly communication errors will occur.

Cly ScanWorks Console		X			
Console Opstans \| ScanWorks	Hardware Control	Log			
F- Slarconsole on System Starup	F Put Console in Noticastion Tray				
F- StartSeanWorks on Console Startup	\ulcorner Auto Connectio SensorMover				
F Hide ScanWaks on Starup	Show ScanWorks				
F- Auso Display Toolbar on Scan	Show Toollar				
\ulcorner Auto Display Stazs Window on Scan	Show Stans Window				

Once the console options have been set, now operation of the scanner can begin. Open SA and add your instrument. Start the instrument interface. Best practice is to have the console running before you start the instrument interface but it is not required. The console must be running before the scanning operation is started.

In the instrument interface there are several settings that can affect the outputs of the contour scanner. These settings can be optimized to best fit your application and the capacity of your computer.

Figure 15-65. Setting the Laser Line Scan options.

Figure 15-66. The connection is established.

Figure 15-67. The ScanWorks toolbar.

Figure 15-68. Data collection.

Once Line Scan settings are configured (Figure 15-65), simply press - to start scanning.

You will see a status window notifying the connection between SA and Scanworks (Figure 15-1).

You will notice the below toolbar display when connected to the scanner (Figure 15-2). This will allow access to settings such as scan rate, scan density and exposure settings.

Now press the Red button to start collecting data. The status window will show data being sent to SA (Figure 15-3).

To stop data collection, press the Red Button again. To exit the scanning operation press one of the White Buttons and SA will disconnect from Scanworks.

Figure 15-69. ScanWorks communication error.

Figure 15-70. Shutting down ScanWorks.

Figure 15-71. Restarting ScanWorks.

1. Check to be sure sensor is attached and all connections are correct.
2. Go to the Scanworks Console and close Scanworks (Figure 155).

3. Now restart Scanworks and try the scanning operation again (Figure 15-6).

Faro Arms

This Quick-start guide applies to the setup of the Faro Platinum, Quantum and Edge.
Hardware Setup:
Faro Arm is a USB connected device. Install the drivers before connecting the USB cable. Once installation is complete connect the cable and ensure that the power switch located on the arm is turned on.

Software Setup:

Download and install the appropriate 32 or 64 bit version of 'FaroArmUSBdriver' from the Driver Downloads section of the NRK FTP site at:
http://www.kinematics.com/ftp/SA/Install/Driver\ Downloads/ PCMM\%20Arms/FARO/USB\%20Arms/

Connection Setup:
Edge arms can connect in either of 3 ways. Using USB, bluetooth, or wireless/ethernet connections. To use the default USB connection simple go on to running the instrument.

Bluetooth Connections:

1. Open the front panel of the arm, go to connections and then enable bluetooth.
2. Go to the bluetooth connection on the computer and add a device.
3. Once the device is found (the name of which should match the arm serial number) click on it and select Pair device. The pairing code is "faro".
4. Once connected to windows go to hardware and find the com port used for the connection.
5. Open the Faro Bluetooth Connection Utility in the start menu and enter the Com Port set from the bluetooth connection

6. Once connected close the connection dialog. You should get a windows prompt telling you that there is a connection.

An example video can be found here:
https://www.youtube.com/watch?v=hUoUKYKSCvk

Wireless Connection

1. Open the front panel of the arm, go to Settings>Connection and select WiFi
2. Select WiFi to PC/Laptop (to connect to an existing network use Wifi to network, connect to that network)
3. Once enabled. open the computers wifi connections and connect to the Faro Wifi signal (named according to the arms serial number).
4. Open the Faro Ethernet Setup utility from the start menu and select the wifi card for the host adapter. The arm connection should appear after you press "refresh".
5. Choose this connection by checking the check box and press OK.

An example video can be found here:
https://www.youtube.com/watch?v=3gh2cJE7Pf0
Running the Instrument:

1. Add an instrument using the menu item Instrument $>$ Add Instrument and select the appropriate FaroArm from the list.

Figure 15-72. Adding a Faro Arm to SA

Romer/Cimcore Arms

Note: If you are not running
the latest version of SA, please check the readme.txt file for the corresponding driver version.

2. With the new instrument added run the arm interface module. Simply press the Running Man icon or go to Instrument>Run Interface Module and Connect. SA should automatically detect the arm and start the Instrument Interface.

Before adding and running a Cimcore arm in SA, the appropriate instrument driver must be installed. Locate and install the latest WinRDS driver from the SA Driver Download area: ftp://ftp.kinematics.com/ pub/SA/Install/Driver\%20Downloads/PCMM\%20Arms/Cimcore/

Once downloaded, with the instrument disconnected, install the instrument driver as instructed. Once installed, reboot the PC. Now connect the arm and turn the power on. If the arm uses a USB connection, follow the below steps. If not, proceed to Running the Cimcore Arm in SpatialAnalyzer below.
When connecting via USB for the first time Windows will display the dialog in Figure 15-7.

Figure 15-73. The Hardware Update wizard.

Figure 15-74. Device Manager.

Select Yes, this time only and press Next. Follow the prompts until the Hardware Update is complete.

If this dialog did not appear and the drivers have not been associated to the hardware, right click on "My Computer" and select "Properties". Under the properties dialog select the "Hardware" tab and then select "Device Manager".

Under "Device Manager" (Figure 15-8) locate the Cimcore USB Arm, then right click and select "Update Drivers". This will display the"Hardware Update Wizard" as discussed above. Follow the same directions as above.

Now that drivers are installed and the hardware is updated, test the
connection by running WinRDS. Start>Programs $>$ Cimcore $>$ WinRDS $>$ Cimc ore Arm Utilities.

If the connection is working correctly, WinRDS will initialize the arm. Move the arm to until the below dialog is satisfied. Now that the connection has been tested close WinRDS.

Figure 15-75. Exercising the encoders on the arm.

Running the Cimcore Arm in SpatialAnalyzer
Connecting the arm for the first time in SA requires one extra step than usual. First add the desired Cimcore Arm by selecting Instrument>Add. Then select Instrument>Run Interface Module. Select the Portable CMM interface (Figure 15-9).

Figure 15-76. Starting the interface.

Select the instrument (Figure 15-10).

Figure 15-77. Connecting to the instrument.

Figure 15-78. Choosing the communication method.

Once selected, a prompt will display asking for communication method (Figure 15-11). This step will persist the next time the interface is connected.

The next time connection is required, simply use the $\ddot{\lambda}^{\circ}$ icon to run and connect the interface module. The arm interface will display once connection is complete.

Romer MultiGage

Prerequisites

Figure 15-79. RDS in the System Tray.

Figure 15-80. The RDS status.
Before adding and running a Romer Multi-Gage in SA, the RDS drivers must first be installed.

Download the RDS InstallerV3.1.1.exe (or later) from ftp://ftp. kinematics.com/pub/SA/Install/Driver\ Downloads/PCMM\ Arms/Hexagon/ or install from the Instrument Drivers Combined Installer at http://kinematics.com/products/spatialanalyzer/spatialana-lyzer-downloads.html

1. Run the RDS Installer and follow the prompts. Once installed, plug in the arm via the USB cable and verify Windows has properly recognized the device and installed the drivers properly.
2. RDS will always be active in the system tray (Figure 15-12) and is a great tool for checking arm status and connectivity (Figure 15-14).

Running the MultiGage

1. Add a MultiGage to $S A$ via Instrument $>$ Add or using the $\not \boldsymbol{R}^{i}$ icon. Select the Romer MultiGage and click Add Instrument (Figure 1513).

Figure 15-81. Selecting the instrument to add.

Troubleshooting

Figure 15-82. The RDS status displaying an error.

2. Run the instrument interface via Instrument>Run Interface Module and Connect or using the \overbrace{r}^{i} icon.

If arm connection problems occur, be sure to use the RDS application in the system tray for current status (Figure 15-15).

If further information or settings are needed access the RDS Control Panel by right clicking the RDS icon in the system tray and select RDS Control Panel.

Romer Absolute

Prerequisites

Figure 15-83. RDS in the System Tray.

Figure 15-84. The RDS status window.

Before adding and running a Romer Absolute Arm in SA, the RDS drivers must first be installed.

Download the RDS InstallerV3.1.1.exe (or later) from ftp://ftp. kinematics.com/pub/SA/Install/Driver\ Downloads/PCMM\ Arms/Hexagon/ or install from the Instrument Drivers combined installer at http://kinematics.com/products/spatialanalyzer/spatialana-lyzer-downloads.html

1. Run the RDS Installer and follow the prompts. Once installed, plug in the arm via the USB cable and verify Windows has properly recognized the device and installed the drivers properly.
2. RDS will always be active in the system tray (Figure 15-16) and is a great tool for checking arm status and connectivity (Figure 15-17).

3. If the arm is an Absolute Arm 7DOF SI (integrated scanner) you will need to ensure the computer's IP address is configured correctly to communicate with the Scanner IP address of 192.168.178.200. Make sure the computer IP address is 192.168.178.XXX with the last digits being between 0-255 but not 200. Example, 192.168.178.100 for the computer. For
more information on changing IP addresses please consult the IP Address Basics section.

Running the Absolute Arm

Figure 15-85. Adding the Absolute arm to SA.

1. Add an AbsoluteArm to $S A$ via Instrument $>$ Add or using the 禺 icon (Figure 15-18). Select the respective Absolute Arm and click Add Instrument.

2. Run the instrument interface via Instrument>Run Interface Module and Connect or using the $\overbrace{\imath}^{i}$ icon.

Scanning with the Absolute Arm (SI)

Note: When using the scanner make sure the probe is removed. The scanner will not connect with the probe attached.

Note: If the probe is removed and the RDS Scanning window will not appear, verify the Ethernet connection and the IP address configuration.

Figure 15-86. The RDS Scanning interface.

Scanning with a Absolute Arm 7-DOF SI is as simple as sliding a switch. Slide the switch on the back of the grip to the ON (upper) position and the scanner will be activated. There is no need to use the icon as it will notify you to slide the switch to the ON position. The interface in Figure 15-19 will appear when the scanner is successfully connected.

Troubleshooting
in the system tray for current status.

If further information or settings are needed access the RDS Control Panel by right clicking the RDS icon in the system tray and select RDS Control Panel.

Romer Absolute (SE) with Perceptron ScanWorks v5 Shark

Figure 15-88. The Romer Absolute arm with Perceptron ScanWorks v5 Shark.

Requirements

- A version of SA newer than SA 2011.10.20 is required.
- RDS v3.2 is required and must be installed.
- ScanWorks v5.50.19 or later is required. Refer to the ScanWorks documentation for installation instructions. If running on a 64bit operating system, be sure to use the 64-bit version of ScanWorks.

Installing RDS v3.2

1. Obtain the installer for RDS v3.2 from ftp://ftp.kinematics. com/pub/SA/Install/Driver\%20Downloads/PCMM\%20Arms/ Hexagon/ or use the combined instrument drivers installer found at ftp://ftp.kinematics.com/pub/SA/Install/SA\ Instrument\ Mfg\ Drivers.exe.
2. Double-click the executable file to begin the installer, and follow the on-screen instructions.

Setting Up the Scanner

Figure 15-89. ScanWorks console.

Figure 15-90. ScanWorks Control Panel.

1. Ensure that the correct versions of RDS and ScanWorks are installed on the computer as indicated above.
2. Verify that all connections have been made and that the scanner controller (and its sensor power switch) are powered off.
3. On the Absolute arm's handle, ensure the scanner switch is in the Off position.
4. Start ScanWorks Console (Figure 15-21), and set it up as depicted in the following image. While these settings are not all required, if settings differ you may experience communication problems.

(4) ScanWorks Console				\checkmark
V Start Console on System StartupStart ScanWorks on Console StartupShow ScanWorks on Console ExitHide ScanWorks on StartupAuto Display Toolbar on ScanAuto Display Status Window on Scan			V Put Console in Notification Tray	
			\checkmark Auto Connect to Sensor/Mover	
			Start ScanWorks	
			Show Toolbar	
			Show Status Window	

5. Open the RDS Control Panel (Figure 15-22) and go to the Probe tab. If there are any entries of type Scanner in the list, delete them by selecting them and pressing Delete. (This is required if you ever change from one scanner to another).

公 RDS Control Panel						\times
(1) Summary	8 Probe					
䂞 Connection	Current probe ID No probe Name Type Diameter Calculation result 					
General parameters						
\% Probe						
in Reference	Registered probes					
Features	Name	Type	Status	Diameter	Calculation res	
	Center reference probe Offset reference probe 6MM Ruby 3MM Ruby	Hard probe Hard probe Hard probe Hard probe		15.000	$\begin{aligned} & 0.000000 \\ & 0.000000 \\ & 0.010810 \\ & 0.012109 \end{aligned}$	
Advanced settings				15.000		
				6.000		
				3.000		
	- $\square^{\text {a }}$ +I'		-	$\underline{\square}$,	
					(1) Quit	

6. If the computer is on a network with a DHCP server, the scanner controller will get an IP address from the server, and you can leave your network settings as they are. If not, set the computer's IP address to 192.168.19.xx, where xx is any

Figure 15-91. Selecting the probe type.
number other than 13.
7. Power on the scanner controller. On the Absolute arm's handle, turn the scanner switch to the On position.
8. RDS should automatically detect and identify the scanner. If not, you will be presented with a dialog asking you to select the probe type (Figure 15-23). Choose External scanner, then click OK.

Pe Please choose the type of the probe.	CMS External scanner RS1
OK	\square Cancel

9. Calibrate the scanner in accordance with the manufacturer's guidance.
10. In SA, add the appropriate Absolute SE arm, and start up the instrument interface (Figure 15-24).

11. Any time the scan switch on the Absolute arm's handle is in the $0 n$ position, pressing the trigger button will initiate scanning. Press the side button to stop scanning. When finished scanning, move the scanner selector switch on the Absolute
arm's handle to the Off position.
12. To change to a probe tip, turn off the Perceptron controller Sensor Power switch, remove the scanner, and attach the probe. To change back to the scanner, remove the probe, attach the scanner, and turn scanner controller's Sensor Power switch back on. The current active probe is displayed on the SA Arm Interface main window.

Romer Absolute (SE) with Hexagon CMS Scanner

Figure 15-93. Romer Absolute arm with Hexagon CMS Scanner.

Requirements

- A version of SA newer than SA 2011.10.20 is required.
- RDS v3.2 is required and must be installed.

Installing RDS v3.2

1. Obtain the installer for RDS v3.2 from ftp://ftp.kinematics. com/pub/SA/Install/Driver\%20Downloads/PCMM\%20Arms/ Hexagon/ or use the combined instrument drivers installer found at ftp://ftp.kinematics.com/pub/SA/Install/SA\ Instrument\ Mfg\ Drivers.exe.
2. Double-click the executable file to begin the installer, and follow the on-screen instructions.

Setting Up the Scanner

1. Ensure that the correct versions of RDS is installed on the computer as indicated above.
2. Verify that all connections have been made and that the scanner controller is powered off.
3. On the Absolute arm's handle, ensure the scanner switch is in the Off position.

Figure 15-94. The RDS Control
Panel.

Note: If your scanner controller has been set to any IP address other than the default, you may need to use a different IP address. Contact Hexagon Metrology for details.

Figure 15-95. Selecting the probe type.

Note: During calibration, ELI the trigger button on the Absolute arm's handle toggles scanning, and the side button confirms the scan for each of the 15 calibration scans.
4. Open the RDS Control Panel (Figure 15-25) and go to the Probe tab. If there are any entries of type Scanner in the list, delete them by selecting them and pressing Delete. (This is required if you ever change from one scanner to another).

5. Set the computer's IP address to 192.168.150. xx, where xx is any number other than 100.
6. Power on the scanner controller. On the Absolute arm's handle, turn the scanner switch to the On position.
7. RDS should automatically detect and identify the scanner. If not, you will be presented with a dialog asking you to select the probe type (Figure 15-26). Choose CMS, then click OK.

8. In the RDS Control Panel, click the Calibrate button and calibrate the scanner in accordance with the manufacturer's guidance.
9. Once calibration is complete, return to SA. Add the appropriate Absolute SE arm (Figure 15-27), and start up the instrument interface, as depicted below.

Figure 15-96. Adding the appropriate arm.

10. Any time the scan switch on the Absolute arm's handle is in the On position, press and hold the trigger button to scan. When finished scanning, move the scanner selector switch on the Absolute arm's handle to the Off position.

This Page Intentionally Left Blank.

Measuring With Total Stations

Theodolites and Total Stations connect to SA through the Theodolite Manager. This utility adds additional multi-unit controls necessary for theodolite use. It also provides direct access to the control pad for each instrument which provides the individual scope controls.

Theodolite Manager

Theodolite manager provides a solution for interfacing a wide range modern digital theodolites and total stations to SpatialAnalyzer. This chapter covers both an overview of general operation and a selection of Quick-Start guides for instrument specific details and connection requirements (see "Theodolite and Total Station Quick-Start Guides" on page 479).

Figure 16-1. A job containing theodolites.

An image of an example SpatialAnalyzer job with Theodolites is shown in Figure 16-1. The instruments are shown with measurements and a scale bar. The actual distance between the scale bar points is shown with a Point Comparison callout view.

Cabling and Power Options

Fundamentally, communication to all current digital theodolites is done through a serial link. However, over time, different instrument manufacturers have selected slightly different flavors of serial communication to talk to their instruments. Some units use TTL (Tran-sistor-Transistor Logic) level signals, but otherwise essentially follow RS-232 protocols. Additionally, some instruments require 6 volts for power, others 12 volts and still others 4 volts. Because of this nonuniformity among manufacturers some special cabling is usually required for a specific instrument.

Direct to the Instrument
This way of cabling an instrument is really most useful for applications where a single Total Station is to be used or where a limited network is configured. In this case, the instruments may be plugged directly into the computer or to a power augmenting device supplied by the instrument manufacturer. Most manufacturers supply cables and power units for this purpose.
Using a Serial Distribution Interface (SDI)
In instances where a user wishes to use a network of theodolites cabling issues for power and signals can become a major annoyance. The SDI unit manufactured by Brunson Instrument Company addresses these issues, by providing a simple USB device that provides all instruments with power and digital signals while still maintaining common cabling for each instrument. This is accomplished by using a signal conditioning device embedded in the Theodolite Junction Box in the last few feet of the cabling. The Theodolite Junction box performs three primary tasks:

- It alters the signal to levels suitable for each instrument.
- It provides a convenient "trigger" button remote from the instrument itself.
- It provides a junction point to which a short, theodolite-specific cable can be attached. This cable is necessary since there is no standard connector for all makes and models of theodolites.

Adding a Theodolite to an SA Job

Just as with other instrumentation in SA, the first step is to add the desired instrument to the SA job. This is done by selecting Instrument>Add from the main menu. Now you need to start the corresponding instrument interface. This can be done from the Operating System Start-Bar, or by selecting Instrument>Run Instrument Module from the main menu. After selecting the appropriate instrument, you will see the initialization dialog pictured in Figure 16-2.

Figure 16-2. The Theodolite manager setup buttons.

Figure 16-3. The Theodolite Manager.

Figure 16-4. The control buttons.

Figure 16-5. Buttons for managing the instrument list.

These three buttons allow you to either make a new configuration of instruments, recall the last configuration, or recall a stored configuration by name. The first time you run the software you must make a new configuration.

You will then see the main Theodolite Manager dialog (Figure 16-2).

The following sections will describe each component of the interface by section.

The area appearing as a large blank region is a listing of all active instruments being managed by this instance of the theodolite manager. It is possible to have multiple versions of theodolite manager tied into the same SA job at once.

The control buttons (Figure 16-4) allow the operator to perform global tasks related to Theodolite Manager. In order from top to bottom these buttons provide the capability to save a Theodolite Manager configuration, recall a configuration, set user options for a configuration, and view information about Theodolite Manager.

The buttons to the right of the instrument list are used to manage the instrument list (Figure 16-5). Here the user may add, delete, or display information about a specified theodolite connection.
The buttons at the bottom of the dialog allow a user to poll the instruments connected to Theodolite Manager (Figure 16-6). The top two only poll specifically highlighted instruments in the instrument list. If none are highlighted the buttons are deactivated.

Figure 16-6. Instrument polling buttons.

Figure 16-7. The Add Instrument dialog.

To add an instrument, click the Add button. A progress bar will display briefly while Theodolite Manager scans for available communication ports. The Add Instrument dialog will then appear (Figure 16-7).

In the Theodolite connection area of the dialog users select the desired theodolite and its corresponding communications port.

The operator must then identify which SpatialAnalyzer job and which instrument within that job it corresponds to. By default the dialog limits its display to compatible and available instruments in all jobs on the network. If the show all devices checkbox is checked all instruments and SA jobs on the local network are displayed. The operator must simply highlight the desired instrument.

The operator also has the opportunity to optionally enter the user name for the operator of this instrument. If no name is given the instruments will be referred to as Station1, Station2, etc.

Once all selections are made the operator may click the Connect button. At this time the instrument is initialized and an item is added to the instrument list.

In this case it identifies that SpatialAnalyzer Instrument 0 (SP0) is a Leica T2000 connected to serial port Com4. After adding a second instrument the display might appear something like Figure 16-8.

Figure 16-8. This theodolite manager setup has two instruments added.

Notice that in this case we have highlighted one of the instruments and the other buttons in the interface have therefore been activated. Multiple highlights are possible and are accomplished using the standard windows selection methods of holding down either Ctrl to add select, or Shift to region select multiple instruments.

To demonstrate that the instruments are now connected, move the instruments to a new position and click the Query All button. You should see all the scopes move to their actual azimuth and elevation in SA.

Measurement Modes

Figure 16-9. The Theodolite
Manager's User Options.

Freeform Mode

Theodolite Manager allows operators to use theodolites in one of three primary measurement modes. These modes have been established based on a survey of common methods for applying theodolites. Some industries or applications may exclusively use one method while still others will vary their selection with each task at hand.

To change Measurement modes, click the User Options 剅button. The dialog in Figure 16-9 will be displayed.

The Target Thickness section will apply to all measurement modes. This is simply the target thickness (probe offset) used in SA for various analysis tasks such as point to surface queries.

The Freeform measurement mode is really designed for experienced crews who want and have the ability to enter target numbers at the theodolite. By far the biggest collection of these users are experienced operators of Leica T2000, T2002, and T3000 series theodolites. However, this methodology applies to other instruments as well. Newer

Leica instruments and Zeiss Eth-2's for example, can use this method. In freeform mode it is always necessary that the operator set the target number on the scope before recording. Recording may be accomplished at the instrument or the interface as desired.

Since SA uses both Target Names and Group Names the strategy employed is to arbitrarily divide the number into a group component and a target component. Several examples will be presented below to further illustrate the concept.

With the following settings (Figure 16-10):

Figure 16-10.

Figure 16-11.

the target numbers would convert to:

Target Number	Group Name	Target Name
1000	Group10	Tar00
2505	Group25	Tar05
2833	Group28	Tar33

With the following settings (Figure 16-11):

\# Digits for Target Name $\sqrt{3}$
Target Name Prefix $\sqrt{\top}$
Group Name Prefix $\sqrt{\text { Fendel }}$

The target numbers would convert to:

Target Number	Group Name	Target Name
1000	Fender1	T000
2505	Fender2	T505
2833	Fender2	T833

This mode is often used when building operations need to be performed or when a novice crew needs to be guided through the measurement process. The basic premise is that all theodolites will typically shoot the same target at the same time. This is particularly helpful for inexperienced users since sighting errors can be immediately identified and corrected.

After enabling the Single Target Mode in the user options dialog, the interface will appear as pictured in Figure 16-12.

Figure 16-12. Single Target mode.

Note the extra section added to the bottom of the standard dialog. This enables users to enter alphanumeric group and target names. When the Prompt Scopes button is hit, the theodolites will display the desired target to prompt the scope operators to point at it. Any incrementing or decrementing of the group or target name will automatically update the instrument prompts. Recording may be accomplished through the standard user interface or by hitting the record button on the theodolite or its corresponding Theodolite Junction Box.

Prompted List Mode

This measurement mode is designed for tasks where the desired survey points are known right from the start. These names may either come from a CAD file, an ASCII file or may be entered at survey time by the operators.

When the Prompted list interface is initiated, the user interface appears as in Figure 16-13.

Alternatively, if user names were entered as the instruments were added, this dialog might appear as in Figure 16-14.

Figure 16-14. User names in the dialog.

Figure 16-15. The Construct
Target List dialog.

Figure 16-16. Targets have been added to the list.

In this mode, each instrument has it's own list of targets to be surveyed. This list may be created on the spot using an ascii editor such as notepad, or by using the Build List option. Or it may be read from an existing file with the Read ASCII List option. Alternatively the user may hit the Get List From SA button and they will then be prompted in SA to select points. All points are identified by both group and target names with the following format (group::target).

When the Build List button is hit, the operator sees the Construct Target List dialog (Figure 16-15).

By typing a "group::target" name in the green field and hitting enter a new target is added to the list.

After several are entered our list might appear as follows (Figure 1616).

Clicking OK will retain the list for this job. Clicking Save List will allow the operator to specify a filename so that this may be recalled later (always a good idea).
Returning to the main dialog, we see that the instrument list now has two lines. One line corresponding to each instrument station (or user).

Figure 16-17. Record, Query
and Skip controls.

The buttons to the far right hand side in each row allow the operator to Record-R, Query-Q, or Skip-S a specific instrument (Figure 16-17).

The second column is the current target for a given user. When the dialog is first presented this column displays "No List" since a target list has yet to be loaded. After the target list is loaded, this column will display the current target for each instrument.

In Synchronous mode all instruments will be prompted to shoot a specific target. If an operator cannot see the target, plunging (pointing the scope downward) causes the shot to be skipped when the record all button is pressed. As each operator acquires data, they will be prompted to "Wait". When the last theodolite acquires data, all scopes will be prompted with the next target name. In Asynchronous mode all operators may proceed through the list at their own rate.

A target hot-spot box to choose the current target for that scope (more about that later). To the right are buttons for Record, Query, and Skip.

The down arrow in the second column is called the Target Hot Spot Control. The target hot spot pops up the target list for each instrument. When you hit the hotspot you get the list at right.

This is similar to the building list except the user cannot add new targets and the left column displays target status for that particular instrument.

The left column presents icons to indicate state of the target (Shot, Skipped, UnShot). The bold item is the current target for that user. You can click select what target you want to shoot next, and then either continue from there or (optionally) only prompt skipped or undone targets. When you shoot or skip the scope will proceed to the next target in the list. In Asynchronous mode all scopes use the same list but can progress through them at their own pace, skipping as required, and going back as required. Note that the operator will not normally view the list in this way, normally they would view all this information in the main dialog. The list is just a control to allow the user to move around the job freely.

Theodolite Data Observer

Theodolite Data Observer is activated from SA's Instrument menu. This dialog makes it easier to drive Theodolite systems from the graphic view in SA. The interface is shown in Figure 16-18.

Figure 16-18. Theodolite Data observer.

This interface allows the display of Measurements, Angle Vectors, Goal Angle, and Delta Angles. Each view of the data is applicable for different applications. Use the Select Instrument button to choose the instruments to control from this control. Select the desired Goal Point then Send Drive Angles and Watch Window options to setup a real-time graphical build mode for the currently selected instruments. Continuously Query will repeatedly record angle measurements from the instruments. This mode is important for tracking the theodolites movements through a measurement process.

Using Theodolites in SA

Survey Preparation:

Considerations for proper theodolite station setup include:

- Set up the theodolites ensuring they have an unobstructed line of sight to the point of interest.
- Try not to have extreme acute or obtuse apex angles between the two instruments. Two rays to a single point that are approximately 90° will solve for a much more accurate point.
- Since the bundle adjustment algorithms use the current locations of the instruments as a starting guess, it is best to "rough" position the instruments. To do this, either enter the instrument transformations manually, or use the Drag Instruments function from the Instruments menu. It is best to place the instruments near their final location, as this will speed the bundle solution. (See "Local Minima" in the Additional Info section)
- If using theodolites with level compensators, you will use the option to force instrument vertical during the bundle adjustment. If this is the case, the virtual instrument models should be perfectly parallel to each other before initiating the bundle adjustment.

Figure 16-19. Theodolite Network

Measuring Points

Now, with the theodolites set up properly, have each instrument record each point. The key here is to have multiple instruments record an observation with the same point name in the same point group. After all common points are shot, each point should have at least 2 measurement details in its point properties. Note: If a point has two measurement details from two different instruments and one instruments line of sight intersects with the other, SA will solve for a point. This point may or may not be close to where the actual point should be depending on the orientation of each instrument.

Collimation

Collimation is the process consists of making rays from two instruments accurately parallel to each other. Using SA, this is done by having two theodolites measure the face of the other. Collimation can be useful when needing to align multiple theodolites to each other without having a common reference system. This application is more suitable for evaluating angles, due to the fact that he distance is unknown until its input manually by the user. Preparation for the collimation of theodolites is not as involved as bundle adjust, but can be just as useful.

- So after having each theodolite measure the others face, ensure that those points were named the same so that there are two measurement details for that observation.
- Now open the measurement details and double-click one of the point observations.
- In the "Spherical Measurement" dialog box select Advanced Options.
- There select Collimation Shot and pick and instrument. (Choose the instrument that was measured in that observation NOT the
instrument that did the measuring)
- Click OK and then repeat for the second observation.
- See visual aid below (Figure 16-20).

Now that the collimation points have been established you are now ready to collimate the instruments. To do this select Instrument>Collimation. The dialog box shown below will be displayed. Here, to collimate the instruments to each other and distance is needed. There are a few options, but if you know the approximate distance between the instruments it can be input here manually (Figure 16-21).

Instrument Collimation Options		x
Collimation Type Full Collimation No-Tilt Collimation	Baseline DistanceEnter Distance (d)Distance Determined From Scale-Bar (length = d)Distance Determined From Known Point	
\square Zero Moving Instrument Azimuth	OK	

Selecting OK will prompt SA to align the instruments based on the collimation shots and the distance between the two instruments. A line for each line of sight will be created which should be 180° from each other. If there are more than two instruments that you want to collimate repeat these steps making. (Follow Inst0 to Inst1, then Inst1 to Inst2, then Inst2 to inst3, so on and so forth for additional instruments).

Mirror Cubes

Definition

When using a mirror cube to aid in a bundle adjustment one must know the face definitions (Figure 16-22).

Figure 16-22. Mirror Cube Face Definitions

Mirror Cube Face Definitions

- Mirror face 1 is opposite the bonded surface (Face 6) and will set the positive X direction of the mirror cube frame.
- Mirror face 2 is 90° to face 1 and will set the positive Y direction.
- Once face 2 is defined the numbering of the rest of the faces moves counterclockwise around the cube, when looking at face 1.
- Mirror face 3 will set the positive Z direction.
- Mirror face 4 is opposite face 2.
- Mirror face 5 is opposite face 3.

Though it can be a bit tricky aligning the theodolites to the faces of the mirror cube, the idea is to align a theodolite normal to one face of the mirror cube. Then set up another theodolite normal to a face that is 90° from the face the previous instrument aligned to. In addition to each theodolite measuring the mirror cube and naming those shots the same in the same point group, you will also need to change the point properties from normal shots to mirror cube shots (Figure 16-20).

To change the point properties, double-click the point in question in the tree. Then click on "Measurement Details". There should be two measurement details, one from each instrument that measured the mirror cube.

Then single-click the first point in the list and click properties. The window below will then be displayed (Figure 16-23). In this window

Figure 16-23. Defining Observations as Mirror Cube Shots
you want to click "Advanced Options", where you will be able to select mirror cube shot and what face of the mirror cube was measured using the aforementioned face definitions (Figure 16-22). Repeat these steps for the other mirror cube shot.

Scale Bars

Adding a Scale Bar
After measuring the necessary points, the user should create a scale bar. For instruments that measure angles and distances, it is not necessary to use scale-bars in the bundle process but they are required for theodolite networks. Without them, the instruments will scale freely. To do this you will need to utilize two points that have a known distance from each other. They can be two points designated only for the scale or common points, but either way they need to be recorded from the theodolite before the scale bar is created. Once you have the actual distance select Construct > Scale Bar > Pick 2 Points. At this point, select the two points that you just measured the distance between. The window below will appear (Figure 16-24). Select edit to change the length to the actual measured amount. After hitting ok the new length should populate. You should also notice that a scale bar is now listed in the tree bar.

Figure 16-24. Scale-Bar Type List

Bundle Adjustment

Mirror Cube Frame Construction

Figure 16-25. Frame Creation Prompt

Now with the common points observed and the scale bar created, a bundle adjust can be performed (see "Bundle Adjustment" on page 583).

At this point, you can now begin to create the mirror cube frame. Go to Construct > Frames > Mirror Cube. You will be prompted to select the mirror cube point. After making that selection, the window below will be displayed (Figure 16-25).
? This point has measurements that are tagged for mirror faces to be used in the Bundle Adjustment.
Do you want to create the frame computed based on those inputs?

Yes

Choosing "Yes" will prompt SA to create a frame based on the current alignment of the two instruments to the mirror cube. Choosing "NO" will allow you to change the properties of the frame which can be done in the window below (Figure 16-26).

Figure 16-26. Mirror Cube Frame Dialog

In this dialog the user is presented with some possible options.

- You may select which instrument represents the X-axis of the coordinate frame.
- You may select or deselect specific shots from each instrument. When there are multiple shots, their vector directions are averaged to calculate the vector displayed below the measurement box.
- The check box for coordinate axes determines whether the axes of the frame are outward along the theodolite vectors or inward toward the theodolites.
- The axis weighting box allows you to control the distribution of the errors between the two axes.
- Set the cube face angle (normally 90 degrees). Press "Compute Mirror Cube Frame" after doing this update.
- The difference between the cube"ideal" angle and the theodolite vector angle will be displayed.
- Use the slider bar to control how far the frame axes are away from the theodolite axes. Sliding the bar to the left places more of the error on the "right-side" instrument.
- Choose carefully when distributing the error. In some cases, it may be better to have no error on one axis since it is difficult to
tell if the "error" is coming from the theodolite measurements or the mirror cube itself.
Once you are satisfied with the frame information, you can select "Create Frame!". This will construct a frame on the mirror cube measured point utilizing the parameters that were set.

Theodolite and Total Station Quick-Start Guides

Leica Total Stations:

- "Leica TCRP, TDRA, and TS-Series" on page 479
- "Leica Nova (MS60 \& MS50)" on page 488

Sokkia Total Stations:

- "Sokkia Net1" on page 495

Leica TCRP, TDRA, and TS-Series

Establishing Bluetooth Connection on PC
Use the Bluetooth wizard installed on the PC to create a new connection (Figure 16-27). Be sure the Leica 1203+ is powered on.

The Bluetooth wizard will search for the device (Figure 16-28).

The Bluetooth manager will complete the connection and display the COM number being used. Remember this number as it is needed inside of SA to establish connection. If prompted for a password just
use " 0000 ".

Now the Leica 1203+ is a recognizable connection for Bluetooth. Each time the Leica 1203+ is powered the user must enter the Bluetooth manager and activate the connection (Figure 16-30).

Starting the Interface

1. Select Instrument>Add and choose the Leica Total Station (TDRA6000, TS3X, T120x) from the Instrument List.
2. Nowruntheinstrumentinterfacemodule underInstrument $>$ Run Interface Module and choose Theodolite Manager.
3. Select New Setup and then Add (Figure 16-31).

Figure 16-31. Creating a new setup.

Figure 16-32. Connecting to the instrument.

The Interface

Figure 16-33. The total station interface.

4. Select the instrument type and the COM Port. Then select the instrument in the available SpatialAnalyzer list and click Connect.

Toolbar

- ㅁ-Laser beam on
- ㅁ Laser beam off
- \quad RF Reverses the face of the instrument
- e Displays rotation dialog for manual entry of rotation values
- Displays the user options
- © Shuts down the instrument
- 茴 Opens the reflector database

Group and Target

Figure 16-34. Freeform mode.

Messages

Figure 16-35. An error message.

Query and Record
The message dialog will notify the user if a measurement or process encounters an issue. The message will clear automatically or rightclick the message.

- If the Theodolite Manger options are set to Single Target Mode,
the prescribed point name in the SA interface will be used.
Defines the Group name and target name for the measured point. If the measured point is recorded from the instrument it will do one of two things:
- If in Freeform Mode it will decode the instrument target based on the parameters in the Theodolite Manager Options (Figure 16-34). For example, if the Target name is 32 on the instrument, when recorded in SA it will be Group3::2 per the below settings.

-

Could not obtain a valid distance.

Query will send updates only to SA. If you wanted to update a watch window, you use Query. Record will send a measured point to SA
(Figure 16-36). See above section regarding point naming if recorded from the instrument.

Figure 16-36. Query vs. Record.

Acquire
Acquire Acquire [F5] will use the Leica ATR functionality to lock onto a target. This is especially useful for Prisms and Tape targets. Point the instrument close to the target and press acquire. ATR will find the best center for the target.

Tracking

Figure 16-37. Tracking.
With the instrument locked onto a prism, tracking can be used. Select the desired options and press Track (Figure 16-37).

Track only will do exactly what it says, it will only track the prism and not send updates or measurements. Send updates is like query, but used for sending updates to SA while tracking. Measure will send measurements to SA while tracking.

Auto Measure SA Geometry

Figure 16-38. Auto-Measure settings.

User Options

The user options (Figure 16-39) can be accessed by using or by Instrument>Options.

Figure 16-39. The instrument options.

- Tilt Compensator. Turns the tilt compensator on and off. If on, the instrument must be level in order to measure.

Laser Pointer

- Change Reflector. Choose the desired reflector type. For prism, the user has the option of adding Planar and Radial offsets in addition to the Prism Constant. For prism and tape targets, the ATR can be used if desired when a point is recorded.
- Front/Back (Reverse Face). When checked, a back sight measurement will be taken with each front sight measurement
- Send Front/Back as Separate Observations. When a front/ back sight measurement is taken, if checked, they will be stored as separate observations.

Perimeter Scanning

1. Measure points defining the area to scan (Figure 16-40).

Figure 16-40. Perimeter points.

Figure 16-41. Defined perimeters.

2. Construct a perimeter from the measured point in SA under Construct>Perimeter (Figure 16-41).

3. Two types of perimeters exist in SA, open and closed (Figure $16-42$). A single perimeter can be changed from open to closed in the perimeter properties dialog.

Figure 16-42. Marking a perimeter as closed.

Figure 16-43. Auto Measure SA Geometry settings.

Figure 16-44. Auto Scan properties.

Figure 16-45. Selecting Active in the interface.

4. Set the scan properties for the appropriate perimeter. If the perimeter is closed the scan will be bounded by the perimeter. If it is open, the scan lines will be perpendicular to the perimeter.

The user can specify the distance between scan lines and points per scan line (Figure 16-44). In addition the user can also specify line length for open perimeters. The orientation of the lines to the perimeter can be controlled by the Grid Rotation field.

To measure a Perimeter, first select Active in the user interface (Figure $16-45)$ and then select a perimeter from the Treeview in SA. Once the perimeter is selected, select the measure button.

The scan will start (Figure 16-46) and lines will be constructed (if op-

Figure 16-46. Scanning.

Figure 16-47. The Auto Measure dialog.
tion was checked). Points will be spaced per user setting. A point will always be measured at the beginning and end of each line.

To stop a scan, press the Cancel button in the progress dialog.

The Leica 1203+ can also be used in the SA command Auto Measure. This command will drive the instrument to points in a group and allow a measurement to be recorded.

To perform the Auto Measure, select Instrument>Automatic Measurement>Auto Measure.

Select the group to measure and the dialog in Figure 16-47 will appear.

This will allow for a single point to be measured or an entire pass be performed. Choose Entire Pass and the instrument will drive to the first point.

Sight the target and press Record (F3) in the instrument interface. Once the measurement is recorded the instrument will drive to the next point.

Figure 16-48. Completion of the Auto Measure procedure.

Leica Nova (MS60 \& MS50)
This guide may be used for initial configuration, connection and basic operation of the Leica Nova MS60 Total Station within SA. For more details on instrument operation and configuration, please contact Leica directly.
Hardware Setup
Set up the unit following the manufacturer's directions. Leica total stations may be connected either with a USB cable, wireless network adapter or Bluetooth connection. Ensure that you have the necessary cables, router or a Bluetooth adapter. Be sure the power is turned on and the battery is charged.

Software Setup
It is recommended that initial connection and testing be performed using a cable connection to your computer. To connect directly to the PC, you will need to install the instrument drivers. The current drivers SA supports can be downloaded from http://www.kinematics.com/ ftp/SA/Install/Driver\%20Downloads/TotalStations_Theodolites/Leica/Leica\%20Nova\%20MS50\%20Drivers/.

To use the live remote video function available on this instrument, you will also need to install the VLC player application which can be downloaded from http://www.videolan.org/vlc/. Once installed, a Video button will appear on the Camera Interface dialog.

Direct Cable Connection

On the scope select Instrument > Connections > All Other Connections. Set the GeoCom connection to USB (to obtain the current IP address and port, press (ntrl..). Connect the USB cable and continue to the section Running the Instrument.

Wireless Connection

A connection can be established to the Nova by adding the device to a preexisting network or by building an Ad-hoc connection with your PC. For more detailed instructions, refer to the document "Connecting a Nova total station with a PC using a WLAN" on our download page. For a quick synopsis on a Windows 7 machine, follow these steps:

Building an Ad-hoc Connection on a Win7 PC

5. Turn on the wireless adapter on your PC and go to Control Panel $>$ Network and Sharing Center.
6. Select Setup a new connection or network > Set up a wireless ad hoc (computer to computer) network.
7. When prompted, enter a network name (e.g. "Ad-hoc MS50) and a security type, if desired (no authentication, WEP and WPA-2 are supported).
8. Select Save this network then Next to create the network.
9. Set the IP address to be compatible with the scope.

Setting the IP Address in the Adapter Properties

1. Turn on the wireless adapter on your PC and go to Control Panel > Network and Sharing Center.
2. Select Manage wireless networks > Adapter properties for the network you wish to connect to and for editing the properties of your ad-hoc network.
3. In the Wireless Network Connection Properties dialog, select Internet Protocol Version 4 (TCP/IPv4).
4. Select Properties and enter the IP address rather than obtaining one automatically. This address determines the computer's IP address on the network.

Configuring the MS60 Network Connection

1. Open the Windows CE control panel by selecting User > Tools \& Utilities > View ASCII files and close the viewer.
2. Click on WLAN Settings in the taskbar and select the network you wish to connect to from the network list and click Connect. In some cases, you may need to set the IP address manually by doing following:

- Select Start > Settings > Network and Dial-Up Connections OWL221A1.
- Select Enable, and then Properties.
- Choose Specify an IP address, and enter the IP address for the total station on the network. The first three numbers of the IP address need to match the first three numbers entered for the PC.

The last number must be unique from the PC.
3. Return to the Windows CE desktop, click on WLAN settings in the taskbar. In the Wireless Information tab, select the ad-hoc network that you created and select Connect.
4. Continue to the section Running the Instrument.

Connecting to Bluetooth

1. On the scope, select Instrument > Connections > All Other Connec tions.
2. Set the GeoCom connection to TS Bluetooth 1 .
3. On your PC, go to your Bluetooth adapter and select Add a Device.
4. Select the device from the available Bluetooth connections and select next.
5. When prompted, enter the pairing code: 0000. Once connected, a COM port number will be assigned and can be accessed through the properties of the device.
6. Continue on to the section Running the Instrument.

Configuring the Scope for Optimal Use with SA

1. Navigate to Users $>$ System Settings $>$ Regional Settings.
2. Check that the Hz angle display is set to North anti-clockwise and the V angle display is set to Zenith angle. This will ensure that the angles displayed on the scope match those of the recorded points in SA.

Starting the Interface

1. Select Instrument > Add and choose the Leica Nova MS50 Total Station from the Add Instrument to SA dialog (Figure 16-49).

Figure 16-49. Adding the Leica Nova MS50 Total Station to a job.

Figure 16-50. The Theodolite Manager dialog.

2. Now run the instrument interface module under Instrument > Run Interface Module and choose Theodolite Manager.
3. Select New Setup and then Add (Figure 16-50).

4. Select the instrument type and the COM Port. Set the COM Port to TCP if you are connecting with either a cable or wireless; or enter the port number for Bluetooth. Then select the instrument in the available SpatialAnalyzer list and click Connect (Figure 16-51).

Figure 16-51. Adding a new setup.

Note: If connecting with a cable or wireless, enter the instrument's IP address in the Server Address box.

5. Select the instrument in the available SpatialAnalyzer list and click Connect.

Operations Specific to the MS60

Auto Measure SA Geometry

In addtion to scanning a predefined region by laying points out on a grid using auto measure, the MS60 can quickly scan an a perimeter and generate a point cloud within SA.

1. In the Auto Measure SA Geometry section of the instrument interface, ensure that the Revert 国 button is not depressed. This button changes between scanning modes (Figure 16-52).

Figure 16-52. Auto measure SA Geometry section of MS50 Interface.

Awaiting SA Perimeter Selection
2. Click Settings to change the parameters of the scan. The density of the scan is defined by the vertical and horizontal angular increment set in decimal degrees. Once satisfied with the settings click OK (Figure 16-53).

Figure 16-53. Auto measure SA geometry profile parameters.

Figure 16-54. Perimeter scan using the Auto Measure SA Geometry measurement mode.

3. Change the Auto Measure SA Geometry to Active by selecting the radio button. When you do so, a note will be shown at the bottom of the interface that states: "Awaiting SA Perimeter Selection."
4. Click on the desired perimeter by clicking on double-clicking on it in the tree. When selected, the perimeter Collection::Name will be displayed.
5. To begin the scan, click Measure. An example of this type of perimeter scan is pictured in Figure 16-54.

Importing Nova Scan Files into SA

If you choose to scan while not connected to a computer, you may import these files into SA at a later time. The Nova Scans are saved as *. SDB files on the SD Card or the internal memory. To do so, follow
these steps:

1. Add an instrument to your SA job file to which you wish to import the scan data. Data will be imported into SA relative to this instrument.
2. Either connect to the live instrument using a cable or connect using the simulation mode.
3. Locate and move the *. SDB files to your local machine. If you are connected using the cable, you can use Windows Mobile Device Center to navigate to the SD card directly.
4. In Theodolite Manager, select your instrument and click Import.
5. Select the *. SDB data type, navigate to your data, and click Import.

Performing a Point to Point Auto Measure Scan

1. In the Auto Measure SA Geometry section of the instrument interface, ensure that the Revert \mathbb{R} button is depressed. This button changed between scanning modes.
2. Click the Settings button to change the parameters of the scan based on the line and point spacing in the Auto Scan Properties dialog (Figure 16-55).

3. Change the Auto Measure SA Geometry to Active by selecting the radio button. When you do so, a note will be shown at the bottom of the interface that states: "Awaiting SA Perimeter Selection."
4. Click on the desired perimeter by clicking on double-clicking on it in the tree. When selected, the perimeter Collection::Name will be displayed.

Figure 16-56. A point to point auto measure scan.
5. To begin the scan, click Measure. An example of this type of perimeter scan is pictured in Figure 16-56.

Sokkia Net 1

SpatialAnalyzer interfaces with the Sokkia Net1 using the Theodolite Manager via a Bluetooth or RS232C (Serial Port) connection. This quick start guide will cover required Sokkia Net1 settings along with step by step instruction for using the Sokkia Net1 in SA.

Connections

Figure 16-57. The configuration menu.

Before attempting to connect to SA, first choose your preferred connection on the Net1.

1. Enter the configuration menu (Figure 16-57).

2. Select Communications (Figure 16-58).

Figure 16-58. Selecting Comms.

Figure 16-59. Choosing the Comm mode.

Figure 16-60. The correct
RS232 settings for connection.

Figure 16-61. The proper
Bluetooth settings.

3. Set the communication mode (Figure 16-59).

4. RS232C Settings (Figure 16-60).

5. Bluetooth Settings (Figure 16-61).

Establishing Bluetooth Connection on PC

1. Use Bluetooth wizard installed on PC to create a new connection (Figure 16-62). Be sure the Sokkia Net1 power is on.

Figure 16-62. Creating a new connection.

Figure 16-63. The Add New Connection Wizard.

Figure 16-64. The assigned COM port.

2. The Bluetooth wizard will search for the device (Figure 16-63).

3. The Bluetooth manager will complete the connection and display the COM number being used (Figure 16-64). Remember this number as it is needed inside of SA to establish connection.

4. Now the Sokkia Net1 is a recognizable connection for Bluetooth. Each time the Sokkia Net1 is powered the user must enter the Bluetooth manager and activate the connection (Figure 16-65).

Figure 16-65. The connection has been established.

Figure 16-66. Adding the total station to the job.

Figure 16-67. Creating a New Setup.

5. Add the Sokkia Net1--select the Sokkia Net1 and pick instrument options (Figure 16-66).

6. Run the Theodolite Manager and select New Setup, then Add (Figure 16-67).

7. Select the instrument type and the Comm Port. This port was displayed in the Bluetooth manager during the creation of
the connection. Then select the instrument in the available Spatial Analyzer list. Once connected the Sokkia Net1 interface will display (Figure 16-68).

The following topics will be covered:

- Selecting a Reflector
- Single Point Measurement
- Perimeter Scanning
- Target Tracking
- Auto Measure Points

1. Select the options button in the interface (Figure 16-1).

2. Select the Change Reflector button (Figure 16-2).

Figure 16-70. The Sokkia options window.

3. Select desired reflector type (Figure 16-3) .

Figure 16-71. Selecting the desired reflector.

Single Point Measurement

1. Specify Group and Target Name.
2. Sight Target.
3. Select Query or Record (F3) in the interface. Query will force the instrument to calculate a measurement. Record (F3) will send the measurement to SA (Figure 16-4).

Figure 16-72. Recording a
measurement.

Perimeter Scanning

1. Measure points defining the area to scan (Figure 16-5).

Figure 16-73. Measurements of the area to scan.

Figure 16-74. The defined perimeters.

2. Construct a perimeter from the measured point in SA under Construct>Perimeter (Figure 16-6).

3. Two types of perimeters exist in SA, open and closed. A single perimeter can be changed from open to closed in the perimeter properties dialog (Figure 16-7).

Figure 16-75. The Perimeter Properties window.

Figure 16-76. Auto Scan properties.

Figure 16-77. The Active setting.

4. Set the scan properties for the appropriate perimeter. If the perimeter is closed the scan will be bounded by the perimeter. If it is open, the scan lines will be perpendicular to the perimeter.

5. The user can specify the distance between scan lines and points per scan line (Figure 16-8). In addition the user can also specify line length for open perimeters. The orientation of the lines to the perimeter can be controlled by the Grid Rotation field.

To measure a Perimeter, first select Active in the user interface (Figure 16-9) and then select a perimeter from the Treeview in SA. Once the perimeter is selected, select the measure button.

The scan will start and lines will be constructed (if option was checked). Points will be spaced per user setting. A point will always be measured at the beginning and end of each line.

To stop a scan, press the cancel button in the progress dialog.

Target Tracking

Figure 16-78. The track setting to track a prism target.

Auto Measure

Figure 16-79. Auto Measure mode.

The Sokkia Net1 is capable of tracking a prism target.

Simply select track and start moving the prism (Figure 16-10). The Net1 will track the prism. If the record option is check, measurements will be sent to SA while the prism is being moved.

The Sokkia Net1 can also be used in the SA command Auto Measure. This command will drive the instrument to points in a group and allow a measurement to be recorded.

To perform the Auto Measure, select Instrument>Automatic Measurement>Auto Measure.

Select the group to measure and the dialog in Figure 16-11 will appear.

This will allow for a single point to be measured or an entire pass be performed. Choose Entire Pass and the instrument will drive to the first point.
Sight the target and press Record (F3) in the instrument interface. Once the measurement is recorded the instrument will drive to the next point.

Figure 16-80. A completed auto measurement.

Measuring With Photogrammetry

Photogrammetry systems use either photo or video capture to triangulate the position of many target locations all at one time. The can be done with a great deal of accuracy. For this reason Photogrammetry has become an integral part of metrology. Photogrammetry system vary greatly in their capability. Refer to the specific manufacture for greater detail.

Photogrammetry Quick-Start Guides

Aicon Move Inspect

This quick-start guide can be used for initial configuration, connection and basic operation of the AICON Move Inspect Photogrammetry system within SA. For more details on instrument operation and configuration, please contact AICON directly.

Hardware Setup
Set up the AICON MoveInspect system following the Manufacturer's directions. This will depend on the camera configuration and system type. Ensure you have the appropriate camera mounts, tripods, and cabling to power the unit.

Communication with SA is done through TCP/IP Ethernet connection so an appropriate network connection is necessary.

Software Setup
SA does not interface with the cameras directly but rather with the host application AICON MoveInspect. Therefore, Movelnspect must be installed, calibrated, and running on the local machine prior to any
attempt to connect to SA.
Please contact AICON directly to obtain the correct version of Movelnspect for your camera system and install it following the manufacturer recommendations.
http://aicon3d.com
You can verify SA's current version compatibility by looking in the SA readme file available under the Help menu within SA.

Creaform HandyProbe

Starting the Interface

1. Start the Creaform HPS application.
2. Once started, ensure that C-Track is connected and calibrated per OEM guidelines (Figure 17-1).

3. Select Instrument > Add and choose the Creaform Handy Probe from the Instrument List.
4. Run the Creaform HandyProbe interface from the start menu's Interfaces menu.
5. The Creaform HandyProbe dialog box will open. Select your device, and the interface will start up (Figure 17-2).

Measuring with the Handy Probe Button Functionality

- Center Button. A single press measures a single point. Holding the button will stream multiple points.
- Check Button (left). Increment the group name.
- "X" Button (right). Delete last measured point.

Watch Window
Using watch windows with the Handy Probe is very easy. Simply check the "Stream Watch Updates" option and open the watch win-
dow of choice (Figure 17-3).

Figure 17-3. The HandyProbe in use with a watch window.

GSI V-STARS

Starting the Interface

1. Select Instrument > Add and choose the GSI V-Stars Photogrammetry System from the Instrument List (Figure 17-4).

2. Run GSI V-stars 4.7.A16 or later.
3. Start the instrument interface using Instrument > Run Interface Module and Connect or $\not{\boldsymbol{r}}$.

Interface Overview

Figure 17-5. The V-STARS
interface.

Data is sent to SA in 2 possible ways. If VSTARS is in M-Mode, then selected data is sent any time VSTARS is triggered. This can be done
with the 'Trigger' shown (Figure 17-5), or in VSTARS. The Continuous Trigger option in VSTARS will result in the selected data type being sent to VSTARS upon each trigger event. If VSTARS is in S-Mode, the Data >>SA button shown above results in an immediate project import from VSTARS, and selected data is sent to SA.

Note the Inc checkbox (1). This is the Auto-Increment Group (or Cloud) name option. When checked, the group or cloud name will automatically increment after each data send to SA.

Select Data to Send To SA (2). These work as follows:

- Camera. If VSTARS is in M-Mode, the camera transforms are sent to SA, and all the M-Mode camera positions are shown in SA.
- Probe. If VSTARS is in M-Mode, then the most recent PROBE point is sent to SA once a trigger event occurs. Generally, the 'Inc' will be unchecked in this case. If VSTARS is in S-Mode, the project is imported immediately, and the most recent PROBE point is sent to $S A$.
- Targets. If VSTARS is in M-Mode, then all selected point types (see 3 below) are sent to SA once a trigger event occurs. Generally, the Inc checkbox will be checked in this case. If VSTARS is in S-Mode, the project is imported immediately, and all selected points are sent to SA.
- Cloud (ProSpot). If VSTARS is in M-Mode, then all selected point types (see 3 below) are sent to SA in the form of a point cloud once a trigger event occurs. Generally, the Inc checkbox will be checked in this case. Note that the cloud sent will carry then name shown in the 'Group/Cloud' edit box. If VSTARS is in S-Mode, the project is imported immediately, and all selected point types are sent to SA in the form of a cloud.

The Set Labels buttons (3) are used to set the VSTARS data types (labels) which will be sent when measuring either 'Targets' or 'Cloud (ProSpot)'. The Targets data selection defaults to "CODE", and the Cloud (ProSpot) data selection defaults to "_S". The selections denote strings. When any of the selected strings are found in the VSTARS label of a point, that point will be sent to SA in the selected data form ('Targets' means points, and 'Cloud (ProSpot)' means a point cloud).

Figure 17-6 shows the Set Target Labels to Use dialog. The dialog is the same for 'Cloud (ProSpot)'. All types are selected here for readability (un-selected labels are subdued).

GSI V-Stars Photogrammetry Simulation

Add a GSI V-Stars Photogrammetry System to SA by using Instrument>Add or the Add Instrument 禺隽 button (Figure 17-4).

Figure 17-7. Adding the V-STARS system to an SA file.

Instrument Properties for Simulation

By right-clicking on the V-STARS instrument within the SA tree and selecting Properties, the properties are displayed (Figure 17-5).

Figure 17-8. The properties of the
V-Stars instrument.

Simulation

Contains all the functions and options to perform Photogrammetry Simulation.

Network Points
Defines the point and vector groups that will be used during the simulation process. Select defines the point and vector groups for analysis. The selection process will then show within the SA graphical view area. First the user will be prompted to select the desired point groups. Once all point groups have been specified, pressing the Enter key will cause prompting to continue for vector groups. If no items of a particular group are desired, simply press Enter to skip. Once the desired groups have been specified, the dialog will update to show the specified number for each group type.

Camera Parameters

The Camera Parameters dialog (Figure 17-6) provides a means of setting the necessary information for field of view display and determining what points are within the field of view. The Incidence Angle parameter is used when checking whether a vector is visible within a camera's field of view.

Figure 17-9. Camera Parameters.

Camera Network

The Camera Network Configuration dialog provides a means of setting the various options for each camera (Figure 17-10).

- Load Cameras. Load a predefined camera network.
- Save Cameras. Save an existing camera network.
- Add Camera. Places a new camera at the current working frame and display the transform dialog for the newly added camera.
- Field of View ON. Turn on field of view display for the selected cameras from the list.
- Field of View OFF. Turn off field of view display for the selected cameras from the list.
- Show. Cause the selected cameras to be displayed within the graphics view window.
- Hide. Cause the selected cameras to be removed from the graphics view display window.
- Highlight ON. Cause the selected cameras to become high-
lighted within the graphics view display window.
- Highlight OFF. Cause the selected cameras to become dehighlighted within the graphics view display window.
- Shot Rays ON. Cause the selected cameras to display shot rays to their visible measurements.
- Shot Rays OFF. Disable shot ray display for the selected cameras.
- Move. Move the selected cameras about the current working frame.
- Delete. Delete the selected cameras.
- Un-Check. Un-check ALL items within the list.
- Check. Check ALL items within the list.

Right clicking on the desired camera within the list will produce the menu options in Figure 17-11:

Figure 17-11. Menu options.

$\checkmark \checkmark$	Show
	Highlight
	Show Field of View
$\square \checkmark$	Draw Shot Rays
	Move

Fabricate

Figure 17-12. Fabrication.
Executes the analysis of points/vectors within the field of view of the visible camera set. Once completed, the points found to be within the unobstructed view of the cameras will be highlighted (Figure 17-12).

Bundle
data with the results. When the button has been actuated, the user will be prompted for a filename for the Common Photogrammetry File that will be created and used by V-Stars.

Once V-Stars has completed the analysis, the resulting uncertainty will be updated within the Common Photogrammetry File and displayed within SA (Figure 17-13).

Camera Orientation

The X -Axis is shown in red, the Y -Axis in Green, and the Z-Axis in Blue (Figure 17-14).

Figure 17-14. Camera orientation.

Metronor Solo and Duo Systems

This Quick-Start guide can be used for initial configuration, connection and basic operation of the Metronor Solo and Duo Photogrammetry system within SA. For more details on instrument operation and configuration contact Metronor directly.

Prerequisites

Set up the Metronor system following the Manufacturer's directions. This will depend on the camera configuration and system type. Ensure you have the appropriate camera mounts, tripods, and cabling to power the unit.
SA does not interface with the cameras directly but rather with the host application Metronor Server. Therefore, Metronor must be installed, calibrated, and running on the local machine prior to any attempt to connect to SA.

- Please contact Metronor directly to obtain the correct version of the Metronor Server for your camera system and install it following the manufacturer recommendations.

> (http://www.metronor.com/)

- You can verify SA's current version compatibility by looking in the SA readme file available under the Help menu within SA.
Duo system alignment, and light-pen tip calibration must be performed within the Metronor Server. Target recognition and interpretation is also performed within Metronor. Once correctly configured SA can acquire any of 3 data types from Metronor these include:
- Point measurements from targets and probes
- A constellation of points from LEDs
- 6D Frames measurements

Starting the Interface

1. Start Metronor Server (Figure 17-15).
2. Run Metronor Server and perform setup and field checks per OEM guidelines.

Figure 17-15. The startup process.

Figure 17-16. Adding the Metronor to SA.

3. Select Instrument > Add and choose the Metronor Portable Measurement System from the Instrument List (Figure 17-16).
4. Run the Metronor interface from the Start $>$ Programs $>$ SpatialAnalyzer 20\#\#.\#\#.\#\# > Interfaces menu.
5. The Spatial Analyzer Metronor Logon dialog box will open and will ask what device you want to connect to (Figure 1717). Select the instrument and type the server name (which will be either the computer name or the computer's IP address). Accept the default Server Port.

Figure 17-17. The logon dialog.

Figure 17-18. Metronor Interface

6. This will start the Metronor Interface.

The Primary Metronor Interface Controls:
Target Naming Control (section 1):

The Upper section of the Metronor Interface provides full control over Collection, Group, and Target designations for all points acquired by the system.

- Single point measurements will use the full designation
- When measuring frames the Group Name will be used

Measurement process Control (section 2):

Metronor will recognize the Probe, Adapter, or Panel within the field of view and utilize it during the measurement process:

- Probe. Selection is based upon probe name. The properties of the probe and its calibrated position and probe radius will be utilized based upon the name selected in this dropdown dialog.
- LED. Section can be used for selective filtering of LED point measurements
- IDs. Opening the IDs dialog and specifying target names provides a means to only record the specified targets.
- Store Points. check box allows you to either send points to SA or just send updates.

Figure 17-19. IDs Dialog

Measurement Mode selection presets the target type SA is looking to receive

- Single. designation only recognizes a single event at a time.
- Continuous. is used to send updates to SA for moving targets and to stream measurements.

Action settings are used to determine the format of the measurements the Instrument Interface records and sends to SA (points, frames, or updates)

- Points to SA. Sends triggered probe points over to SA.
- Watch Updates. Send updates to SA which can be used for
monitoring or watch windows. No points or frame positions are save within SA when this option is checked.
- Frames. Sends received 6DoF measurements over to SA. These 6D measurements are recorded as frames within the specified collection.
- LED Batch of Points. Sends points for each measured LED
- LED Target Unit. Sends a single target by name.

Measurement Plan Control

The Metronor will respond to basic instrument MP commands such as the following:

- Start Instrument Interface
- Set Instrument Group and Target
- Instrument Operational Check

Metronor Portable Measurement System	
Set MeasureMode Single	Set the measurement mode to discrete point measurement.
Set MeasureMode Continuous	Set the measurement mode to continuous point measurement.
Set Action Points	Sets the measurement action to send points to SA.
Set Action Updates	Sets the measurement action to send updates to SA.
Set Action Frames	Sets the measurement action to send frames to SA.
Set Action Batch	Sets the measurement action to send an LED batch of points to
SA.	

Vicon Tracker

Prerequisites

Vicon Tracker must be installed and running before SpatialAnalyzer will connect to the instrument. SpatialAnalyzer and Vicon Tracker must be installed on the same computer.

Starting the Interface

1. Ensure Vicon Tracker is running and instrument is operating correctly per OEM guidelines.
2. Select Instrument $>$ Add and choose the Vicon Tracker from the Instrument List.
3. Run the instrument interface using Instrument > Run Interface Module and Connect or $\not{ }^{*}$

Instrument Interface Overview

Figure 17-21. The Vicon interface.

Press Set Objects to populate the drop down combo box with all objects currently in view of the cameras in Vicon Tracker. For this, you must be sure all defined objects are in the view of the cameras. Here, an Object called 'L-Frame' is selected in the drop down.
Press Send Markers to send the sphere centers of all the Vicon markers in the selected object. This is for co-locating with other instruments in SA.

Press Edit Selected to add an offset frame/probe to the selected object (Figure 17-22).

Just follow the steps in the dialog to create an offset frame or probe for the selected object.

1. Create a frame in SA on the object (or e.g. a probe which you have rigidly attached to the object) by measuring with an instrument, or creating by some other means.
2. Click 1) Select Offset Frame From SA. You'll be prompted to select the frame you have created, and the Name field will be populated with the name of the frame from SA.
3. Click 2) Measure Reference Frame to Offset to take a fresh 6-DOF measurement of the object you've selected. You'll see a suggested name appear.
4. In the 3) Enter name for this new Offset Object/Probe field, type in a name if you'd like to use your own name.
5. In the 4) (Optional) field, enter the probe radius for the offset probe.
6. Press 0 K to add this new offset frame/probe definition to the drop down combo box.

When your new offset object is selected, the offset frame will be sent to SA whenever you have "6D" Data Type selected, or the origin of the offset frame will be sent if you have "3D" Data Type selected. The probe radius will be added to all data sent from your offset object definition.

Measuring With Room Scanners

Room scanners loosely include instruments designated for large volume scanning. These devices typically rotate and pivot to provide up to a full 360 degree scan of a volume. Refer to the specific system for greater detail.

Room Scanner Quick-Start Guides

Operationally room scanner interfaces range greatly in complexity and capability. Refer to the specific manufacture type for greater detail.
"Faro LS/Focus3D" on page 523
"Surphaser" on page 525
"Leica Geosystems ScanStation PXX" on page 528

Faro LS/Focus3D

Prerequisites
Before adding and running a Faro LS/Focus 3D Scanner in SA, the appropriate drivers must first be installed.

Download the drivers from ftp://ftp.kinematics.com/pub/SA/Install/Driver\ Downloads/Scanners/Faro\ LS\ Photon\ Scanner/ or install from the Instrument Drivers combined installer at http://kinematics.com/products/spatialanalyzer/spatialanalyzerdownloads.html

1. Unzip the dll's into the current $S A$ install folder.
2. Place the . bat files in the current $S A$ install folder.
3. Run Unregister iQpen.bat
4. Run Register iQOpen.bat
5. Add a Faro Scanner LS to $S A$ via Instrument $>$ Add or using the 电 ${ }_{\text {B }}$ icon (Figure 18-1). Select the Faro Scanner and press Add Instrument.

6. Run the instrument interface module under Instrument>Run Interface Module and Connect.
7. The Faro Scanner LS Interface will now appear and be ready for use (Figure 18-2).

Surphaser

Prerequisites

Figure 18-3. The Device list.
Before adding and running a Surphaser Scanner in SA, the appropriate drivers must first be installed.

Download the operating system-specific Surphaser drivers from ftp:// ftp.kinematics.com/pub/SA/Install/Driver\ Downloads/Scanners/ Surphaser/.

1. Unzip the drivers into a known location. Example: C: \} DrvWinUsb
2. Plug in the Surphaser USB cable to the PC. Windows should recognize the USB device and automatically locate the drivers and install them. If this is performed correctly, the Surphaser scanner will be presented in your Device list (Figure 18-3).

Running the Surphaser
 Select the Surphaser Scanner and press Add Instrument (Figure 18-4).

Figure 18-4. Adding the Sur-
phaser to SA.

Figure 18-5. The Surphaser Connection dialog.

2. Run the instrument interface module under Instrument>Run Interface Module and choose Surphaser. Select the parameter file provided for the respective instrument and a log file (Figure 18-5).

3. The Surphaser Interface will now appear and be ready for use (Figure 18-6).

Figure 18-6. The main Surphaser interface.

Leica Geosystems ScanStation PXX

This guide may be used for initial configuration, connection and basic operation of the Leica ScanStation PXX within SA. At this time this includes operation of the P15, P16, P20, P30, and P40 scanners. For more details on instrument operation and configuration, please contact Leica directly.
Hardware Setup
Setup the unit following the manufacturer's directions. The ScanStation requires an Ethernet connection to the machine running SpatialAnalyzer 2016.09.01 or later. Be sure the Leica device power is on and that the batteries are charged.

Software Setup

No additional software installation is required on the computer. However, you must have a FW license installed on the Pxx to connect in SA.

- Under Status>System Information>Options is a setting API Data Access which must be activated (it is deactivated by default). Contact your Leica Geosystems representative for more information.
- To add a License. Plug a USB key into the scope with a license file in root directory and select tools>>license>>upload.

1. Select Instrument>Add and choose the Leica Geosystems ScanStation Pxx from the Add Instrument to SA dialog (Figure 18-7).

2. Now run the instrument interface module and connect using the running man icon \boldsymbol{r}^{i}. This will open the SA interface utility.
3. Select Run Scanner (Figure 18-8) to Start the Scanner Control.

Scanner Control Dialog

When the PXX Scanner Control dialog appears the connection to the scanner still needs to be established and the project initiated. To do so:

1. Enter the instrument's serial number and click Connect Scanner. The scanner uses a DHCP connection so an IP address identification is not necessary.
2. Enter the project name and press Init Project (Figure 18-9). This will specify the directory for the scan data on the scope. When set this Project will be listed on the status bar at the bottom of the Control Dialog.

The Local Access Project Base Path is currently not used by SA.

Export Settings

The Export Settings tab (see Figure 18-10) in the PXX Scanner Control dialog defines the scan filter definitions and the scan transfer location on the local machine. The Export Path defines the location on the local machine where scan files will be transferred.

The advanced settings are master controls for filter options not typically changed for scans unless needed for a particular application. tab.

Figure 18-10. Export Settings

- Remove Intensity Overload Pixels. This option is checked by default and removes any pixels that have an overload intensity such as pixels taken from a mirror or reflector. The location of the pixels are typically incorrect.
- Remove Mixed Pixels. This option is checked by default. It removes pixels that have a mix of return intensities indicating that the target is not reliable, typically occurring on edges of surfaces.
- Remove Low Quality Pixels. This option is unchecked by default but allows you to receive pixels with a low quality return.
- Mixed Pixel Filter. This is considered Leica's "Intelligent Area Filter". It will smooth out the data based upon the relative position of adjacent points in the scan. The degree that this is done is based upon the slider setting. To turn it off, slide the Area Filter slider to Min.

Scanner Control
The Scanner Control tab defines the scan and controls (start/stop/pause/ resume) (Figure 18-11).

- Scan Resolution. This setting defines the density of the cloud. You can chose from 7 preset scan resolution settings defined as the distance between adjacent scan points at the distance specified. This represents the angular spacing of individual points. The points will be closer together at a closer distance and wider at a great distance based on this angular setting. The default setting when connecting to SA is the lowest resolution.
- Scan Quality. This setting defines accuracy for a particular point. Higher accuracy results in an increase in the overall measurement time.
- H Center. Defines the horizontal angle clockwise about the scanner start location to the center of the scan.
- H Delta. Defines the horizontal angular width of the scan about H center.
- V Center: Defines the Vertical angle about the scanner start location to center of the scan.
- V Delta. Defines the vertical angular width of the scan about V center.

Figure 18-12. Scanning orientaton.

The Scanner Data tab provides a view of scan data on the instrument as well as transfer options (see Figure 18-13).

- Refresh Tree. This button updates the tree list on the interface with the latest scan data available from the instrument.
- Tree View. This section contains a static list of all the scans available from the instrument at the time the tree was last updated. To ensure you have the latest scan information, click Refresh Tree.
- SA Cloud Data. This information is sent with the scan and used to define it in the SA job once the transfer is complete. Note that if you do not increment the name you can send multiple clouds to SA that are merged. This can be quite helpful if you have made several scans from the same instrument plant.
- Right Panel. The right hand panel of this tab displays information on the selected scan as well as a preview of that scan. The color in the preview are based upon point return intensity.

Measuring With Laser Radar

This chapter covers connection and basic operation of the Nikon Laser Radar in SA.

Nikon Laser Radar

Add the Laser Radar Instrument by using 象 or the menu item Instrument>Add (Figure 19-1).

Start theinstrument interface using $\not \boldsymbol{r}^{\circ}$ orthemenuitem Instrument $>$ Run Interface Module and Connect.

Figure 19-2. The Laser Radar interface.

Figure 19-3. Selecting the instrument to connect.

Toolbar

Figure 19-4. The toolbar in the laser radar interface.

Use the Connect button $\#$ to display the Select CLR dialog. Select the respective instrument and press Connect (Figure 19-2).
Select or enter the CLR you would like to connect to:
() Select From List:

Host Name	Port	Type	Status	Host IP
node157	8000	Clr200	Available	10.2.4.31

Connect to Host by Name or IP Address:

Port: \qquad
Connect
Cancel

Figure 19-5. The Advanced Target Manager.

Figure 19-6. The FFT window.
above).

- 觼 Target Manager - Advanced. Displays the target manager interface (Figure 19-5).

- Show/Hide FFT Window. Toggles the FFT window visibility (Figure 19-6).

- $\quad \infty$ Cloud Viewer. Opens the cloud viewer interface (Figure 197).

Figure 19-7. The Cloud Viewer.

Figure 19-8. The mirror target dialog.

- $\|_{\infty}$ Mirror. Displays the mirror target dialog (Figure 19-8).

- 물 Continuously Repeat Command. Sends updates by repeating the current measurement mode.
- 首 Video Window. Toggles the video output window (Figure 19-9). Using Ctrl + Shift + + or Ctrl + Shift + "-" will increase or decrease the steering speed.

Figure 19-9. The video window.

- Video Focus. Displays slider for manual focusing of video camera.
- Shutdown. Disconnect and shutdown scanner.
- 瞇Dock/Undock. Docks or Undocks the instrument interface in SA.

Target Naming

Figure 19-10. Specifying a target name to measure.

- Group Name. Specify group name for target to be stored.
- Target Naming. Specify name for target, target name will automatically increment after each measurement.

Measure/Inspection Location

The LR interface supports three measure locations (Figure 19-11). When selected the user can configure the "measure" quick selects. When the measure operation is changed the "measure" quick selects will change.

Figure 19-11. Measure quickselects.

Meas/Insp Location

- Current Beam Location

Selected SA Geomet?

Auto Measure from SA

- Current Beam Location. Used to measure the current location of the beam.
- Selected SA Geometry. Used when a supported geometry is to be measure. An example would be a perimeter or a vector group.
- Auto Measure from SA. Used when SA sends an auto-measure request to the LR interface.

Current Beam Location, SNR and Auto-Focus Limits

This allows the user to view the IR SNR (signal to noise ratio) or the Red (pointing laser) focus limits (Figure 19-12). When selected the display to the right will change. When "Red" is selected the user will have quick access to the focus limits. F7 can be used to toggle between the two displays. Auto-focus can be accessed via the interface button or use F8.

Figure 19-12. SNR/AF Limits.

Measure and Advanced Target Manager

To select a Measure mode for a particular quick select, press the arrow button the right of the desired button. A list of measure types will appear for selection (Figure 19-13).

Figure 19-13. Measurement modes.

To access the parameters for the measure mode, double-left click and the Advanced Target Manager will appear (Figure 19-14). Here a user can tweak a particular profile to suit the measurement task at hand.

Figure 19-14. Specifying measurement details in the target manager.

Output

Displays information regarding the current measurement process (Figure 19-15).

Output
16:46:56, Low Quality: 21.1, Requirement: 30.0
16:46:58, Low Quality: 18.1, Requirement: 30.0
Figure 19-15. The output window.

LR Operational Tests

Access the Metris LR Operational checks under the menu item Tests. Consult the Metris documentation for operational check procedures.

Single Point Measurements

This section will briefly cover some basic single point measurement types. For further information please consult Nikon Metrology.
Tooling Ball

1. Select the desired tooling ball measurement mode for selected quick select. Use the drop-down arrow to pick the desired measurement mode. If the needed measurement does not exist, create a new one in the target manager 筒.
2. Steer the laser to the tooling ball of choice. Point the laser to a surface near the tooling ball and press F8 to perform an autofocus. Once complete aim the laser to the center of the tooling ball.
3. Press the measure button \qquad or F3.

Surface Point

4. The point will be sent to $S A$, if not check the output box to check measurement failure details.
5. Select the desired surface point measurement mode for selected quick select. Use the drop down arrow to pick the desired measurement mode. If the needed measurement does not exist, create a new one in the target manager 鷊
6. Steer the laser to the surface point of interest. Press F8 to perform an auto-focus.

Scanning Measurements

This section will briefly cover some basic scanning measurement types. For further information please consult Nikon Metrology.

Box Scanning

Figure 19-16. Scanning a box.
Box scanning allows the scanner to perform a scan bounded by a box with prescribe dimensions.

1. Point the laser at the center of the area of interest.
2. Select the appropriate scan mode. Double click the measurement mode to access scan parameters. Enter the scan box dimensions.
3. Press Measure or F3.
4. A scan will be performed inside the bounding box (Figure 1916).

Perimeter Scanning
Perimeter scanning allows the scanning region of the LR to be constrained by a 3D perimeter.

1. In SA, select Construct>Perimeter. Select the measured or nominal points which describe the bounding region to be scanned. Two types of perimeters exist in SA, open and closed. A single perimeter can be changed from open to closed in the perimeter properties dialog.
2. In the LR Interface, change the Meas/Inspec Location to Selected SA Geometry (Figure 19-17).

Figure 19-17. Choosing Selected SA Geometry.

Figure 19-18. Scan parameters.
3. In SA, select the desired perimeter. Once selected, the quick selects will populate with measurement modes applicable to perimeters.
4. Double-click the measurement mode to access scan parameters (Figure 19-18). Often times a user will change the output format, grid rotation and point spacing.

\square Output	False
TracePerim	False
NewGroupForEachScanLine	False
SendToCloud	False
SendToCloudviewer	True
SendToPtGrp	
Scan	0.0000
GridRotation	1.0000
LineSpacing	1.0000
PointSpacing	

5. Press Measure or F3.

Operating Laser Projectors

Laser projectors combine measurement capacity with precision projection capability. For part layout aplications the can be very useful devices. SA supports several Laser Projectors interfaces.

Laser Projector Overview

Laser projector operation can be broken down into 3 categories:

1. Alignment
2. Part or Ply Construction
3. Projection and Instrument Controls

Alignment
Alignment of the laser projector within the SA job files provides the ability to accurately project objects. The Alignment process starts within SA. Choose Instrument>Laser Projector>Align this will prompt for selection of the alignment points. Just like a best fit operations these points are used to align the projector in the job file. You will then be asked to guild the projectors beam to the corresponding reflector to be measured.

An initial alignment must be performed in this way prior to starting to work with a laser projector. After an initial alignment has been made the projectors offer a quick auto-align function to refine the alignment much like a drift check operation.

Part or Ply Construction

Parts within the SA job must be converted to projection files to be able to define the mirror angles necessary to correctly project them. This process starts on the SA side. Select Instrument>Laser Projector>Project to choose an object to project. The controls within the projector interface will then control the way in which that part or ply is saved and projected.

Projection and Instrument Controls

Each interface offers a slightly different set of controls but each offers the ability to start and stop projection as well as iterate between parts. Refer to the individual Quick-Start guides for specifics.

Laser Projector Quick-Start Guides

SA supports the following Laser Projectors:
LPT (see "LPT" on page 546)
Assembly Guidance (see "Assembly Guidance" on page 552)
LAP (see "LAP CAD-Pro" on page 556)

LPT

Setup the projector following the manufacturer's directions. The LPT functions as a separate computer with a separate IP address and must be connected through a network connection using an Ethernet cable. Ensure that the unit is powered on.

1. Make sure the projector and the PC have compatible IP addresses. This can be done by attaching a monitor, keyboard, and mouse to the projector and verifying the Projector's IP address.
2. Open Windows Explorer on the PC. In the Address field, type the computer name of the projector. For example,
LPT10587.
3. You will see a dialog box entitled Connect to LPT10587 (for example). Enter your username and password. The default username and password are both Admin.
4. Once you are logged onto the projector, Windows Explorer will show the hard drives on the projector.
5. Run RayTracer Operator on the PC. (RayTracer Operator can be run on the projector but it is recommended to run it on the PC.)
6. On the RayIracer Operator Login screen, type Admin for the User ID, and Admin for the password.
7. You should have a database set up on the PC already, but if not, contact LPT for assistance. (To get started, you can run RayTracer Administrator to create a new database or to incorporate tools and parts created 'offline' (see "Using SA to Create Offline Tools and Parts" on page 548). Or, just copy a database from the projector to the PC, and use RayTracer Administrator to set it active.)
8. Be sure the database you wish to use is indicated in the RayTracer Operator login, and press OK.
9. Once Operator is running, check the'Laser Name'list in the application's main window. Ensure that the projector you are connecting to is in the list, and that it is checked. If not, you must check it and'take ownership' of the projector. Otherwise, commands will appear to succeed, but none will be carried out.
Running the Projector
10. Select Instrument>Add... and choose the LPT Laser Projector from the Instrument List (Figure 20-1).

Figure 20-1. Adding an LPT to the SA job.

2. Select Instrument>Run Interface Module. Select LPT Laser Projector from the list.
3. In this dialog (Figure 20-2) two options appear: you can connect to a computer running RayTracer Operator or work Offline. Be sure to select Connect to Operator, and indicate the name of the computer running Operator. (The'This Computer' button will fill in your pc's name in case you are running Operator on the PC as recommended.)

Figure 20-2. The Connect to SpatialAnalyzer dialog.

4. The progress report at the bottom of the interface window will indicate actions as they take place.

Using SA to Create Offline Tools and Parts

1. Run SA and add an LPT projector. Then run the LPT Laser Projector Interface, and select Work Offline in the interface's Connect to SA dialog (see"Running the Projector" on page 547).
2. The interface will then run in OFFLINE Mode. You will select the path for the 'Offline Tool' and 'Offline Part' xml files in the interface. You can create as many tools and parts as you wish. It is highly recommended that tool and part 'sets' be created. In other words, for any set of parts, create a corresponding tool which represents the projector's location while projecting those parts. These tool and part sets can be organized in folders.

To Create a tool

- Set the path and file name for the tool in the 'Offline Tool' area of the interface. In SA, select Instrument>Laser Projector>Alignment. You'll be prompted to select the instrument (projector) and the Group (set of alignment points). The points will be written to the file indicated by the path in the 'Offline Tool' area of the interface.
To Create a Part

1. Set the path and file name for the part in the 'Add to Offline Part' area of the interface. If you are creating a part from anything other than points, be sure to set the Ply Filter in the interface (see section below for use of the Ply Filter). In SA, select Instrument>Laser Projector>Project Objects. You'll be prompted
to select the instrument (projector), and the Objects to project (geometric entities, points, etc.). You will be prompted for a Ply Name for the object in the Part file. The objects will be written to the ply in the file indicated by the path in the 'Add to Offline Part' area of the interface, and codes to ensure uniqueness in the part file will be added to the ply name. You can continue to add objects (plies) to the same part file, and/ or create new part files as desired.
2. Once desired set(s) of tools and parts have been created, use RayTracer Administrator to add these sets to a projector database.
3. During the creation of tools, you may wish to start up the projector (described below) and ensure the validity of the tool by actually aligning the projector to the tool. Then the parts corresponding to that tool location can be projected to ensure their validity. All this is described below.

Projecting within SA

Alignment

There are several possible ways to perform this action:

1. If you have been working with a projector in SA, and you are continuing work on a file, the projector's location/orientation will be persisted by SA and the interface. If this is the case, hit the 'Auto Align' button in the 'Align' section of the interface. Operator will pop to the forefront, and an Auto-alignment will take place. Operator's view area will go green upon a successful alignment. NOTE: For the following methods, be sure to use the 'Toggle FOV' (field of view), and 'Toggle +' (center cross) buttons in the interface to aid in the initial location of the projector.
2. If you are starting a new job, you can create alignment points (a tool) in SA, and align the projector to that tool. In the interface, be sure that 'Add to Projector Part' is selected in the 'Projections from SA' area (in 'Online' mode, if 'Add to Offline Part' is selected, Tools will be created in the last used offline tool.) Create a group of points in SA which you wish to use as the alignment tool. In the SA Instrument menu, select Laser Projector >> Alignment. You'll be prompted to select the instrument (projector), and the Group (set of alignment points). Once the group is selected, you will be prompted for the Tool Name. A tool by this name, containing the points from the selected Group, will be added to Operator's database. You will see the tool name and point appear in Operator if it is visible. Finally, the interface will instruct you to manually align the projector in Operator.... just maximize operator, and hit
the 'Manual Alignment' button. Guide the projector to each indicated point, and left click when near the point. After 4 such points are Accepted, Operator will take over and finish the alignment. (If the alignment fails, Operator will give you an oportunity to override the alignment and continue, but you should check for the source of the failure - it is generally an rms error exceeded in the alignment calculation.) Once you have performed this manual alignment procedure, you should be able to Auto-align (as described above) so long as the projector is not moved, and the Tool in Operator is not changed.
3. If you have previously created Tools offline (as described above), you can use LPT RayTracer Administrator to add the tool(s) to your database, and they can then be used by selecting them from the'Tool:'list in Operator. As always, a one time manual alignment will have to be performed in Operator, and then Auto-align from the interface can be used until the projector is moved, or the Tool is changed.

Projecting

1. For projecting within the current Part, simply use the 'Next', 'Current', and 'Previous' buttons in the interface to toggle through plies. The 'Pause' and 'Resume' buttons also apply to the current Part.
2. Use LPT RayTracer Administrator to add any offline parts you have created (as described above) to the current database.
3. To add a part to the current database, and project it immediately: Be sure the projector has a valid alignment (Operator's view screen is green.) Be sure 'Add to Projector Part' is selected in the interface. Edit the name of the part if desired. (As with offline parts, you are free to continue to add projection objects (plies) to the part as many times as you wish.) If you are creating a part from anything other than points, be sure to set the Ply Filter in the interface (see section below for use of the Ply Filter). In SA, go to the 'Instrument' menu, and select Laser Projector>Project Objects. You'll be prompted to select the instrument (projector), and the Objects to project (geometric entities, points, etc.). If this is a new part, the part will be added to the current Database. The selected projection object(s) (i.e. the ply) will be added to the part and projected immediately. The ply name in the part will be "CommandedProjection_X", where X is a code to ensure uniqueness.

In the interface's 'Projections from SA' area is a 'Ply Filter' button. The button shows information about the current active filter option.

Filter Options Are:

- None. Just project everything as is
- Minimum Angle. Starting with the first point, look at all consecutive sets of 3 points in the ply, e.g. 1, 2, and 3 . Make vectors 1 to 2 and 2 to 3 . If the angle between 1 to 2 and 2 to 3 is less than the selected minimum angle, point 2 is eliminated, and the evaluation continues.
- Number of Points. Numerically spaced points are eliminated until the desired maximum number of points is reached.
- Minimum Distance. Starting with the first point, look at all consecutive sets of 2 points in the ply, e.g. 1 and 2. If the distance between 1 and 2 is less than the selected minimum distance, point 2 is eliminated, and the evaluation continues.

The ply filter is applied to any entity which comprises a continuous projection along some curve. (Anything except points.)

The current active filter (indicated on the filter button) is applied to all plies coming into the interface, whether they are to be projected immediately, added to the current database part, or added to an offline part.

Assembly Guidance

Hardware Setup
Setup the unit following the manufacturer's directions with an unrestricted view of the work area.

Software Setup

You can download and install the latest drivers from http://www.kine-matics.com/ftp/SA/Install/Driver\ Downloads/Projectors/AssemblyGuidance\ LaserProjector/ . You will need the following files:

- LASERGUIDESDK_3_03_13.exe or later
- Register LaserGuide dll.bat
- Unregister LaserGuide dll.bat

Installation

Figure 20-3. Windows registration.

1. Run the file LASERGUIDESDK_3_03_13. exe or later on your machine. This will walk you through the installation process of the LaserGuideSDK used by SA to communicate with the device.
2. An install directory will be created under C:\Program Files (x86)\AGS\LaserGuideSDK as well as a shortcut link on the desktop to the test application for the AG projector.
3. Restart your computer.
4. Move the Register LaserGuide dll.bat into the SA install folder typically located here: C:\Program Files (x86)\New River Kinematics\SpatialAnalyzer 2013.12.10.
5. Double click "Register LaserGuide dII" to run the file from this directory. If you have previously registered from a different directory you will need to run the Unregister LaserGuilde dll. bat utility first.

Network Configuration
Be sure to create a fixed IP address on your computer that will be
compatible with the IP address of your projector(s). The default address should be stamped on the front of your projector. For example, if your projector's IP address is 10.1.1.1, then you need to change your computer's IP address to 10.1.1.X; where X is between 1 and 255 .
Starting the Interface

1. Select Instrument>Add and choose the Assembly Guidance Laser Projector.

2. Now runthe instrumentinterface module under Instrument $>$ Run Interface Module and Connect.
3. Enter the projector's IP address and click the Connect \gg button on the AG LaserGuide (see Figure 20-5) dialog. For more detailed connection information, you click on the Show Projector Window (see Figure 20-6) button to bring up the Assembly Guidance Contol Utilities.

Figure 20-5. AG LaserGuide
dialog.

Figure 20-6. Projector window.

Aligning the Projector
There are two methods of aligning the projector in SA.: automatic and manual. To perform an auto alignment, use the browse button in the AG LaserGuide dialog (see Figure 20-7) to find a preexisting registration file to use. Click the Auto Align button, and the projector will auto measure the alignment points and the transformation from the measured points to the current point locations will be used to align the projector within SA.

To Perform a Manual Alignment

1. Measure six reflector positions with a separate instrument within the field of view of the projector. Located in the Aim section of the instrument interface is the Toggle FOV and + button.

This can be used to display the projector region and also to import a set of known location points.
2. Select Instrument>Laser Projector>Alignment.
3. Select the instrument to align and then the measured point group for alignment.
4. Browse to a location to save a Registration data file in .txt format.
5. Use the manual alignment utility pictured in (Figure 20-7) to point the laser at each registration point in order by name. To do so, click and hold while dragging the mouse. This drives the laser pointer relative to the cross hairs in the dialog and, in turn, drives the projector beam to the reflector point. Once aimed correctly, right-click to scan the target.

Figure 20-7. Steer Beam for Target dialog.

Left click and Hold to Dive,
Right click to Scan Target
6. After each of the individual target locations have been identified in this fashion, these points will automatically measured and the alignment will be performed.

Point and Object Projection

The Assembly Guidance Interface provides the tools to project points as well as objects in SA. To project an object it must be added to a part file. These part files are then used to build the laser path definition for the projector. A single part may contain several patterns and additional patterns can be added to an existing part file.

Projecting Part Files

1. In order to project patterns from a previously created part file, simply browse to the file using the Pattern (Part) File button in the interface.
2. Click Current to project the part shown in the selection path. You can utilize the Pause and Resume buttons to control projection of the current part file and the patterns it contains.
3. Select Next and Previous to toggle through part files in the same folder as the current part shown in the Part File Edit box.

Building/Editing Part Files and Projecting Objects

Tip: Objects cannot be removed from a part file through SA.

LAP CAD-Pro

Hardware Setup

Setup the unit following the manufacturer's directions with an unrestricted view of the work area.

Software Setup
No additional software or driver installation is required to run the LAP projection in SA.

Network Configuration
Set a fixed IP address on your computer which is compatible with the address of your projector(s). The default address should be 192.168.100.112, therefore your computer needs an IP address added of 192.168.100. X, where $0<X<255$ but is NOT 112 . SA will try to detect if you have the default network address set and will warn you if you do not as follows:

Figure 20-8. LAP Network
Configuration

Starting the Interface

1. Select Instrument>Add and choose the LAP CAD-Pro Laser Projector.

2. Now runtheinstrumentinterfacemoduleunderInstrument $>$ Run Interface Module and Connect.
3. Use the Toggle FoV and + button to visualize the field of view of the instrument and to ensure that the alignment targets are completely within the veiw of the projector.

There are two methods of aligning the projector in SA: automatic and manual. A manual alignment must be performed first to inicially locate the instrument in the job file. Automatic alignments can then be used to verify and refine an existing alignment during operation.

To perform an auto alignment, use the browse button in the LAP Laser Projector dialog (Figure 20-10) to find a preexisting registration file to use. Click the Auto Align button, and the projector will auto measure the alignment points and the transformation from the measured points to the current point locations will be used to align the projector within SA.

Figure 20-10. LAP Interface dialog.

To Perform a Manual Alignment

1. Measure six reflector positions with a separate instrument within the field of view of the projector. Located in the Aim section of the instrument interface is the Toggle FOV and + button. This can be used to display the projector region and also to import a set of known location points.
2. Select Instrument>Laser Projector>Alignment.
3. Select the instrument to align and then the measured point group for alignment.
4. Browse to a location to save a Registration data file in .txt format.
5. Use the manual alignment utility pictured in (Figure 20-11) to point the laser at each registration point in order by name. To do so, click and hold while dragging the mouse. This drives the laser pointer relative to the cross hairs in the dialog and, in turn, drives the projector beam to the reflector point. Once aimed correctly, right-click to scan the target.

Figure 20-11. Steer Beam for Target dialog.
6. After each of the individual target locations have been identified in this fashion, these points will automatically measured and the alignment will be performed.

Point and Object Projection

The LAP Interface provides the tools to project points as well as objects in SA. To project an object it must be added to a part file. These part files are then used to build the laser path definition for the projector. A single part may contain several patterns and additional patterns can be added to an existing part file.
Projecting Part Files

1. In order to project patterns from a previously created part file, simply browse to the file using the Pattern (Part) File button \square in the interface.
2. Click Current to project the part shown in the selection path. You can utilize the Pause and Resume buttons to control projection of the current part file and the patterns it contains.
3. Select Next and Previous to toggle through part files in the same folder as the current part shown in the Part File Edit box.

Building/Editing Part Files and Projecting Objects

1. In the From SA section of the interface, select Add to Part or Make New Part.
2. Select Instrument>Laser Projector>Project Objects. You will then be
prompted to select the instrument (if you have more than one in the job).
3. Set the color to use for the projection, LAP supports Red, Yellow and Green.
4. Now select the objects you wish to project. Doing so will create a file using the name of the first object selected for projection if you have Make New Part selected. If you chose Add to Part, it will add the selected objects to the current part file.

This Page Intentionally Left Blank.

Alignment \& Transformations

One of the key areas of portable metrology is alignment: transforming an instrument or set of points into the proper position and orientation such that it is aligned to the desired coordinate system. This chapter explores methods for transforming into a desired coordinate system.

Typically, metrology data is of limited use until it has been aligned to some set of reference datums, nominal data, or other measurements. Aligning to a coordinate system is sometimes referred to as bucking in, tying in, locating, or aligning. Some of the reasons this is done include the following:

- Governing dimensions and measurements (acceptance criteria) are typically expressed on drawings with respect to a specific datum or frame of reference. Often, evaluating features with respect to other datums is not permitted when evaluating design conformance.
- When comparing as-built measurements to a nominal design, the data must be aligned to the nominal design-otherwise, the comparison cannot be performed.
- Multi-station measurements (measurements taken from more than one position in space) must be "tied" together so that the data is continuous.
- Digital alignment and assembly (virtual fit-up) requires that measured components be "virtually" assembled using some sort of alignment in order to check the assembly for fit and function.
In some situations, this involves creating a coordinate frame from the
measured points. In other (less common) situations, it involves transforming CAD data to the measurements. But most often, it involves aligning measurements to a coordinate system of interest. Since measurements are rigidly fixed to the instrument that measured them, this typically involves transforming an instrument in space until its measurements end up in the desired position.

In this chapter, we will explore the tools available for performing all different types of alignment.

Review of Available Alignment Options

Alignments should be made on an instrument basis whenever possible. Because instruments, their measurements and associated objects move as a unit this is the most effective method.

Instrument Locate Options:

An instrument can be located several ways. The basic instrument location methods can be found under Instrument>Locate or right-click an instrument and select Locate. Advanced methods are discussed in later sections and links are provided below.

Measure Nominal Points

Measure Nominal Points (Figure 21-1) is a great way to locate an instrument quickly. Simply select the nominal points and the instrument to locate.

Figure 21-1. The Locate by Measuring Nominals window.

The Locate dialog will appear listing the points to measure. The user has the option for manual or automatic measurement. Once three points are measured the instrument is transformed via a Best-Fit. With the instrument roughly located the user can easily drive or point to
each target. As measurements are recorded the Best-Fit is updated. A fit tolerance can be applied to notify user of an out of tolerance condition.

Quick Align to CAD

A quick and easy method to align to a CAD model. Simply click the model where the points will roughly be measured. A minimum of six points are needed to align to a CAD model. Red dots are used to guide the user where to measure. During the selection of the surface points the current view is saved. As measurements progress the views update.

Best-Fit

Locating an instrument via a Best-Fit is one of the most common location methods. It is used heavily during instrument location to nominal control points, instrument relocation and relocation due to drift. The user specifies the instrument to locate, the nominal point group and measured point group. The below fit dialog will appear allowing a view of the best fit. This Best-Fit Transformation dialog is covered in the Best Fit Points to Points section.

Plane, Line, Point (3-2-1)
A 3-2-1 fit consist of a locator point for the origin, line/vector for one axis and plane for the second axis. The Plane, Line, Point Transformation dialog allows control over the axis for the plane and line/vector. The user may also specify an alternate coordinate for the locator point. Once the transformation is accepted the instrument will be transformed with respect to the active frame.

Frame Wizard
Frame Wizard provides a flexible way to select points or objects to define the origin and axis directions of a new frame. Once that frame is built and you accept it, the transformation from the current frame location to the active frame is performed.

Frame to Frame Transformation

Transform an instrument from a one frame to another. User will be prompted to select a source frame, a destination frame and an instrument to move.

3 Planes

The 3 Plane instrument locate uses three planes to define a coordinate system that is then transformed to the active frame. The user has control over the axis fit priority and position.

Locating By Minimizing Relationships

Instruments can be located by Minimizing Relationships. This is available in SA Ultimate and can found in the Relationships Chapter (see
"Minimizing Relationships" on page 668).
Nominal Geometry Relationships
Many geometry relationships are point reducible such as the center of a circle or a sphere. This option allows you to choose a selection of geometry relationships and best fit their center points.

Network Alignments

Bundle
Designed with theodolites in mind. This network alignment performs a weighted bundle based upon common measurements targets and the resulting position.

Unified Spatial Metrology Network (USMN)
USMN is a strong method for locating multiple instruments. It is usually used in a case where three or more instruments are present. This is available in SA Ultimate and can found in the USMN Chapter (see "What is USMN" on page 777).

Additional Points Based Alignments

Analysis Best Fit Points to Points
Analysis>Best Fit Transformation>Points to Points is very similar to Instrument>Locate>Best-Fit. The main difference is that the user has the ability to move multiple instruments and additional objects. See Best Fit Points to Points for more information.

N -Point Full Fit
Finds the optimal transformation that minimizes the errors between the measured points and the CAD surface. This method contains many options for tolerance fits and other advanced fitting methods. See Best Fit Points to Surfaces for more information.

Best-Fit Transformations

Best-fit transformations are widely used in coordinate metrology to consistently and confidently align measurements into a coordinate frame that is meaningful to a user. Measurements made with an instrument should be presented to users in the part coordinate frame-that is, aligned to the part. The best-fit transformation routine in SpatialAnalyzer is one way to do that.

A best-fit transformation solves for the difference between a group of points and the expected (or reference) coordinates for those points. The difference between the current position and orientation of the
points and the ending position/orientation is referred to as the transformation. After the solution is reached, SpatialAnalyzer shows you the difference and allows you to apply the transformation to your measurements of the points and to other objects as well. Once applied, SpatialAnalyzer is able to report those measured points and any new measurements in a part coordinate frame that is meaningful to you.

The best-fit alignment technique has many applications; for example, to combine sets of coordinate data or locate an instrument in the part coordinate system using surface features imported from a CAD system. Simply stated, this alignment technique helps you determine the transformation that when applied to one set of coordinates causes the match-up between the two sets to be ideal.

The term "best fit" is the colloquial term given to a mathematical procedure known as a Linear Least Squares fit. The transformation solved for and applied is determined using least-squares optimization methods. A least squares optimization seeks to minimize the square of the distance between corresponding points, or between points and corresponding surfaces.

Point to Point Best-Fit

A common need for performing a point to point best-fit is when trying to locate to a known coordinate system in which discrete points already exist. For instance, you have a network of control points (fiducials) from a previous station measurement and you'd like to relocate the instrument and remeasure these points in order to align back into the coordinate system. When performing this type of alignment, the group of points being aligned to are referred to as the reference group, and the points being moved are referred to as the corresponding group. They may also be referred to as the nominal group and measured group, respectively, although if the term nominal group is being used, it does not necessarily mean that the points are true nominal design points (Figure 21-2).

Figure 21-2. A group of four points (blue), when best-fit to a set of reference points (red), will move as illustrated. The four blue points move together as a rigid body to try to align with the reference points. In this case, a rotation is involved.

In order to perform a point-based best-fit transformation, the points involved must meet two prerequisites:

- There must be at least 3 points in both the reference and corresponding groups that have corresponding names.
- The reference and corresponding points must be in separate point groups.
Note that the two groups need not have exactly the same number of points. Any points that don't have corresponding pairs are simply ignored in the command, although if they are in the moving point group they will be transformed along with the rest of the points in the group. There are three ways to perform a point-to-point best fit transformation:
- Instrument-based best-fit. In this method, you pick an instrument to align, and then select the reference and measured group. The transformation will be applied to the instrument, bringing all of the measured points along with it.
- General best-fit. This is nearly identical to the first method, however it's not instrument-centric, and provides a little more flexibility when needed. You can choose to transform anything, including instruments, point groups, and other objects. There are also a few additional options (discussed below).
- Locate an instrument by measuring nominal points. This allows you to measure a set of nominal points, and let SA handle the point naming and alignment for you.
These three methods are described below, but to use them (well, at least two of them) we first need to understand the Best-Fit Transformation dialog.

The Best-Fit Transformation Dialog

The Best-Fit Transformation dialog (see Figure 21-3) is a simple interface allowing a high degree of control over the fit. Here you can

Figure 21－3．The Best Fit
Transformation dialog．
review the fit，apply tolerances，restrict degrees of freedom，edit point constraints，and more．Any time one or more changes is made，the current fit is no longer valid（indicated by a dark blue background on the fit button and the fit results）and needs to be re－solved．The dialog is divided into three main parts：the controls（top left corner），the fit results（top right corner），and the point list（bottom）．

－Best－Fit Transformation											
Degrees of Freedom			Results		X	Y	Z	Mag．	，		
$\checkmark \times$ VY	V \square		Count		6	6	6	6	三		
$\nabla \mathrm{V} \times \mathrm{Ry}$	Rz	Set Scale	Max Error		0.0006	0.0017	0.0004	0.0017			
Tolerance ColoringZones			RMS Error		0.0004	0.0009	0.0003	0.0010			
			StdDev Error		0.0004	0.0010	0.0003	0.0011			
0.02000 .0	$\begin{array}{l\|l\|} 00 & 0.01 \end{array}$	600	Max Error（all）		0.1993	0.0017	0.0004	0.1993			
			RMS Error（all）		0.0753	0.0008	0.0003	0.0753			
					Unknowns	6	Equations	18			
			Transformation								
Reporting			Translation		－177．1541	－319．5043	0.0003	365.3307			
			Rotation（Fixed XYZ）		－0．0001	0.0000	－43．6083				
			Rotation（Euler xyz）		－43．6083	0.0001	－0．0001				
Apply Transformation			Rotation（Angle axis）		－0．000002	0.000002	-1.000000	43.6083			
		Cancel	Scale Factor					1.000000	－		
Columns Nominals Actuals Weights			Matrix		0.724072	0.689724	0.000002	－177．154067			
			． 0.7889774	ก7フ4ก7\％	ก กnกกก1	． 319 FกAフ58					
Na．．．NomX	NomY	NomZ			dx	dr	$d \square$	dMag			
（ M1－271．4915	125.5194	－57．0032	－0．0003	0.0002	－0．0003	0.0004					
（ M2－130．8167	119.3638	－56．8865	－0．0000	0.0017	0.0001	0.0017					
回 M3－166．3771	36.7893	－56．0920	0.1993	－0．0001	0.0003	0.1993					
（ M M－ 100.1650	8.7241	－55．8220	0.0001	－0．0011	0.0003	0.0012					
V M5－157．9157	－ 33.3122	－55．6148	0.0004	－0．0004	0.0004	0.0007					
V M6－94．1955	． 78.0174	－55．1982	0.0003	－0．0006	－0．0001	0.0007					
（ M7 ${ }^{\text {V }}$	－64．1910	－55．2997	－0．0006	0.0003	－0．0003	0.0008					

Fit Results

The fit results are listed in the table in the top right corner of the dia－ log．These results will be invalid（and therefore will have a dark blue background）whenever the best－fit solution has either not been solved or a change has been made since it was last solved．The fit re－ sults table contains，on a component－by－component basis，a number of statistical values related to the fit that help you determine how well the fit performs．These values include：
－Count．The number of points included in the fit for the speci－ fied component．
－Max Error．The maximum error between a pair of correspond－ ing points．This is an indicator of the＂worst fit＂for any pair of corresponding points．
－RMS Error．The root－mean－square error of the fit as a whole． This is a good indicator of the overall error of the fit．This num－ ber is always less than or equal to the max error（although usu－ ally it＇s noticably smaller than the max error）．
－StdDev Error．The standard deviation of the errors．A small val－
ue indicates that each pair of points had similar errors. A large value indicates that one or more error values differed significantly from the group as a whole.

- Max Error (all). This is the same as Max Error, except all points are included (even those which are deselected from the fit).
- RMS Error (all). This is the same as RMS Error, except all points are included (even those which are deselected from the fit).
- Translation. The x, y, and z instrument translation needed for the solution.
- Rotation (Fixed YZ). The instrument rotations required for the solution, in Fixed XYZ form.
- Rotation (Euler XYZ). The instrument rotations required for the solution, in Euler XYZ form.
- Rotation (Angle axis). The instrument rotation required for the solution, in Angle axis form (first three values describe the rotation axis, and the last value describes the rotation angle).
- Scale Factor. The scale factor applied for the fit. This will be 1.0 unless the Scale degree of freedom is checked (allowed to float).
- Matrix. This is the 4×4 transformation matrix that will be applied to the instrument.

Point List

The point list is a table that contains all points that were found to have matching pairs between the reference and corresponding groups. Immediately above this list, in the Columns section, are three checkboxes: Nominals, Actuals, and Weights. Checking any of these boxes will display the corresponding values in the table. Any column can be sorted in ascending or descending order by clicking the column header. The columns in the point list are described here:

- Name. The name of the point.
- Nom X. The nominal x-coordinate of the point. This is the x coordinate of the reference (non-moving) point.
- Nom Y. The nominal y-coordinate of the point. This is the y coordinate of the reference (non-moving) point.
- Nom Z. The nominal z-coordinate of the point. This is the z coordinate of the reference (non-moving) point.
- Act X. The actual x-coordinate of the point. This is the x-coordinate of the measured (moving) point.
- Act Y. The actual y-coordinate of the point. This is the y-coordinate of the measured (moving) point.
- Act Z. The actual z -coordinate of the point. This is the z -coordinate of the measured (moving) point.
- Wt X. The fit weight for the x-coordinate of the point.
- Wt Y. The fit weight for the y-coordinate of the point.
- Wt Z. The fit weight for the z-coordinate of the point.
- dX. The current x -deviation between the reference and corresponding point.
- dY. The current y -deviation between the reference and corresponding point.
- dZ. The current z -deviation between the reference and corresponding point.
- dMag. The magnitude of the deviation between the reference and corresponding point.
Each point in the fit has a checkbox next to its name in the point list. Deselecting this checkbox will remove the point from the fit, which means that it will have no influence in the final solution. It is standard procedure to remove erroneous points from the fit so as not to corrupt the overall solution. If a point is removed from the fit, it will be grayed out in the point list.

Best-Fit Item Dialog

Figure 21-4. The Best-Fit Item dialog.

Double-clicking a point in the list will bring up the Best-Fit Item dialog (Figure 21-4). This dialog provides another way to remove the point from the fit (Use in Fit), and conveniently allows you to change the reference point's coordinates, as well as the per-component fit weight for the point. The 1 and 0 buttons are simply shortcuts for setting the corresponding fit weight value.

Fit Weights
Fit weights give you control over defining whether a certain component of a point has any influence in the fit process. A value of zero indicates that the component has no influence in the fit, whereas a
value of 1 indicates the component has full influence. Any intermediate value may be chosen. If a component is weighted to zero, it is displayed in gray in the point list. If an intermediate value is chosen, it is displayed in blue, and if the weight is set to 1 , it is displayed in black.

One reason for reducing the weight of a specific component of a point is to reduce directional errors. Suppose you have a measured point that was performed on a floor that was flexing in the z-direction during measurement. It is reasonable to assume that the measured point has significant error in the z direction when compared to the x or y direction, therefore reducing the weight of the z component may be a wise choice. Another reason is when using discrete points to control specific degrees of freedom, an advanced technique that, while doable using best-fit, is much easier to perform using relationship fits.

Controls

You'll notice that you have a significant amount of control in the fit. Access to changing the fit parameters is provided via the controls in the upper-left hand corner of the dialog.

Degrees of Freedom
When solving a best-fit transformation, you can specify that the transformation may only be permitted in certain unlocked degrees of freedom, relative to the working coordinate frame. You can lock any combination of $\mathrm{X} / \mathrm{Y} / \mathrm{Z}$ translation, $\mathrm{X} / \mathrm{Y} / \mathrm{Z}$ rotation, and scale. Any degree of freedom that is checked is unlocked-unchecking a degree of freedom locks it. Keep in mind that these degree of freedom restrictions are applied with respect to the working coordinate frame, therefore rotations are applied about the working frame origin.

As an example, suppose you have a bolt pattern measurement on a flange and you'd like to fit this measured pattern to a mating, nominal pattern. In this case, you would likely align the face of the measured points to the nominal flange face using perhaps a relationship fit, then you might wish to use the nominal bolt pattern to spin the measured flange about its axis until the bolt holes are aligned (Figure 21-5).

Figure 21-5. Performing a best-fit transformation allowing only rotation about the Z axis.

By locking all degrees of freedom except for rotation about the Z axis -and by placing the working frame at the center of the flangethe fit would simply clock the measured pattern to the nominals.
You might also restrict degrees of freedom if you have a leveled instrument (its axis is parallel to the Z axis) and you do not want it to rotate about the X or Y axes.

Notice that you can also set the instrument to a specified scale value for the fit, which allows you to apply temperature compensation to the measurements in situ.

Tolerance Coloring Zones

You can apply tolerance coloring to the deviations in the point list by setting the tolerances in the Tolerance Coloring Zones section.

Fit Controls

A series of buttons controlling the fit is displayed below the Tolerance Coloring Zones section:

- Re-fit button. Recalculates the best-fit transformation based on the current settings. A blue background on this button indicates that the current fit is not valid based on the current settings and a re-fit is needed.
- ... Edit Selected Items. Brings up the Best-Fit Item dialog (page 571) for any selected items. More than one point can be selected at one time in the point list. This button allows you to change all of their properties at once.
- ? Quick Tips. Displays a series of tips related to the dialog.
- $\sqrt{\text { ® }}$ Advanced Settings. Displays the Advanced Best-Fit Oplions dialog, discussed below.
- Advanced View. Toggles to a simplified version of the inter-

> face, hiding less frequently-used parameters.

The Advanced Best-Fit Options dialog (Figure 21-6) provides some advanced, less commonly-used settings for best fit transformations.

Descriptions of these parameters follow:

- Reset transform and scale before each re-fit. The transformation is solved from the same initial starting position and orientation each time the fit is performed. This is the default and is applicable to most fitting operations.
- Apply transformations successively. Each fit operation solves using the previous calculated transformation as a starting point. This allows you to apply iterative best-fit operations with different degree of freedom settings for each. For instance, you might wish to first solve the best-fit with some degrees of freedom locked, then solve again from that position with a different set of locked degrees of freedom.
- Reset Transformation and Scale Now. Resets the current transformation back to the "starting point".
- Store weight settings with points. Fit weights can be stored with nominal or actual points such that if the points are used in another best-fit operation, the weights are recalled.
- Make a new group when fit is finished. Makes a copy of the reference (non-moving) points and puts them into a separate group with the specified name at the completion of the operation. If nominal coordinates were changed in the Best Fit Item dialog, this group will use those updated coordinates. This is not a common need.

Export to CSV

The Export to CSV button will export the fit results to a comma-separated .CSV file and import it into Excel (if installed).

Instrument-Based Best-Fit

To reiterate, an instrument-based best-fit transforms just an instrument and (of course) its measurements. Only one instrument can be transformed. As such, it is most appropriate when locating a single instrument to a set of reference points, or when relocating an instrument to a new station.

1. Measure a set of points into a point group. These will be the "measured" points.
2. Ensure that the measured point names match the corresponding point names in the reference group.
3. From the menu, select Instrument>Locate (Transform to Part)>BestFit.
4. If there is more than one instrument in the job file, select the instrument to locate (as prompted).
5. When prompted for the "nominals" group, select the reference group. This is the group containing the points that will not move during the transformation.
6. When asked for the "measured" group, select the group containing the measured points. These points should be measured by the instrument selected in step 4.

Note: If your point names don't correspond, use Edit> Rename> Points by Auto-Corresponding 2 Groups to automatically rename them.

General Best-Fit

7. Choose the desired options from the Best-Fit Transformation dialog and perform the fit as described, then click Apply Transformation.

A general best-fit can be performed in which the calculated transformation is not simply applied to a single instrument that measured the corresponding points. This is useful for applying point to point bestfit transformations when instruments are not involved, or when you'd like to move several instruments together as part of the fit. In the general best-fit, you can apply transformations to instruments and other objects, in addition to a few more options.

To Perform a General Best-Fit Operation

1. Select Analysis>Best-Fit Transformation>Points to Points, or press Ctrl + B.
2. Select the reference (non-moving) group.

Figure 21-7. The options for a general best-fit.
3. Select the corresponding (moving) group.
4. In the resulting Best-Fit Transformation dialog, select the desired options for the fit and solve it (see"The Best-Fit Transformation Dialog" on page 568).
5. In the Best-Fit Options dialog (Figure 21-7), select the desired options (described below), then click 0K.

Best-Fit Options
Toward the completion of a general best-fit operation, you are provided with a series of options that are not displayed in the single instrument version of the best-fit command. These options are described below.

- Move the corresponding group. Determines whether the transform is applied to the corresponding (moving) group. If unchecked, the corresponding group is not moved.
- Move Objects. If you'd like to transform other objects, select this option. After clicking $0 K$, you'll be prompted to pick the additional objects to transform.
- Move Instruments. If you'd like to transform instruments, select this option. After clicking $0 K$, you'll be provided the opportunity to select instruments to transform.
- Adjust Instrument Scale Factor. This option is only available when the scale degree of freedom is unlocked during the fit. When checked, the scale factor calculated during the fit operation is applied to the moving instruments.
- Move a copy of the working frame. When selected, the working frame will be copied, and the transform will be applied to the copy. This creates a frame that can be used to report the coordinates of the points as they were prior to the transformation.
- Create alternate reference frame. When selected, a frame is
created that represents the inverse of the applied transformation. This allows you to transform the moving objects back to their position prior to the best-fit operation through the use of a frame to frame transformation.

Locate By Measuring Nominal Points

While locating an instrument by fitting to a set of nominal points (see "Instrument-Based Best-Fit" on page 575) is not a difficult task, you may find that using Instrument>Locate (Transform to Part)>Measure Nominal Points is preferable for typical in-process alignment in which more control is not needed.

Locating by measuring nominal points provides a few benefits over the instrument-based best-fit method:

- Point naming is handled automatically, eliminating the potential for typographical errors in measured point names.
- If the instrument is roughly aligned to the points already (for instance, it is being re-fit into the reference system after being bumped), it can easily be automatically pointed at the targets (if the instrument supports pointing). Single points or the entire set of reference points can be automatically measured with a single button click.
- The quality of the fit is displayed at the time of measurementtherefore any blunders in measurement (resulting in errors in the fit) can be discovered much sooner than if the fit were being performed later in the process.
There are a few things to keep in mind when using this command:
- It must be used at the time of measurement. If the measured points already exist, you must use one of the other two best-fit commands.
- You have much less control over the fit. You cannot control degrees of freedom (with the exception of scale), weighting, or advanced fit operations-and you cannot remove points from the fit unless you delete them.
- You're presented with much less detailed information about the fit results.
For the first two measurements, insufficient measurements exist to perform the fit, so the delta deviations are not displayed. However, as each successive measurement is obtained, the fit is recalculated and the deviation values are updated. The Locate Instrument by Measuring Nominals dialog is presented in Figure 21-8.

Figure 21-8. The Locate Instrument by Measuring Nominals dialog is useful when performing a best-fit points to points transformation during the measurement process.

A description of the options follows:

- Group to Contain Measured Points. This is the name of the group in which you'd like to measure the corresponding points. It is best to type this in before measuring any of the points, because if you change it after measuring any points, the alreadymeasured points will not move into the new group. The Apply button will update the table based on the entered group, and the ellipsis button allows you to select an existing group to use.
- Vary Scale. When checked, scale is allowed to float during the fit. The initial, delta, and final scale values are listed next to this checkbox.
- Measure Manually. When clicked, the selected target in the list is measured. If the target already exists, an additional observation is added.
- Point At. Points the instrument at the selected target and attempts to lock on. (Applies only if the instrument supports pointing/target acquisition).
- Delete. Deletes the selected target.
- Automatic Measurement - Single Point. Attempts to point at, acquire, and measure the selected target.
- Automatic Measurement - Multiple Points. Attempts to consecutively point at, acquire, and measure all points in the list.
- Tolerance. You can specify a tolerance in this field. Any deviation magnitudes that exceed the tolerance will be highlighted red. Click the Apply button to apply the specified tolerance to
the table.

To Locate an Instrument by Measuring Nominals

1. Ensure the instrument interface is running.
2. From the menu, select Instrument>Locate (Transform to Part)>Measure Nominal Points.
3. If more than one instrument exists in the file, select the instrument to transform, as prompted.
4. Select the nominal (reference) points.
5. The Locate Instrument by Measuring Nominals dialog is displayed.
6. In the Group to Contain Measured Points section, type in a name for the point group in which to place the measured points.
7. Measure points manually or automatically using the dialog as described above. Once three or more points have been measured, click the Finished -- Locate Instrument button at any time to accept the fit and complete the command.

Best-Fit Points to Surfaces

Performing a linear least-squares fit between a set of points and one or more surfaces is a common task. Often, you want to know the deviation of an as-manufactured part or assembly from its perfect design condition, and it is common to have the nominal design represented in a CAD package as a set of surfaces. In cases where specific discrete reference datums for aligning measurements to the nominal design are not specified (or not desired), best-fit points to surfaces is one method for aligning your measurements to the reference system.
Best-Fit Points to Surfaces uses optimization methods to find the transformation that, when applied to the instrument (and therefore its points), minimizes the RMS error between the measurements and the surfaces, taking into account your specified constraints. Typically, the goal is to drive all the points (compensated for probe offset) to be exactly on the surface. SpatialAnalyzer extends that capability by allowing the operator to specify high and low tolerances for points and assign weights to those constraints.
Initial Condition
Like several other optimization methods, fitting points to surfaces

Basic Operation

For a standard best-fit, just leave the options (Figure 21-9) set to the defaults and then the points will be brought to the surface using a
best-fit taking into account the target offsets of the points. Make sure all the surfaces you are using have their normals pointing in the right direction.

Figure 21-9. The Points to Surface
Fit options.

Point Set Thinning
This option allows you to easily thin selected point sets for purposes of fitting to a surface. Suppose you have a scan with 10,000 points, but don't want to wait a long time for the best-fit. You can specify that you only want to fit 400 of the points and it will evenly sample 400 points from the selected point set.

Run Optimization
This is the default mode of operation. The optimization method performs a version of the steepest-descent algorithm on the system. This means it assembles a matrix that is 6 (unknowns) $\times \mathrm{N}$ (number of points), inverts it and determines move directions. Though quick for reasonable data sets, it can take a long time when using a large set of points depending on the amount of RAM on the computer. The stopping tolerance is the amount that the objective function (RMS error) must repeat by in order to indicate a minima has been reached.

Run Direct Search Optimization
This optimization provides a powerful method for searching the solution space. It is also required when using the toleranced best-fitting options (in the advanced area) since they introduce non-linearities into the solution space. This method basically steps in a direction, evaluates the fit, then steps in another direction, etc. There is a lot of advanced logic built into the search, but at the core, it is a searching method. The advantage is that it does not have to assemble a large partials matrix and invert it. This means that it can effectively deal with huge point sets. The disadvange is that since it is trying to exhaustively search, it can sometimes take a long time to complete. At
any time during the fit, however, you can cancel the operation and use the current location. To use this mode, you set step sizes. They are set as a ratio of the position and angular perturbation values in the SA units options page. The step size starts at the starting value then decays when it detects no improvement in any direction. Once it decays to the Ending step size, a minima is reached.

Recommendations

We have several recommendations for setting these options based on past experiences. As with many things, you may need to experiment to determine the best set of options for a particular combination of points and surface geometry.
The most important recommendation is to start with a good initial condition. The easiest way to do this is to use Quick Align to CAD.

- Reasonable point sets without toleranced fitting. Use only the conventional solution. It is not necessary to waste the time on the exhaustive search.
- Huge point sets with a reasonable starting guess. Use only the exhaustive search with appropriate start and stop perturbations.
- Reasonable point sets with tolerances or unusual geometry. Use both fit options.
- Reasonable point sets, no tolerances, but very high accuracy required. Use both fit options.

Advanced Options

Figure 21-10. Advanced Best-Fit options.

By pressing the Advanced button, you can open the advanced side of the dialog (Figure 21-10).

Points to Surface Fit Options					
Point Set Thinning (evenly distributed)	Advanced Toleranced Fitting Options:				
Total Selected Points: 160	Nominal Drive (standard surface fiting)Active		High Tolerance\square Active		
Number of Points to Fit: 160					
\square Thin Randomly	Goal surface value for points: Weight	0.0	Tolerance value:	0.0	
		1.0	Static Penalty Tolerance violation weight	0.1	
\square Adjust Scale during fit (7 parameter fit)	Low Tolerance			100.0	
<<Standard	\square Active		Surface Edge Projection		
	Tolerance value:	0.0	Static Penally	0.0	
Solve	Static Penally Tolerance violation weight	0.1	Output File\square Generate (Name XYZ Error)		
Run Optimization		100.0			
Run Direct Search Optimization Cancel			C.Analyzer Datalobjectifitot		

These allow you to modify the constraints of the fit to achieve more complex fit ups. This may be used to avoid part to part interference in build operations, or other processes where the interaction between parts is of interest.

Suppose we want to perform a standard best fit to the CAD surface, but we want to make sure none of the points are more than 0.030
below the surface. The parameters could be set as follows:

- Nominal Drive. Use default settings.
- Low Tolerance 0.030, and default weight values.

The result is that the optimization will drive the points to the nominal CAD surface but also exert extra pressure on points that fall below 0.030 on the negative side of the surface. Because the weight for the tolerance is fairly high, it will push the set of points so that the offending low tolerance points lie within the -0.030 band.

Nominal Drive (Standard Surface Fitting)
To perform a standard surface fit, use this option by checking Active. Set the goal value to 0.0 if you wish to drive the points to the surface, or you may use another value to use the offset surface. You do not need to set the weight unless you are using other tolerances in the fit.

Low Tolerance

These four variables control the low tolerance value. The tolerance value does not have to be on the negative side of the surface. You could, for example, have a low tolerance of $0.25^{\prime \prime}$ and a high tolerance of 1 ". The low tolerance is simply the lowest tolerance value.

- Tolerance Active. This flag allows you to easily turn on and off the low tolerance. Turning the tolerance off is equivalent to settings its weight to 0.0 , except that is skips the computations necessary to determine the toleranced objective function value.
- Tolerance Value. This value is the tolerance for the point to surface fit of this FitPoint. If 0.0, then the point will be driven to the surface (after compensating for target thickness)
- Static Penalty. This value is added to the objective function in addition to the weighted tolerance violation. Think of this as a static offset applied any time a point moves beyond the tolerance. Initially, leave this value set to 0.0 and only use it when needed. When you use it, set its value low so it does not unnecessarily increase the nonlinearity of the system. Using large static offset penalty values will have the effect of stopping the optimization prematurely.
- Tolerance Violation Weight. This value is multiplied by the amount that the point violates the low tolerance. If the low tolerance is -0.030 and the points projected distance is -0.040 , the violation is 0.010 multiplied by the Weight.

High Tolerance

The parameters are identical to the Low tolerance except that they
apply to the high tolerance.

This value is a fixed penalty added to a point's objective function contribution if the point projects to the edge of a surface.

Bundle Adjustment

A bundle adjustment may be used to refine measurements acquired using a spherical measurement system. These include theodolites, laser trackers, laser scanners, etc. Basically, a bundle adjustment will attempt to find the instrument transformations (positions and orientations) that yield the minimum combined pointing error.

Initial Guess

Since the bundle adjustment algorithms use the current locations of the instruments as a starting guess, it is best to "rough" position the instruments. To do this, either enter the instrument transformations manually, or use the Drag Instruments function from the Instruments menu. It is best to place the instruments near their final location, as this will speed the bundle solution. If using theodolites with level compensators, you will use the option to force instrument vertical during the bundle adjustment. If this is the case, the virtual instrument models should be perfectly parallel to each other before initiating the bundle adjustment.

Scale-Bar Database

For instruments that measure angles and distances, it is not necessary to use scale-bars in the bundle process. They are required for theodolite networks, however, because without them, the instruments will scale freely.
SpatialAnalyzer contains a scale-bar database. This is where you can enter the various scale-bars you have placed into the measurement area. Essentially what this database does is it associates target names with a scale-bar distance and uncertainty.
To modify the database, select the Scale-Bars tab from the User Options page. The next window will list all of the current scale-bars and their information.

To add a scale-bar, press the Add button and a new record will be generated. Complete the information required and press the Apply button. You should see the information in the list window update.

Since an accurate bundle solution for theodolites requires at least one scale-bar, make sure this database is populated before attempting a
bundle. In addition, make sure the targets for the end of the scale-bar have been shot and included in the list of targets to be included in the bundle solution.

Note, however, that you may populate the scale-bar database at anytime before attempting to bundle adjust. It is not necessary to have this database in place before taking measurements.

Select Bundle Adjust from the Instruments menu. Next, select the instruments you wish to bundle using the dialog. The instruments that you select are the instruments that will be moved in order to refine the network solution. If you have 4 instruments, you will only have to bundle 3 because the first instrument may remain fixed while the others are adjusted relative to it. You may, however, select all of the instruments. This will make the solution take longer, however, because the entire network will be allowed to float in space. Next, the Bundle Adjustment dialog will appear. This dialog will allow you to configure the settings for the bundle, run the optimization, and view the results.

Selecting Targets to Bundle

Once the Bundle Adjustment window appears, you may select the targets to be included in the bundle. SpatialAnalyzer will default to including ALL of the targets. You may reduce the number of targets for computational efficiency or target accuracy reasons.

Scale-Bar Weight Factors

In the Bundle Adjustment window, you will notice a section for Scale Bar Weight factors. This section allows you to control the manner in which scale-bars are incorporated into the final solution.

You may change the state of the check-box to determine whether scale-bars are weighted based on their uncertainty. If this box is checked, the relative uncertainties in the Scale-Bar database will be used to weight those scale-bars with a higher accuracy more than those scale-bars with a lower accuracy (or a higher uncertainty). Basically, this check-box controls how multiplier scale-bars are compared to each other during the bundle solution.

In addition, you may enter a numerical weight that is applied to ALL scale-bars during the solution. This value defaults to 1.0, but may be increased or decreased at the user's discretion. Note, however, that this value is independent of the state of the check-box. You may weight scale-bars based on uncertainty and/or apply an overall weight. This is because the overall weight is applied after the uncertainty weight is applied.

Viewing System Errors

The Bundle Adjustment window displays both the Original shot errors and the adjusted shot errors. This gives you a measure of how much the bundle adjustment has improved the overall system error.

A maximum, average, and RMS error is displayed. These values characterize the combined pointing errors for each target that is included in the Bundle Adjustment. Each target has a pointing error, given in degrees. This is the amount that the measurements miss the best-fit computed target. The bundle adjustment attempts to minimize the combined pointing error by simultaneously adjusting both the position and orientation of the instruments.

Therefore, if there are 30 points in the bundle, the maximum error is the largest pointing error for all of the points, the average is the average of that set, and the RMS is the root-mean-square of the set.

If you wish to see the errors itemized by target, click the Show Details button, and you will see a list of the targets and their errors. You may wish to select this option before beginning the bundle to inspect the list.

Beginning Computation

Click the Begin Computation button, and the Bundle Adjustment will begin. As progress is made, the graphical display will be updated, and all of the numerical values in the Bundle window will reflect the system improvement.

When the algorithm has found a minimum, it will stop and issue a message to the user. Look at the details of the bundle to inspect the individual target errors as well as the scale-bar errors. If these are suitable, click the Accept Results button in the Bundle window, and the changes will be made active. The system is now bundled!

If, however, the results are not satisfactory, and you wish to start over where you began initially, select Cancel from the Bundle window. This will reset the instruments to their initial locations and re-compute the target locations.

Local Minima

Whenever you attempt to minimize a set of complex equations, the issue of local minima arises. Because you start from an initial guess and seek to minimize the error until you can minimize no more, you do not know that you are at the lowest possible minima for the entire solution space.

For this reason, it is possible for the bundle adjustment algorithms to find a solution that, while it is a minimum, is not the minimum you
were searching for. SpatialAnalyzer contains a full 3-D graphical model of the measurement environment to help decipher some of the local minima. It is important, however, to start the instruments near to their optimal location (i.e. use a good guess) to minimize the chance of a local minima.

Weighting

There are several weighting factors described above. These control the importance of different parameters on the overall optimization process. There are several other weighting factors outside this dialog that control the process as well.

In the User Options dialog, under the Units tab, there is a button for Angle-Distance Weights. This button will allow you to control the relative weight of angular measurements compared to distance measurements. This will only affect the bundle if you are using instruments that can measure distance (laser trackers for example).

Watch Windows

Viewing live measurement data is essential for tasks such as real-time assembly and tool-building. SA's Watch Windows provide you with tools for not only viewing live measurement data, but also for viewing other live spatial relationships.

Tip: If possible, you can use - SA Remote (an iOS app for iPod/iPad/iPhone) to view watch window data remotely. See the chapter "Measurement" for more information.

SA's watch windows are live readouts of measurement data. You can view the coordinates of an instrument's measurement, watch the live delta transformation between two objects as they are moved, watch the deviation of a probe from a nominal surface, and more. This enables real-time assembly operations, in which you can watch a moving object's positional error in real-time and make corrections live. It also permits easy tool and fixture building, because you can watch a feature's position in real-time and check it as you make adjustments to the tool.

A typical watch window is shown in Figure 22-1. Depending on the type of watch window being viewed, you may be seeing raw coordinates ($\mathrm{X} / \mathrm{Y} / \mathrm{Z}$ values) or deviations ($\mathrm{dX} / \mathrm{dY} / \mathrm{dZ}$ values). Each value is displayed on a separate row in the window. The window may be resized or even maximized as necessary for easier viewing from a dis-tance-the text will expand to fill the available window. You can open as many simultaneous watch windows as you'd like--they will all update automatically.

By default, watch windows (like almost everything in SA) show their data relative to the active coordinate frame. So an X value is the value in the working frame's X axis, and a dZ value is the delta along the working frame's Z axis. Settings for a given type of watch window are saved-meaning that if you, for instance, hide the X delta in a specific
type of watch window, that value will still be hidden the next time you display that type of watch window.

Watch Window Types

There are a number of different types of watch windows that can be displayed in SA. They include:

- Instrument's Point. Shows the position of a live instrument's probe in real-time.
- Point to Point. Shows the deviation of the instrument's probe from a specific point.
- Point with View Zooming. Compares the instrument's probe to a specific point, zooming in on the point as the deviation decreases.
- Closest Point. Compares the instrument's probe to the closest of a set of points.
- Point to Objects. Compares the instrument's compensated probe position to the closest of one or more objects.
- Three Point Frame. A point measurement from each of three different instruments is used to define a coordinate frame, which is then viewed relative to the working frame.
- Two Point Axis Alignment. Two measured points are used to calculate pitch and roll from a given coordinate frame.
- Theodolite Observer Point to Point. Compares a point derived from two or more theodolite observations to any other point.
- Theodolite Observer's Point. Displays a point derived from two or more theodolite observations.
- Theodolite Observer's Data. Displays the data from the Theodolite Observer.
- Relationships. Any relationship can have a watch window added in order to view that relationship's deviation.

Watch Instrument's Point

This watch window displays the coordinates of the center of the instrument's probe. It will update whenever updated data is received from the instrument.

To Display an Instrument's Point Watch Window:

- Right-click an instrument and select Add Watch Window from the context menu, or
- From the menu, select View $>$ Watch Window $>$ Add Instrument's Point.

Watch Point to Point

This watch window displays the deviation between the center of an instrument's probe and the selected point. Offsets are not used in this comparison.
To Watch Point to Point:

- From the menu, select View $>$ Watch Window $>$ Add Point to $>$ Point, then select the point to compare, or
- Right-click a point and select Add Watch Window from the context menu.

Watch Point to Point With View Zooming

This watch window functions the same as a point to point window, but automatically zooms the graphical view and plays a sound whose pitch is proportional to the proximity of the target to the point. Offsets are not used in this comparison.

To Watch Point to Point with View Zooming:

1. From the menu, select View $>$ Watch Window $>$ Add Point to $>$ Point with View Zooming.
2. Select the point to compare.

Watch Closest Point

A closest point watch window will automatically compare an instrument's probe position to the closest of a set of points. This set of points can be entire group, a subset of a group, or a subset of multiple
groups. This watch window will automatically display the name of the point to which it is comparing. Offsets are not used in this comparison.

To Watch Closest Point:

1. From the menu, select View $>$ Watch Window $>$ Add Closest Point.
2. Select the point(s) to compare against.

To Watch a Point Group:

- Right-click the group and select Add Watch Window from the context menu.

Watch Point to Objects

This watch window displays deviation between the probe and the closest of a set of provided objects. It's important to recognize that offsets are accounted for in this comparison-that is, probe compensation is applied.

However, if the object you are comparing to is a line, SA will by default override target offsets to zero, since comparing the center of a probe to a line is far more common than comparing a compensated point to a line.

When multiple objects are selected, the closest object to the probe's current position is compared. As the probe moves, the object compared against may change.

To Watch Point to Objects:

1. From the menu, select View $>$ Watch Window $>$ Add Point to $>$ Objects.
2. Select the objects to compare against.

To Watch Point to a Specific Object:

- Right-click the object and select Add Watch Window from the context menu.

Watch Three Point Frame

Watching a three point frame is a fairly unique operation. It involves watching three 3-DOF devices simultaneously, wherein the device's points define a frame's origin, X axis, and XY plane. The watch window then shows the transform of this frame in the working frame.

For this command to be useful, the three instruments must be aligned to the same coordinate system-that is, they must be located to each other. Otherwise, the spatial positioning of the three points won't make sense.

If you have an object in which three points define a repeatable frame, you can use this command to easily determine the position and ori-

Figure 22-2. A three point frame watch window.
entation of the object. If you then create and activate a corresponding coordinate frame representing a desired end state, this watch window represents the deviation needed to get to the active frame.

To Watch a Three Point Frame:

1. Ensure that the interfaces for three separate 3-DOF devices are running.
2. From the menu, select View $>$ Watch Window $>$ Add Three Point Frame.
3. Select the instrument whose point will define the origin of the frame.
4. Select the instrument whose point defines the X axis of the frame.
5. Select the instrument whose point lies in the $X Y$ plane.

Watch Two Point Axis Alignment

Often, two points defining the axis of an object must be measured and adjusted to either match a nominal orientation, or to match a prescribed pitch and yaw.
This watch window allows you to measure two discrete points with a single instrument. The watch window then indicates the pitch (elevation) and yaw (azimuth) of the measured axis relative to the prescribed axis (Figure 22-3).
The working coordinate frame defines the vertical direction-therefore its Z axis is used in the calculations.

To Watch an Axis Using Two Point Axis Alignment:

1. Measure or construct two points along the axis that serve as the nominal or "goal" points.
2. From the menu, select View $>$ Watch Window $>$ Watch Two Point Axis Alignment.
3. Select the instrument to use for measurements.
4. Select the first and second points, defining the X axis (from the first to the second). The measured X axis is along the direction from the first to the second points. The Z axis is clocked along the working Z axis, therefore if pitch to gravity is desired, this axis should be along gravity.

5. The Monitor Axis dialog appears.
6. Specify the group name in the text field, if desired.
7. Click Target 1 and Target 2 to measure the points and associate them with the ends of the axis. The pitch and yaw values will update.
8. To automatically measure both targets (assuming you have at least two targets installed and a steerable instrument), click the Cycle Targets button. The instrument will point, search for, lock on, and measure each target.
9. As repeated measurements come in, SA will automatically increment the group name and put each repeated measurement in a separate group.

Watch Theodolite Observer Point to Point

When using the Theodolite Data Observer (see the "Measurement" chapter), this watch window compares the latest computed point to a selected point. For instance, if you have three bundled theodolites, and they are all focused on a common target, you can query the instruments with the Theodolite Data Observer to calculate the position of the target. This watch window will compare this position to a specified point. Note that target offsets are not used here.

To Watch Theodolite Observer Point to Point:

1. Ensure that the Theodolite Data Observer is up and running, and that your instruments are bundled (see the "Measurement" chapter).
2. From the menu, select View $>$ Watch Window $>$ Add Theodolite Observer Point to>Point.
3. Select the point to compare against.
4. As updated data arrives from the theodolite data observer, the watch window will automatically update.

Watch Theodolite Observer's Point

Similar to "Watch Theodolite Observer Point to Point" on page 592, except the point's coordinates are displayed-no comparison is performed to another point. Note that target offsets are not used here.

To Watch the Theodolite Observer's Point:

- From the menu, select View>Watch Window>Add Theodolite Observer's Point.

Watch Theodolite Observer's Data

This watch window displays all data from the Theodolite Data Observer, depending on the settings in the Theodolite Data Observer. For instance, it will display instruments and theta/phi angles from those instruments.

To Watch Theodolite Observer's Data:

- From the menu, select View $>$ Watch Window $>$ Add Theodolite Observer's Data.

Watch Window Options

Right-clicking a watch window will present a context menu containing a number of options for changing how data is represented and displayed. These options are discussed below.

Precision

The number of decimal places used to display watch window data can be controlled. Depending on the necessary accuracy and the user's tolerance for quickly-changing values, the default values may provide too much precision (revealing noise and resulting in quicklychanging numbers) or too little (yielding insufficient detail for the required accuracy).

By default, SA uses the default length and angle precision set in the User Options. However, you can use any preferred precision. The options when changing decimal precision are as follows:

- Use SA Significant Digits. When selected the watch window will use the software defaults. Deselect this to use custom precision settings for the watch window.
- Length. The number of decimal places to use for displaying linear values.
- Angle. The number of decimal places to use for displaying angular values.

To Change a Watch Window's Decimal Precision:

5. Right-click the watch window and select Precision from the context menu. The Watch Window Significant Digits dialog will be displayed (Figure 22-4).

6. Apply your desired settings, then click OK.

Font

Watch windows can be displayed in a custom font. You can change the font and style. (Although you can change the font size, this setting is ignored and the size of the window itself is used for determining text size).

To Change a Watch Window's Font:

1. Right-click the watch window and select Font from the context menu.
2. In the font dialog, select the desired typeface and style, then click OK.

Text Color

You can change the text color for the watch window on a row-by-row basis.

To Change Watch Window Text Color:

1. Right-click on the row in the watch window that you'd like to modify.
2. From the context menu, select Text Color.
3. In the color dialog, choose a new color, then click OK.

Background Color

You have row-by-row control over the background color used in the watch window.

To Change Watch Window Background Color:

1. Right-click on the row in the watch window that you'd like to modify.
2. From the context menu, select Background Color.
3. In the color dialog, choose a new color, then click OK.

Highlight Color

If a prescribed tolerance for a watch window is exceeded, the out-oftolerance values will be highlighted. You can control the color used for this highlight.

To Change the Watch Window Highlight Color:

1. Right-click on the row in the watch window you'd like to modify.
2. From the context-menu, select Highlight.
3. In the color dialog, choose a new color, then click OK.

Arrow Settings

Figure 22-5. Watch window arrow settings.

When a watch window is displayed that is comparing to another entity, arrows are displayed in the graphical view as a way to visualize the deviations. You can control how these arrows are depicted using the options in the Watch Window Settings dialog (Figure 22-5).

- Arrows. Specifies which arrows should be displayed: X, Y, Z, and/or magnitude. The $\mathrm{X} / \mathrm{Y} / \mathrm{Z}$ arrows show the $\mathrm{dX} / \mathrm{dY} / \mathrm{dZ}$ val-
ues. Magnitude shows the shortest distance between the watched item and the entity it's being compared against.
- Minimum Length (Static). The real-world minimum deviation below which an arrow does not get any shorter.
- Minimum Length (Pixels). The shortest length that any arrow can be drawn in the graphical view.
- Maximum Length (Static). The real-world maximum deviation above which an arrow does not get any longer.
- Maximum Length (Pixels). The longest length that any arrow can be drawin in the graphical view.

To Change Watch Window Arrow Display Settings:

1. Right-click the watch window and select Arrow Settings from the context menu.
2. Choose the desired options, then click 0K.

Group Name

When viewing a watch window to closest point, by default the group name for the watched point is displayed in the window. You can turn this off, if desired.

To Toggle Display of Group Names:

- Right-click a closest point watch window and toggle the Show Group Name context menu item.

Showing/Hiding Rows

Individual rows in a watch window can be shown or hidden. For instance, if you are only interested in adjusting the XY position of a feature, you can remove the Z component from the window to prevent confusion and simplify the display.

To Show or Hide Rows in a Watch Window:

- Right-click the desired row and select Hide Row Items from the context menu to hide a row, and select Show All Items to restore all rows.

Coordinate System

Watch windows can display data in one of three coordinate system types: Cartesian, Cylindrical, or Spherical. In the cylindrical/spherical case, the XY axes of the coordinate frame define the θ plane. In the spherical case, the Z axis of the coordinate frame defines the $\varphi=0$ direction.

To Change the Coordinate System for a Watch Window:

Right-click the watch window and select Cartesian, Cylindric, or Spherical from the context menu.

Frame of Reference

Figure 22-6. Changing the frame of reference for a watch window.

By default, watch window data is displayed with respect to the working coordinate frame. Sometimes, you may wish to display the data in a specific coordinate frame, regardless of the working frame (Figure 22-6). For instance, you may have the World frame active but want to view a specific watch window in Local coordinates.

Warning: This setting (along with others) is saved for a particular watch window type. If you forget to set this back, you may view a watch window at a later time with respect to the incorrect frame.

To Change a Watch Window's Frame of Reference:

1. Right-click a watch window and select Set Frame of Referece [FoR] from the context menu.
2. Select the desired option, then click 0K.

UDP Broadcast

- Use working frame. Always represents the values relative to the working coordinate frame. This is the default.
- Use specific frame. When selected, a specific coordinate frame is used for data representation, regardless of the active frame. The selected frame can be changed using the Pick button.

Watch windows can be configured to transmit their data over TCP/IP using the UDP Protocol (Figure 22-7). This is useful for intercepting watch window data with your own custom code.

Options for UDP transmitting are as follows:

- Transmit Watch Window Text over Network. When enabled, data is transferred over TCP/IP.
- Send To. UDP packets can be transmitted to the entire subnet, which is referred to as a broadcast. Or, it can be directed to a specific destination (Single Destination).
- Computer Name or IP. If transmitting to a specific destination, the IP address or computer name of the recipient.
- Port. The port over which the data should be transmitted.

To Transmit a Watch Window's Data over UDP:

1. Right-click a watch window and select UDP Network Transmit Settings from the context menu.
2. Select the desired options, then click 0K.

Tolerances

Figure 22-8. Setting component tolerances for a point to point watch window.

You can set tolerances for watch windows that provide deviation values. Depending on the type of watch window, this may just be a magnitude tolerance (for watching objects) or individual component tolerances (when watching points). The Vector Tolerance dialog, which allows setting component tolerances, is shown in Figure 22-8.

In this dialog, you can enable or disable individual component tolerances, set all high or low tolerances to a given value, or set them all to a symmetrical value.

To Set Tolerances on a Watch Window:

1. Right-click the watch window and select Default Tolerance from the context menu.
2. Set the desired options, then click OK.

Projection Options

As is the case with relationships and queries, you can control how deviations are depicted in a watch window. This is handled through the watch window's projection options.

Figure 22-9. Projection options for a point to point watch window.

The projection options for a point-based watch window are shown in Figure 22-9:

- Nominal-Actual. Deviations show the delta from the "nominal" or reference point to the measured point. This presents the deviation from an inspection point of view-that is, how far is the measurement from nominal?
- Actual-Nominal. Deviations show the delta from the measured point to the reference point. This presents the deviation from a build point of view-that is, how far do I need to move the probe to get to nominal?

Projection options for an object-based watch window are shown in Figure 22-10. There are four available indicator styles:

- 9 Deviations are from the measurement to the designthat is, they reflect the "build" point of view.
- id Deviations are from the design to the measurementthat is, they reflect the "inspect" point of view.
- 1 Deviations are the same as the "build" option above, but the arrows are drawn with their tails at the center of the probe.
- 1 Deviations are the same as the "inspect" option above, but the arrows are drawn with their heads at the center of the probe.
- Ignore Edge Projections. This option is ignored.
- Offset Value. The desired offset value when overriding the probe's offset.
- Override Target Value. When enabled, the probe's offset is overridden by the provided value.
- Add Extra Material Thickness. Adds virtual thickness to the objects being compared against. This is useful, for example, when you have an OML surface in your CAD model but you're actually comparing to an IML, assuming a certain thickness for the material.

Figure 22-10. Projection options for an object-based watch window.

- Tolerance Value. This value is ignored.

To Set Projection Options for a Watch Window:

1. Right-click the window and select Projection Options from the context menu.
2. Enter the desired settings, then click 0K.

Transparency

Watch windows can be made transparent, so that their backgrounds are invisible. The window border can also be made partially transparent. This allows you to see what's going on in the graphical view while a watch window is being displayed.

To Make a Watch Window's Background Transparent:

- Right-click the watch window and enable the Transparent Background option.
To Make a Watch Window's Border Partially Transparent:

1. Ensure that Transparent Background is enabled (see above).
2. Right-click the watch window and select Adjust Frame Transparency from the context menu.
3. Adjust the transparency to the desired level, then click OK.

Transformation Tracking

For 3D instruments (e.g., Trackers) transforming objects in real time requires at least three on-line trackers. This functionality is also called Trans-Track (Figure 22-14).

Figure 22-11. Transformation tracking.

Each instrument will monitor and update a point. The movements of the set of points are used together to update objects in 6D. Select one point per instrument. The point selection order must be consistent with the Instrument selection order e.g., select the points in the instrument sequence. After defining the instruments and tracking points; select the objects that need to move with the point set. The Trans-Track interface (shown below) indicates the instruments being monitored and the respective fit error for the point that it is tracking. The time lapse value indicates the time lapse between the measurements (i.e., synchronization error).

Relationships with Trans-Track

Relationships are dynamic by nature and work great with TransTrack. Watch windows can be displayed for relationships which will allow real time monitoring while moving. Figure 22-12 shows an example of Trans-Track being used to join two cylindrical sections. A frame to frame relationship was used to monitor the position and orientation of the moving unit with respect to its final nominal location.

Figure 22-12. Using trans-track to join two cylindrical sections of an assembly.

Transform in 6D using Instrument Updates

Trans-Track can be accomplished with a single instrument if the instrument supports a 6D target. Examples are the Leica T-probe/T-Mac, API STS and Metris iGPS. This instrument can monitor and measure in 6D. The functionality is identical to Multiple Updates.

Big Data Window

The Big Data Window (Figure 22-13) allows you to view various measurement data as it arrives. This includes:

- Target Name
- Target Coordinate
- Component Measurement Uncertainty
- Pointing Error
- Apex Angle
- Group Comparison
- Theodolite Data Observer information
- Error Sensitivity
- Distance Between Last Two Points

The window is customizable: you can turn different data elements on and off, resize and relocate their position in the window, change fonts, and control colors, borders, and other visual elements.

The window also allows you to step forward and backward through recent measurements to view the associated data, copy the data to the clipboard, or take a graphical snapshot of the window.

To View the Big Data Window:

- From the menu, select View $>$ Big Data Window.

To Enable/Disable Elements of the Big Data Window:

1. In the Big Data Window's menu, click Customize.
2. The Customize dialog appears. Select different elements from the dropdown, and check or uncheck their Visible option, then click Apply.

Live Data: Serial \# 1, 11/12/2013 12:57:28 PM
Customize Re-Size Functions <Back> <Forward> <Last>
8
X 14.2575
ex 0.0004
Y $\mathbf{- 0 . 0 0 0 0}$ ey 0.0002
Z -25.0272 ${ }^{\text {ez }} 0.0003$
Mag. 0.0005
Points to Objects::MF7
RMS Pt Err=0.0000 deg. Worst Apex = $\mathbf{0 . 0 0 0 0} \mathbf{~ d e g}$.
Distance from A::Points to Objects::MF6 X 0.0001 Y 0.0000 Z 0.0000 Mag 0.0001

To Customize an Element of the Big Data Window:

1. From the big data window's menu, click Customize.
2. In the Customize dialog, select the element from the dropdown that you'd like to modify.
3. Choose among the below options to modify the element:

- Text Font. The font used to display the textual data.
- Text Color. The color of the font used to display textual data.
- Draw. When enabled, draws a border around the element.
- Border Color. Determines the color of the element's border.
- Fill. When enabled, fills the element's background with the selected color.
- Fill Color. The color to use for the element's background.
- Highlight Color. Sets the highlight color, if used by the element.

To Resize and Reposition Elements in the Window:

1. In the big data window's menu, select Re-Size>Allow Sizing. This puts the window into a resizing mode.
2. Click and drag an element to move it. Right-click and drag an
element to resize it horizontally and vertically.
3. When finished, again select Re-Size>Allow Sizing to disable resizing mode.

To Copy the Big Data Window Text to the Clipboard:

- From the big data window's menu, select Functions>Copy text to clipboard.
To Copy the Big Data Window to the Clipboard as an Image:
- From the big data window's menu, select Functions>Copy graphics to clipboard.

To Move Through Your Measurement History:

- Use the <Back>, <Forward>, and <Last> menu items in the big data window to navigate through historical measurement data

UDP Broadcast

Figure 22-14. The UDP data
stream properties.

SA's instrument interfaces have the ability to send a stream of UDP packets when their measurements are sent to SpatialAnalyzer. To enable this for trackers, for example, go to the Utilities menu and select UDP Data Stream (Figure 22-14). Then configure the settings:

Now, subsequent 3D and/or 6D measurements will also be sent as UDP packets to either the entire subnet or a particular IP address.

SA also contains a diagnostic utility so you can view this data stream (). Navigate file explorer to the SA install directory and run SpatialAnalyzer UDPMonitor. exe. Set it to the same port and hit Start. When measurements or updates happen, the data will flow into the monitor, as pictured at right.

Figure 22-15. The UDP Monitor.

- SpatialAnalyzer UDPMonitor						
Port \square 1255 \square Stop Clear Log Save Log to File						
$\begin{aligned} & \mathrm{X}, 2.1034882656331089 \mathrm{e}+001, \mathrm{Y}, 8.2403027436140036 \mathrm{e}+001, Z,-6.2462233344522755 \mathrm{e}-001 \\ & \mathrm{X}, 6.0000915555284266 \mathrm{e}+001, \mathrm{Y}, 4.8057496871852791 \mathrm{e}+001, Z, 2.6163518173772721 \mathrm{e}-001 \\ & \mathrm{X}, 7.7117221594897302 \mathrm{e}+001, \mathrm{Y}, 3.7180700094607367 \mathrm{e}+001, Z, 8.9419232764668729 \mathrm{e}-003 \\ & \mathrm{X}, 7.3335978270821158 \mathrm{e}+000, \mathrm{Y}, 5.5812250129703628 \mathrm{e}+001, z, 2.1689504684590366 \mathrm{e}-001 \\ & \mathrm{X}, 3.3408612323374157 \mathrm{e}+001, \mathrm{Y}, 7.3476363414410855 \mathrm{e}+001, Z,-1.4157536545915464 \mathrm{e}-001 \\ & \mathrm{X}, 3.3409538537955633 \mathrm{e}+001, \mathrm{Y}, 7.3475595240409604 \mathrm{e}+001, Z,-1.4199566805958319 \mathrm{e}-001, \mathrm{Rx},-1.72668759 \\ & \mathrm{X}, 7.3335978270821158 \mathrm{e}+000, \mathrm{Y}, 5.5812250129703628 \mathrm{e}+001, Z, 2.1689504684590366 \mathrm{e}-001 \\ & \mathrm{X}, 7.3326737539395310 \mathrm{e}+000, \mathrm{Y}, 5.5813963917277768 \mathrm{e}+001, Z, 2.1739620679380106 \mathrm{e}-001, \mathrm{Rx},-1.79497398 \end{aligned}$						

This output can be subsequently saved to a .CSV file.

SA Remote

Figure 22-16. SA Remote.

SA Remote (Figure 22-16) is an iOS app that allows real-time viewing of 3-DOF and 6-DOF spatial data from SA and permits remote control of the SA Laser Tracker interface.

SA Remote is available as a free app on the Apple App Store for iPhone ${ }^{\circledR}$ and $\mathrm{iPod}^{\circledR}$ touch devices. SA Remote will also run on an iPad ${ }^{\circledR}$.

SA Remote will receive UDP data for display from watch windows in SA or the Laser Tracker interface on port 10000. If multiple sources of watch data are available, the app allows switching between the sources allowing selection of which watch source on which to focus.

SA Remote can also view/control the SA Laser Tracker interface. This requires entering the IP/hostname of the computer running the SA Laser Tracker interface into the app in the settings page. Once this is done, SA Remote will provide display and control over the interface remotely.

Setup

Figure 22-17. SA Remote as it first appears on the iPhone.

Figure 22-18. The SA Remote quick help screen.

To download and install SA Remote, visit the app store, find the SA Remote app (http://itunes.apple.com/us/app/sa-remote/ id473334282? Is=1\&mt=8), and select install. Once installed, run the app.
The upper half of the app screen is used to display watch data while the lower half is used to view and control the SA Laser Tracker interface. Initially, the display will likely look like Figure 22-17 since no watch data is available yet and the SA Laser Tracker interface IP/hostname has not yet been entered.

Touch the small " i " info button (right) which is in the upper right corner of the screen to open the quick help screen (Figure 22-18).

The quick help screen provides a brief summary of the setup tasks for the app. It also displays the device IP address which can be used when setting up the UDP watch transmission settings in SA.

When running SA v2011.10.20 or newer, add a watch window and enable UDP broadcast. Specify port 10000. If SA is not running on the same subnet as the iOS device, you may need to choose directed UDP transmission entering the IP address of the device. The device IP address is available in the quick help page mentioned above. Once cor-

Figure 22-19. Watch Window information is now streaming to the device.

Figure 22-20. Configuring the IP address.
rectly configured, the top area of the app screen should start showing watch data as in Figure 22-19.

You can also enable UDP broadcast or directed transmission from the SA Laser Tracker interface.

To configure communications with the SA Laser Tracker interface, touch the small detail button in the upper left corner of the screen to bring up the settings view. In this view (Figure 22-20), enter the IP or hostname of the computer running the SA Laser Tracker interface as well as the desired decimal precision and then tap Close.

Once the SA Remote app establishes communications with the SA Laser Tracker interface, the lower portion of the screen will enable and provide display and control of the interface as shown below.

Figure 22-21. Tracker control is now enabled.

Figure 22-22. The button in the top left indicates you can select a different watch source.

When the SA Laser Tracker interface is busy, the lower portion of the screen will be disabled for input, a busy animation will show, and the measure button will change to stop, allowing you to cancel the current operation as shown at right.

If multiple sources of watch data are available (multiple watch windows and/or instrument UDPs enabled) the label at the top of the screen will turn into a button indicating that you can tap it to select which source of watch data to view (Figure 22-22).

Tapping the button will open the watch source selection view shown in Figure 22-23.

Figure 22-23. Selecting the desired watch source.

Select the desired source of watch data and then tap CLOSE. The selected source will then be displayed on the main screen.

Available Status/Commands

- The COL/GRP/TGT fields show the current collection/group/ target fields from the SA Laser Tracker interface and you can touch them to change the values; when changed the new values will be reflected in the interface as well.
- The + buttons to the right of GRP and TGT will auto-increment the corresponding fields (decrement is not currently supported).
- The status light will reflect what is shown in the interface.
- The X button can be used to remove the last measurement.
- The long button above the measure button shows the name of the current measurement profile. When touched, it cycles through the quick-select profiles ($1-4$) and the name updates to reflect the current profile.
- The ADM button commands an ADM Reset.
- The RH button commands a Remote Home, if one is set.
- The Measure button initiates a measurement using the current measurement profile and changes to Stop when the interface is busy and can then be used to cancel the current operation.

Google Glass App

NRK has developed an app for Google Glass that allows you to view watch window data in a heads-up-display directly on your Google Glasses (Figure 22-24).
X 33.3234
Y

Since the app is not yet available on the Google App store, the following provides instructions for "side-loading" the app onto a Google Glass device-this is not necessary when adding apps from the Google store.

To Install the Google Glass App:

1. Download the Android SDK ADT Bundle for Windows: http:// developer.android.com/sdk/index.html
2. Extract the downloaded .zip file anywhere on your machine (the resultant directory will be referred to as <SDKDir>).
3. Run the SDK Manager (<SDKDir>\SDK Manager.exe), it will download the latest list of available packages and might immediately conclude that updates are available, if so click the Install packages button and then exit and restart the SDK Manager when it is finished.
4. In the SDK Manager in the Packages menu, verify that Sort by API Level is selected. Under Android 4.4.2 (API 19) verify that the following are either installed or checked to be installed:

- SDK Platform
- Glass Development Kit Preview

5. Under Extras verify that the following is either installed or checked to be installed:

- Google USB Driver

6. Click Install Packages if enabled to install/update the necessary components.
7. Add the SDK platform-tools directory to your system PATH: <SDKDir>\sdk\platform-tools
8. Verify the SDK is setup by entering the below from a com-
mand prompt:

adb version

9. This should provide you with output similar to the below:

Android Debug Bridge version 1.0.31

10. On the Glass device, under settings, there's an option to enable USB debugging. Make sure this option is turned on to allow communications with the computer.
11. Plug the Glass into your computer's USB port.
12. The Glass device may prompt you to allow this computer to debug, if so, allow it.
13. From a command prompt, enter the following:
```
adb wait-for-device
```

This command will wait until communications with the device are available. If it just sits there and never returns you back to the command prompt, then something is not working. If it returns quickly with no output, then the installation is correct. It will eventually time out if a connection cannot be established.
14. From a command prompt, enter the following (this assumes the .apk file is in the current directory). Replace the example .apk filename below with the actual filename:

adb install SAWatch-YYYY.MM.DD.apk

To Run the Google Glass Watch Window App:

1. Wake up the Glass device (tap the side or angle your head up 30 degs) so that the main screen is displayed with the time and "ok glass".
2. Either say "ok glass" and then say "watch measurements" or tap to get a command menu and then tap to select "watch measurements".
3. Configure SA with a watch window that has UDP broadcast enabled to port 10000 and you should see the data displayed in the Glass app.
4. If there are multiple watch windows open, you can switch between them by swiping left and right.
5. To exit the app, either swipe down, or tap then tap again to select Stop.

Note that the app is setup as a Glass "immersion" and it is configured to force the screen to stay on while its running. Because of this, you'll want to exit the app when done to preserve battery life.

Uninstalling the Google Glass App:

1. You can remove the app from your Glass device by entering the following from a command prompt:
adb uninstall com.kinematics.sawatch

Troubleshooting

ADB unable to communicate with device, "adb wait-for-device" hangs:

It is possible the USB driver .inf file does not have the correct entries for your specific Glass device. Editing the .inf file and then updating the driver in device manager (and specifying the edited .inf file) may fix this.

1. Open Device Manager (right-click My Computer and select Manage > Device Manager and find the entry for the Glass de-vice-it may be under "Other" with a yellow icon indicating a problem.
2. Right-click the Glass device and choose Properties > Details. Select Hardware IDs. You'll see something similar to Figure 22-25.

3. Open the android_winusb.inf file in notepad (this file can be found in <SDKDir> \sdk \extras \google\usb_driver.
4. In this file, there will be two sections, Google.NTx86 and Google.NTamd64 which must both contain entries matching the hardware IDs shown in the above screenshot. In these sections add entries like the below based on the info shown in the device properties window. You can leave other, existing entries alone:
```
%CompositeAdbInterface%=USB_Install, USB\PID_18D1&PID_9001&MI_01
[Google.NTamd64]
; Google Glass
%SingleAdbInterface% = USB_Install, USB\VID_18D1&PID_9001&REV_0216&MI_01
%CompositeAdbInterface% = USB_Install, USB\VID_18D1&PID_9001&MI_01
```

5. Save the edited file and close Notepad; then go back to device manager, right-click the device and pick the option to update hardware drivers; when asked, browse the local computer and find the edited .inf file.
6. Retry the adb wait-for-device command in the install section.

App Install Error,"INSTALL_FAILED_OLDER_SDK"

This suggests the Glass device on which you're trying to install the app has an older SW version than what was used when building the app. To fix this, update the Glass SW; see the below link for more info:
https://support.google.com/glass/answer/3226482?hl=en

Glass turns off after about a minute and can no longer be used

- Software update XE17 introduced a problem with the on-head detection feature.

1. Try turning off this feature in settings.

This Page Intentionally Left Blank.

Analysis

> This chapter covers a myriad of analysis operations that can be performed in SA, from Geometry Fit to fitting surfaces to measurements.

Geometry Fitting

Fitting geometry to measured points is a fundamental and critical aspect of almost any metrology analysis task. SA's Geometry Fit Interface has the capability to fit the following geometric shapes to any set of measured points or cloud points:

- Planes
- Circles
- Spheres
- Cylinders
- Lines
- Paraboloids
- Slots
- Cones
- Ellipses

Fitting geometry in SA is completely interactive. You can see and interact with the results of your fit settings in real-time as you modify them. You can interact with the graphical view, re-select points, change geometry types, and reverse offset and geometry directions, all while watching your geometry update in the graphical view.

Geometry can be fit to any number of measured points, constructed points, or cloud points--and it's fast. For example, you can fit a sphere to 640,000 cloud points in about 12 seconds. Unlike some metrology software, when you select large numbers of points the geometry is fit to all selected points rather than a subsample.

You can easily construct interactive vector groups while tweaking settings to visually see how they affect the fit. Easily create cardinal points, offset points, or graphs of fit deviations with a single button click.

Another powerful feature is the ability to project points to a plane before fitting the geometry. This allows you to measure several off-plane features and project them to the same planar surface.

The dialog (Figure 23-1) is also designed with potential repeated use in mind. It enables you to fit multiple geometric features without forcing you to re-select the menu command. This permits you to fit a lot of geometry to measured data quickly. When satisfied with your fit, simply click the Next button and you're set to select points for the next fit.

To Open the Geometry Fit Dialog:

- From the menus, select Construct>Geometry by Fitting, or
- Press the default keyboard shortcut of Ctrl+G, or
- To fit geometry to an entire point group, right-click the point group in the tree and select Fit Geometry.

About Planar Offset Methods

Planar offset methods determine what is considered the "positive"side of resulting geometry. The positive side of planar geometry (planes, circles, and ellipses) is the side toward which the normal faces, and in metrology it is typically thought of as the "outside" of the part or the side of the surface that was measured (Figure 23-2).

Figure 23-2. Geometry has a positive and negative side.

Probing Direction

Figure 23-3. Probing directions.

Figure 23-4. Probing direction for a portable arm.

When fitting geometry to points, there are three offset methods that can be used to determine the positive side of geometry: Probing Direction, Working Origin Positive, and Right-Hand Rule.

This is the direction from which the point was measured (Figure 23-3). For a line-of-sight instrument such as a laser tracker, total station, or laser radar, probing direction is the line-of-sight itself, as depicted by the red arrows below.

For non-line-of-sight devices, the probe direction is the vector of the device on which the probe is attached, as depicted by the red arrow in Figure 23-4.

For the purposes of determining the positive side of geometry, the direction.

Figure 23-5. Average probing

Note: Constructed points do not have probing directions. If no measured points are included in a fit, SA will fall back to using the Working Origin Positive method (described below). If at least one measured point is included in the fit, then the probing direction is used.
overall probing direction is the average direction of the probing directions for all measured points in the fit (Figure 23-5). Put another way, it is simply the average of all of the individual probing directions. The figure at right depicts the average probing direction for the plane fit from the laser tracker depicted earlier.

When probing direction is selected as the planar offset method, the positive side of the resulting geometry points generally in the opposite direction as the average probing direction. Put another way, the average probing direction points in the same direction as the negative direction of the geometry. For line-of-sight instruments, the result is that the positive side of the geometry points back toward the instrument, which is usually the desired result. This can be seen in the previous figure: The thin green arrow depicting the positive side of the plane points back generally in the opposite direction as the average probing direction.
The advantage of this method is that for most situations, it describes the resulting geometry correctly--that is, the "outside" of the geometry is the side from which the measurement was approached.

Working Origin Positive

With this method, the geometry is defined such that the origin of the working frame lies on the positive side of the resulting geometry, as depicted in Figure 23-6.

This is often used as the planar offset method in situations in which probing directions do not exist (for example, when using constructed or imported points).

Right-Hand Rule
Figure 23-6. Working origin positive.

This method allows you to define the direction of the resulting geometry through selection order--it uses the traditional"Right-Hand Rule"

Figure 23-7. Defining offset direc-
tion using the right-hand rule.
standard. If you curl the fingers of your right hand in the direction from the first selected point, to the second, then to the third, your thumb will define the positive direction. When using this method, the first three points in the fit should be individually clicked to define the selection order--then the remaining points can be selected as a whole using the marquee selection tool.

In Figure 23-7, point M4 was selected first, followed by M3, then M5. M6 was selected after the first three points. Because of the orientation of the first three sequentially selected points, the resulting geometry points up in this image, as dictated by the Right-Hand Rule.

About Measured Side Settings

In order to properly offset geometry, SA must know on which side a feature was measured. For planar geometry (planes, circles, and ellipses), the planar offset direction has one of three options: Above Plane, Probe Center, or Below Plane.

The radial analogs to these settings, used in geometry such as circles, ellipses, spheres, and cylinders, are Inside, Probe Center, and Outside.

Above Plane

Figure 23-8. Offsetting along the probing direction using Above Plane.

With this setting, the line-of-sight to the target (or the probing direction) points in the direction in which offsets should be applied. This is by far the most common measurement situation. In Figure 23-8, the tracker measured several points on the floor. Since the resulting plane representing the floor should be offset away from the tracker, the Above Plane setting is used. In other words, the SMRs were located between the instrument and the measured feature.

Probe Center

Figure 23-9. No offsets are applied when the Probe Center method is used.

Below Plane

Figure 23-10. Below Plane applies offsets opposite the probing direction.

This setting is used when it is preferred to ignore offsets and instead fit geometry along probe centers. This is not as common a setting. In Figure 23-9, the Probe Center setting is active. Notice that the plane lies along the centers of the measured points--no offset is applied.

The radial version of Probe Center is equivalent--it implies that no offset is applied in the radial (inward or outward) direction.

This setting is used when the desired offset direction is in the opposite direction as the probing direction. With this setting, the geometry is shifted back toward the instrument (Figure 23-10).

Inside

This is most commonly encountered with line-of-sight instruments in measurement situations where obtaining a proper line-of-sight to a surface is not obtainable, perhaps due to lack of space or the inability to move an instrument. As a result, the measured surface faces away from the instrument, and the probe is placed on the edge of the feature to obtain the measurement. This is often referred to as a backside measurement.

This is a radial setting for geometry such as circles, spheres, cylinders, and paraboloids. Inside (Figure 23-11) implies that the probe was placed on the inside of the geometry, and therefore the geometry should be shifted outward from the probe centers. The following figure depicts a sphere with the Measured Side set to Inside:

Figure 23-11. Measured side is set to Inside, since the measurements were taken on the inside of this sphere.

Outside

Figure 23-12. Measured side is set to Outside, since the measurements were taken on the outside of this sphere.

This is a radial setting for geometry such as circles, spheres, cylinders, and paraboloids. Outside implies that the probe was placed on the outside of the geometry, and therefore the geometry should be shifted inward from the probe centers. Figure 23-12 depicts a sphere with the Measured Side set to Outside:

The Fit Interface

The Geometry Fit Interface for a circle is pictured in Figure 23-13 (the available options change slightly depending on the selected geometry).

Figure 23-13. The Geometry Fit Interface

Common Settings

Warning: Reversing the offset direction does two things: it reverses the positive direction of the geometry (so that the normal faces the opposite direction), and it changes the direction in which the geometry is offset from the points.

The options common to most geometry types will be discussed below, followed by geometry-specific options.

- Geometry Type Selector. Allows you to select the type of geometry to fit. This dropdown can be changed at any time to switch to a different geometry type.
- Point Selection Buttons. Choose from either Points or Clouds. Click the button, then select the points to include in the fit. The number of selected points will be displayed below these but-tons--choose as many points as desired.
- Planar Offset Direction. Determines the planar offset method of the resulting planar geometry, using one of three possible methods: Probing Direction, Working Origin Positive, and Right-Hand Rule. This setting is used for plane, circle, and ellipse fits.
- Reverse. Reverses the current offset direction. If the selected planar offset method does not offset in the correct direction, click this checkbox to reverse it.
- Measured Side Settings. These settings allow you to specify on which side of the feature the specified geometry was measured. For planar geometry (planes, circles, and ellipses), there are planar settings of Above Plane, Probe Center, and Below Plane. For solid geometry, there are radial settings of Inside, Probe Center, and Outside.

Note: The vector group is updated dynamically. Changing fit parameters will update the vector group in real-time.

- Override. Checking this checkbox allows you to enter a value to override the selected probe radii and therefore use a different offset value (not applicable to the Probe Center option).
- Reverse Object Normal Vector. Flips the normal direction of the resulting geometry, without changing other characteristics (such as position or radius).
- Refit Geometry. Click this button to update the fit. If this button has a blue background, it indicates that the fit is not currently valid and needs to be recalculated.
- Auto Refit. When checked, changing fit parameters will cause the fit to automatically recalculate.
- Project to Plane. When checked, you can select a plane to project points to prior to performing the fit.
- Fit Summary. The maximum absolute error and RMS error of the fit is displayed in this section.
- Fit Tolerance. The current user-specified tolerance for the fit. To enter a new tolerance, type a new number into the field and then click Apply.
- View Point List. Opens the Point List for the fit (see below).
- Graph. Displays the Geometry Fit Graph for the fit (see below).
- Fit Details. Displays a detailed, geometry-specific summary of the fit. For example, it shows absolute and signed errors, calculated radii or sphere centers, and other important information.
- Name. Use this field to specify the name for the resulting geometry. The geometry will be placed into the active collection.
- Make Vector Group. If checked, a vector group will be created that represents a comparison between the points and the resulting geometry from the fit. This is an excellent way to visualize errors in the fit.
- Properties. The Properties button opens the properties from the vector group representing the fit. This button is only displayed when Make Vector Group is checked.
- Cardinal Pts. When clicked, creates cardinal points (centroid, axis points, etc.) for the geometry.
- Offset Points. When clicked, creates points offset toward the geometry by an amount equal to the probe radius.
- Chart. When clicked, creates a histogram and run chart depicting point errors for the fit.
- Lock Radius (Circles, Spheres, \& Cylinders). Allows you to specify a radius for the resulting geometry. SA will orient the specified geometry to minimize errors in the fit.
- Lock Focal Length (Paraboloids). Allows you to specify a focal length for a paraboloid. SA will orient the paraboloid to minimize errors in the fit.
- Lock Included Angle (Cones). Allows you to specify the apex angle for a cone. SA will orient the cone to minimize errors in the fit.
- Standard [Geometry]/Max Inscribed/Min Circumscribed (Cylinders, Circles, and Slots). Specifies a different type of fit for cylinders, circles, or slots. Standard performs a traditional fit by minimizing errors. Max Inscribed finds the largest geometry that fits inside the specified points, whereas Min Circumscribed finds the smallest geometry that fits around the specified points.
- Round/Square (Slots). Used to specify whether a slot should be round or square.
- Guess Before Each Fit/Use Last Fit As Guess/Use Object As Guess (Cylinders, Paraboloids, Cones). Specifies how the initial condition for a fit is determined. Due to the nature of these fit types, the initial condition for the fit can have an effect on the resulting generated geometry. For example, if there is not great axial or radial coverage of a cylinder, it is possible for the cylinder fit algorithms to get "confused". This option helps the fit algorithms find the proper solution. Guess Before Each Fit asks the algorithm to take a guess as to the initial size and orientation of the geometry before it progresses through the fit to find the ideal solution, and is the default setting. Use Last Fit As Guess uses the current geometry fit result's size and orientation as the initial condition for the next fit recalculation. Use Object As Guess allows you to pick existing geometry of the same type to specify the starting condition geometry for the fit algorithm. In this way, you can provide a "hint" as to the resulting orientation of the geometry. If you find that your cylinder, paraboloid, or cone fits are not what you expect, try using this setting to help the algorithm with an initial guess.
- Lock Focus Location (Paraboloids). Prevents the current focus location from changing if a fit recalculation occurs.
- Lock Vertex Location (Paraboloids). Prevents the current vertex location from changing if a fit recalculation occurs.

Point List

Figure 23-14. The Geometry Fit Point List.

The Geometry Fit Point Listing dialog (Figure 23-14) allows you to view individual points and their errors in a geometry fit.

The table contains all points selected for the fit, in addition to their individual deviation from the best-fit geometry. For circles and ellipses, planar and radial component error is displayed as well. To sort the list by a specific attribute (point name, magnitude error, radial error, etc.) click the associated column header. Click it again to sort the list in the opposite direction.
Any point can be excluded from the fit by unchecking its checkbox, and any excluded point can be included again by re-checking the checkbox. Unchecked (excluded) points appear with other excluded points in the list, so it is easy to find all excluded points.

Points that lie outside the specified tolerance in the main dialog are colored red. Points in the intermediate tolerance zones are yellow and blue, and points inside the first tolerance zone have a white background.

To Toggle Between Absolute Error and Signed Error:

- Check or uncheck the Abs Value checkbox.

To Remove Selected Points From the Fit:

1. Select one or more points in the list.
2. Do one of the following:

- Click the Check or Uncheck button to include or exclude points from the fit, or
- Right-click any of the selected points and choose Check or Uncheck from the context menu.

To Toggle the Included/Excluded State for the Selected Points in the Fit:

1. Select one or more points in the list.
2. Right-click any of the selected points and choose Toggle.

To Permanently Remove Selected Points From the Fit:

1. Select one or more points to remove.
2. Right-click any of the selected points and choose Remove From List.

To Exclude Points Beyond the Specified Error Tolerance:

- Click the Ignore > Tol button.

To Delete Selected Points from the SA Job:

1. Select one or more points to delete.
2. Right-click any of the selected points and choose Delete From SA Job.

To Change Limits or Colors for the Tolerance Zone Coloring:

- Click the ellipses... button next to the zone color swatches.

Tolerance Zone Coloring

The Tolerance Zone Coloring dialog (Figure 23-15) allows you to change the specified limits and coloring for three tolerance zones.

Figure 23-15. The Tolerance Zone Coloring dialog.

These zones allow you to characterize errors with three coloring zones. This is often useful for users who have a 1,2 , and 3 -sigma tolerance. Each zone is bounded by limits. The first coloring zone starts at greater than Limit 1 and ends at Limit 2. The second zone starts at greater
than Limit 2 and ends at Limit 3 . The last zone starts at greater than Limit 3 . In the figure at left, points with errors $>0.005^{\prime \prime}$ and $<=0.01^{\prime \prime}$ are colored yellow; points with errors $>0.01^{\prime \prime}$ and $<=0.015^{\prime \prime}$ are colored blue, and points with errors $>0.015^{\prime \prime}$ are colored red. For users who only need one coloring zone, simply pay attention to the red zone and ignore the other two, or set all three zones to the same value.

The tolerance specified in the main Geometry Fit Interface is applied as the Limit 3 value.

The Quick-Set Limits section allows you to set a tolerance for Limit 1 or Limit 3, and then set the remaining limit values based on 1, 2, and 3 -sigma values. Click Restore Defaults to return the values to their default limits.

Geometry Fit Graph

The Geometry Fit Graph (Figure 23-16) allows you to view an interactive graph of the errors for all points in the fit. It is an excellent way to visually find outliers.

Figure 23-16. The Geometry Fit Graph makes detection of outliers easy.

Any point (outliers in particular) can be removed from the fit by way of the graph, and you can also find the point name and error for every point.

To Remove an Outlier from the Fit Using the Graph:

- Left-click the point on the graph and choose Ignore Point.

To View a Point's Name and Error:

- Left-click a point in the graph. The point name and error will
appear at the top of the context menu.
In addition to a run chart of the data, you can also view a statistical histogram of the data (Figure 23-17).

The histogram also includes the Lower Control Limit (LCL), average, and Upper Control Limit (UCL) at 2 sigma. As seen above, the histogram can also be used to detect an outlier, in this case located far outside the UCL.

By removing the outlier from the fit, the histogram reveals a more natural bell-shaped curve (Figure 23-18), as real-world data would typically indicate.

Both the histogram and the run chart can be easily copied to the clipboard for pasting into a report or graphics program.

To Copy a Chart to the Clipboard:

- Display the desired chart, then right-click the chart and select Copy to Clipboard.

Queries

Figure 23-19. The Query Results dialog.

Figure 23-20. A vector group depicting error magnitude and direction.

The Query menu contains numerous methods for comparing points and objects. A bulk of your analysis needs can be found under this menu item. All query commands automatically account for target offset unless otherwise noted.

The output of most query commands is either a Query Results dialog (Figure 23-19) or a vector group. The result dialog will contain query specific results and can be used to create a relationship by selecting Create Relationship.

A vector group is a graphical depiction of the magnitude between points and objects (Figure 23-20). It is often displayed with arrows (whiskers) showing the deviation from the object to the point. Please refer to the Vector Group section for further details.

When a point is compared to an object it is projected to the object using a local normal and then the difference is calculated (Figure 2321). The below example is the result of a point to object query. The $d x$, dy and dz values represent the difference between the point and its
projected point in working coordinates. dMag represents the magnitude. Conventionally magnitude does not carry a sign but since objects have a positive and negative side the magnitude sign can be used to determine which side of the object the point lies. Also, the objects positive side is used for determining target offset direction. The target offset is simply subtracted from the calculated distance.

Figure 23-21. The anatomy of a query.

Query Point To Object
Displays the deviation of a point to an object. Results displayed in Working Coordinates.
Object (Ignore Offsets)
Displays the deviation of a point to an object without compensating for target offset. Results displayed in Working Coordinates.

Point
Displays deviation between two points in Working Coordinates.
Circle (ignore offsets)
Displays the deviation of a point to a circle without compensating for target offset.

Query Points To Single Point
Creates a vector group contain deviation between selected points and single point.

Points
Points to points query results in a distance map between each combination of points (Figure 23-22).

Figure 23-22. An Inter-Point Distance query finds distances between all combinations of a set of points.

Curves/Objects

Generates a vector group with deviations from the selected points and the closest object (if more than one object is selected).
Circle (Radial and Planar)
Generates two vector groups, one for radial deviation and one for planar deviation.

Query Group to > Multiple Groups > Organize By Groups
Use this command to instantly compare several groups back to a reference group. This command will create multiple vector groups: One comparing the reference group to group A, another comparing the reference group to group B, and so on. This is useful for comparing drift checks or doing repeatability studies, enabling you to view deviations of multiple measured groups over time.
Multiple Groups > Organize By Points (Gage R\&R)
Similar to the "Organize by Groups" command described above, except the vector groups contain the same point as seen over time. This is particularly useful for viewing the variation of a specific point over time (Figure 23-23).

Figure 23-23. A multiple-group
query organized by points.

Query Point Clouds to Objects

Generates vector group containing deviation of individual points in a point cloud to object(s).

Query Line to Line Angle
Computes angle and mutual perpendicular between two lines.
Plane Angle
Computes angle and mutual perpendicular between line and the normal vector of the plane.
Query Plane to Plane
Computes angle and mutual perpendicular between the two plane normals.

Query Frame to Frame
Computes position and rotational difference between two frames expressed in the working coordinates.

Query Object to Object Direction
Computes angle and mutual perpendicular between the two object normals.
Query Sensitivity Cloud to Sensitivity Cloud
Using the SpatialAnalyzer coordinate uncertainty computation capabilities, you can create a cloud of points around a measured point. These points represent the "cloud of uncertainty" of the coordinate. If you have clouds created for at least two points, you can determine the uncertainty of the line between them. The results are presented in Figure 23-24.

Figure 23-24. Querying one
sensitivity cloud to another.

Query Auxiliary Data

Generates a vector group using auxiliary data (Figure 23-25). This allows the user to view and chart auxiliary data as you would with 3D data.

Figure 23-25. The Auxiliary Data Vector Group dialog.

Best Fit Points to Surfaces

Vector Groups

Figure 23-26. A vector group.
A vector group is a graphical depiction of the magnitude between points and objects. It is often displayed with arrows (whiskers) showing the deviation from the object to the point (Figure 23-26).

By Clicking Surfaces

Creates a vector group from clicking on surface face.
From Existing Vectors
Creates a new vector group from selection of individual vectors.
From Existing Vector Groups
Creates a new vector group from selection of existing vector groups.

Scale Existing Vector Groups

Creates a new vector group scaled about the selected frame. User may select a scale factor for each component of the vectors (Figure 23-27).

Figure 23-27. The Scale Vector Groups dialog.

Suffix to add to copied Vector Groups
(scaled)

Scale Factors
Frame defining the scaling origin and axes:
A:WORLD
Direction components

Scale Vector directions also

Normalize vectors after scaling

Copy groups and apply scale

Copy Vector Groups Excluding Obscured Vectors

Creates new vector group only coping visible vectors. Vectors blocked from current point of view are not copied.

Area Profile Check From Point Measurement Probing Directions

Creates a vector group representing the probing direction stored for each selected point.

Projection Options
The projection options dialog (Figure 23-28) can be seen in several places in SA but is mainly used in Query Points to Objects and relationships. The projection options allow the user to control vector group direction, add material offsets, create offset point groups, and change probe offset compensation.

Figure 23-28. The Query Point To Surface Options dialog.

These two options (Figure 23-29) create vector groups depicting deviation of the surface from the probe (left) and of the probe from the surface (right, the default option). Both of these options create vectors with the exact same magnitude but exactly opposite in direction. The left option therefore depicts a typical "build" perspective (how far do I need to go to get to nominal?), whereas the right option depicts a typical "inspect" perspective (how far am I from nominal?).

These options (Figure 23-30) create vector groups with the head or tail on the center of the target and all offsets applied at the object. This is sometimes used with thin parts to prevent the vector from disappearing behind the nominal surfaces.

Make Point Group

Figure 23-31. Projection options
for making point groups.

These options (Figure 23-31) create point groups instead of vectors. The first option applies any offset at the probe center. Unless additional material thickness is added, this represents the probe's contact point on the surface. The second option applies all offsets at the surface, and the third option creates projected points on the object to which the query is being performed.

Ignore Edge Projections

The Ignore edge projections option is used when you would like to ignore points whose projections onto objects lie on a surface edge (Figure 23-32).

Figure 23-32. Two points which are edge projections.

Probe Offsets
The geometry offset allows the user to use the point specific offset or override the offset (Figure 23-33). The "Use the target's values" will display the offset of the selected points.

Probe Offsets
The selected points' offsets range from 0.750000 to 0.750000
© Use the target's values
Overide with
0.0
\square Add Extra Material Thickness
0.0

Vector Group Properties

The vector group properties allow the user to view vector group statistics as well as change the graphical appearance (Figure 23-34).

Figure 23-34. The properties of a Vector Group.

Display Settings

Figure 23-35. A set of vectors that have been labeled with values.

- Label Vectors With Values. Display each vector's magnitude (Figure 23-35).

- Vector Magnification. Magnifies the graphical length of the vector. Improves viewing when deviation is small.
- Line Width. Increase the graphical width of the vector for improved viewing.
- Show Out of Tol Only. Only displays vectors that are out of tolerance.
- Draw As. Draws the vectors as arrows, blotches, tubes, or blotches with arrows (Figure 23-36).

Figure 23-36. Different methods for depicting error.

Figure 23-37. A vector group
color bar.

- Color Bar Appearance. Displays color bar and options for color bar display (Figure 23-37).

Boat Error_Vectors_Blotches

- Tolerance. Set the High and Low Tolerance as needed. Use Auto-Range Limits to set the High and Low Saturation Limits.
- Color Ranging Method. Pick from five preset color ranges.

Figure 23-38. Vector group colorization options.

The Report button will generate a report showing each vectors begin, end and delta coordinates (Figure 23-39). It also displays magnitude with the respective colorization. This report can be printed or exported from this dialog. This report can also be generated in other formats such as Quick and Composite reports.

Each column can be sort ascending or descending when name value is double left-clicked.

Chart

The chart button will generate one of three predefined charts (Figure 23-40).

Figure 23-40. Chart Type.

Figure 23-41. Axis settings for the charts.

Figure 23-42. The resulting generated chart.

The user can select the inputs for the chart type (Figure 23-41):

Chart Data Sets	
Primary	Auxiliary
ONone	ONone
OX	OX
OY	OY
OZ	©Z
© Magnitude	OMagnitude
OK	Cancel

Once the chart is generated (Figure 23-42) it is saved in the SA Treebar.

Chart Options

Figure 23-43. The options for a moving range chart.

				Individual X - Moving Range Chart Options
Options Set Name: Chart name				
Titles				
Magnitude				
$\begin{aligned} & \square \text { Rainbow Coloring } \\ & \text { Control Limits } \end{aligned}$				
- Show	Ordinate:	3		
Specification Limi				
\square High 1		\square Low		
OK		Apply		

Advanced Surface Fitting

From Point Groups (Interpolate)

Note: Points in the selected point groups must be in order or the b-spline will be created incorrectly.

Creates a interpolated surface by fitting b-splines to each selected group (Figure 23-44) and then lofting the b-spline to create a surface (Figure 23-45).

Figure 23-44. Fitting B-Splines to a series of points.

Figure 23-45. A surface has now been fit from the B-Splines.

From B-Splines (Approximate)
Similar to the above command, this time each b-spline is an approximate fit. The user has control of the control points, degree of curve and the skinning tolerance.

Figure 23-46. Defining the number of intermediate control points.

Figure 23-47. Specifying the degree of intermediate curves.

Figure 23-48. The skinning tolerance indicates how far the surface may deviate from the B-Splines.

Degree of intermediate BSpline Curves

R
OK
Cancel

From Plane and Closed B-Spline
Projects selected closed B-spline to selected plane and creates a surface from the projection (Figure 23-49).

Figure 23-49. A closed B-Spline has been projected to a plane.

Fit From Bounding Curves and internal points
Use for B-splines that bound a group of points (Figure 23-50) to create a surface (Figure 23-51).

Figure 23-50. Four bounding
B-Splines around a surface.

Figure 23-51. The resulting surface.

Fit From Nominal Face and Actual Data
A surface will be created by fitting the selected surface face to the selected data (Figure 23-52).

Figure 23-52. Fitting a surface face to selected data.

Frame Wizard

Figure 23-53. The Frame Wizard dialog.

The Frame Wizard (Construct>Frame>Frame Wizard) is used to create a coordinate frame based on different combinations of entities, which can then be optionally offset in the new frame's X, Y, and Z directions.

The Frame Wizard dialog (Figure 23-53) allows you to interact with the graphical view while changing the settings for the frame. Once enough parameters have been defined to construct a coordinate frame, you see the frame in the view and it changes as you modify the settings.

The following describes the specific settings for this command:

- Primary Axis. The axis to use as the primary axis for the coordinate frame. Since this axis is primary, it is perfectly parallel to the vector constructed by its defining entities. The primary axis and secondary axis must make sense--for example, you cannot define the $+Z$ axis as primary and the $-Z$ axis as secondary.
- Secondary Axis. The axis to use as the secondary axis for the coordinate frame. The plane defined by the primary and secondary axes will be parallel to the vector constructed by the secondary axis's defining entities.
- Origin. A single point in space that (assuming no offset) defines the origin of the coordinate frame.
- Enter Values in Frame. Click this button to define a new XYZ coordinate. The coordinate frame will be shifted such that the originally defined origin point ends up at the supplied coordinates.
- Name. The name for the resulting coordinate frame (in the ac-
tive collection). To change a name, type it in, then click the Apply button.
- Set Working Frame. If checked, the new coordinate frame will be set as the active coordinate frame.

Figure 23-54. A frame defined by an origin at point Origin, a primary axis $(+Z)$ by a cylinder, and a secondary axis $(+X)$ by the origin and a point named Clocking. No offsets have been applied.

Figure 23-55. The same frame which has been shifted using Enter Values in Frame so that the origin ends up at $(5,5,5)$.

The primary and secondary axes can be defined by an object, 2 points, or an origin and point:

- Object. The object's internal normal direction defines the direction of interest. For example, if a plane is selected, the normal to the plane is used. Note that some objects (such as spheres) do not define a direction and therefore cannot be used with this option.
- 2 Points. The vector from the first point to the second defines the direction of interest.
- Origin \& Pt. The vector from the defined origin to the selected point defines the direction of interest.

The origin can be defined by either an object or a point:

- Select Point. A single point will define the position of the origin. Point offsets are not applied.
- Select Object. An object's internal origin defines the origin of the frame. For example, if a sphere is selected, the center of the sphere is used.

To Create a Frame with the Frame Wizard:

1. Select the appropriate primary and secondary axes to define.
2. Click the appropriate buttons to define entities for the primary axis, secondary axis, and origin. These entities can be defined in any order.
3. If desired, enter coordinates to shift the frame using the Enter Values in Frame button.
4. Type a desired name for the frame and click Apply.
5. When finished, click the Accept button.

This Page Intentionally Left Blank.

Relationships

Relationships are extremely powerful tools that have a number of uses: Dynamic inspection, alignment, virtual fit-up, real-time assembly, and optimization can all be driven by SA's relationships. Relationships provide optimization results that far surpass traditional methods, and without a complicated setup process.

What is a Relationship

Relationships are not physical objects in themselves but a defined link between objects. In the simplest case a relationship calculates the distance between two related entities and re-calculates this distance whenever either of the related items are moved. This linking process is quite efficient and can be expanded to include many points and many objects simultaneously. By building a relationship you can use this dynamic link in many powerful ways.

- Reporting. Relationships can be used for automatically updating dynamic changes between objects. Relationships can therefore be used directly to report deviations.
- Build Operations. Relationships can be used to update displays or watch windows to guide users to specific location for part alignment.
- Dynamic Geometry Fitting. Geometry Relationships are a special type of relationship that updates the properties of an object based upon the measurements. The relationship links the measurements to the resulting geometry making it dynamic.
- Alignment. Multiple Relationships can be used simultaneous-
ly and weighted independently for sophisticated alignment operations

Definition of Relationship Types

Points Based Relationships

The simplest relationship types are points based relationships. These relationships continually evaluate the distance between the associated points and objects and are used primarily for reporting and alignment purposes.

Point to Point
Reports deviation between two specific points.
Point to Object
Reports deviation between a specific point and object.
Points to Objects
Reports deviation between one or more points and the closest selected object from a list of one or more objects.

Groups to Objects
Reports deviation between multiple groups and multiple objects.
Point Clouds to Objects
Reports deviation between the points contained within one or more clouds and the closest object from a list of multiple objects.

Group to Group
Reports deviation between points in two point groups.

Object Orientation Relationships

Object orientation relationships were added to monitor differences in the 6D orientation of one object relative to another object.

Object to Object Direction

Reports the angle and mutual perpendicular distance between two objects.

Frame to Frame
Reports a delta transform between two frames expressed in the working coordinates.

Special Function Relationships

Group to Nominal Group
This relationship type functions like a Group to Group relationship but with added inspection guidance. It provides:

- Visual guidance with bull's-eyes identifying the unmeasured points
- Automatic renaming functionality by proximity
- Closest Point Watch window function

Points/Groups to Surface Faces
Points to Surface Faces and Groups to Surface Faces function just like Points/Groups to Objects relationship but are tied directly to CAD surfaces.

Pipe Fitting

Pipe relationships are designed specifically for pipe alignment and cut calculations (see"Pipe Relationships" on page 672).

Geometry Relationships

Geometry relationships build dynamic geometry. They continually update the position, orientation and size of an SA object based upon the associated points. They also report deviations between measured and nominal geometry.

Geometry Comparison
This relationship type can be subdivided into 3 types:

- Fit and Compare to Nominal. This type provides a full fit and compare function between the measured points and the selected nominal geometry.
- Fit Only. Without a nominal assignment, Fit Only relationships build dynamic geometry but do not provide a comparison to a nominal feature (These relationships can easily be expanded to Fit and Compare to Nominal relationships with a nominal designation).
- Compare Only. These relationships only calculate and compare the differences between objects of the same type. They do not perform geometry fit functions.

Average Point

These relationships are the points equivalent of a geometry relationship. The average point relationship calculates a points position based upon the associated input points and compares it to a nominal point.

This relationship is the frames equivalent of a geometry relationship. The Frame to Nominal Frame relationship calculates a frame position and orientation based upon the associated points and features using the Frame Wizard selection utility(see "Frame Wizard" on page 647). It then compares the resulting frame to a nominal frame. This frame can therefore be built upon other geometry relationships which in tern make it a dynamically updating frame.

General Relationship Properties \& Controls

Relationships function like dynamic queries. They calculate the spatial deviations of the associated points from the associated objects. Any time either a new point is added or the associated objects are moved, the relationships are recomputed. This ensures that the correct deviation statistics are always displayed.
Relationships provide many controls and the number of controls increase with complexity. This section provides an overview of the genenaral property controls available for most relationships.

Visual Controls

Highlight Entities
Highlights all the associated points and/or objects. This button functions as a toggle to turn on and off highlighting.

Add Watch Window
Adds a watch window to the relationship. The watch window type will depend on the specific relationship type but typically displays the Max deviation and RMS for the relationship ((Figure 24-1).

Rasan:	173.3567
Rus::	90.3067
	Units: (in)

Add Callout
This command does either of two things. If a callout view is active, it
adds a callout for the relationship to the active callout view. On the other hand if no callout view is active it builds a new callout view and adds a callout.

Create Associated Inspection Callout
This builds a new callout view and it adds the relationship callout to it. It also activates the callout view when trapping is initiated.

Disable Associated Inspection Callout

This disables the link between the relationship and the inspection callout such that it is no longer indiciated when trapping begins.

File Management Tools

Delete
This command deletes the relationship.
Copy
This command copies the relationship to the active collection. It will prompt the user to either keep the object/point associations or clear them.

Move to Another Collection
This command allows the relationship to be relocated to another collection within the job file.

Rename
The command provides a method to rename the relationship.

Projection and Fit Controls

Properties
Some relationships provide a condensed set of primary controls in the Properties menu while others are controlled directly though the right-click menu for the relationship.

Projection Properties
Relationships have the same projection properties as a query. They provide the same probe compensation options with the added benefit of allowing changes to these settings at any time (Figure 24-2). These options include display and probe offset controls.

Figure 24-2. Relationship Projection Options

Fit Weight
This command controls the weight assigned to the relationship as part of an alignment operation (see "Minimizing Relationships" on page 668).

Tolerance Controls
Tolerances can be set for all the individual point deviations for both alignment and reporting purposes (Figure 24-3).

Fit Constraints
When a fit constraint is added to a relationship it defines a "dead" region where the relationship has no influence. For example, a high
limit can be set at +0.1 and low at 0 . This will define a region from 0 to +0.1 . When the solution reaches this region, the relationship will stop influencing the solution and the fit will only continue to optimize if other relationships are involved (see "Minimizing Relationships" on page 668).
Sub Sampling Options
Relationships provide sub-sampling controls to increase processing speed for large data sets. These include two categories:

- Fit using every i-th point

Using the Fit using every i-th point control provides the ability to display a reduced number of vectors that continues to increase in number as the data set increases in size. When $\mathrm{i}=1$, all the point deviations are used for display and calculation. As i increases so does the number of skipped points.

- Fit using no more than \mathbf{n} points

Using the Fit using no more than n points control provides the ability to place a hard limit on the number of points used in the relationship for display and reporting purposes.
Outlier Rejection
This command provides a the ability to set a threshold beyond which points are ignore (see"Minimizing Relationships" on page 668).

Auto Update Vector Group
This option the use to create a dynamic vector group. Any time the relationship updates the vector group will update as well using the associated points and objects.

Make Vector Group (static)
This option allows the user to capture the current condition of an Auto Vector by copying it as a separate vector group.

Reporting Options and Controls

Include in Composite Quick Report
This option is determines if a relationship is included or excluded automatically in quick report.

Generate Quick Report
This command generates a quick report for the selected relationship only.

Add to Active SA Report
This command adds the relationship to the active report.

Reporting Options
Report Options control how the deviations will be reported and the format of the resulting relationship tables in a report (Figure 24-4).

Figure 24-4. Relationship Reporting Options.

Controls within the Reporting Options include:

- Coordinate System

Report tables can display points in either of 3 formats: Cartesian (XYZ), Cylindrical (RTZ) or Spherical (RTP) coordinates. The reported values are presented relative to the working frame unless specified in the reporting frame control.

- Tables

Relationships default to displaying both a summary table and a single line details table. When enabled the "Table per Object" option subdivides the details table into multiple details tables, one for each object associated in the relationship.
The summary contains a snapshot of the relationship (Figure 245). The complete options will display all the individual deviations.

Figure 24-5. Relationship Summary Table.

Points to Objects Relationship Station1 to Station1 (Reported in A:WORLD)				
Statistic	$\begin{gathered} \mathrm{dX} \\ \text { (in) } \end{gathered}$	dY (in)	$\begin{gathered} \mathrm{dZ} \\ \text { (in) } \end{gathered}$	Mag (in)
Min	-0.0005	-0.0002	-0.0429	-0.0429
Max	0.0003	0.0005	0.0852	0.0852
Average	-0.0000	0.0000	0.0000	0.0000
StdDev from Avg	0.0004	0.0003	0.0578	0.0578
StdDev from Zero	0.0004	0.0003	0.0578	0.0578
RMS Tol Range	0.0003	0.0003	0.0535	0.0535
In Tol Out Tol				
Count	7			

- Components

Each of the components of the details cable can be turned on and off with these controls.

- Format

Several formatting options are available for the details table including single line and multi-line formats.

- Tolerance Fields

The display of tolerances can be turned on and off as well as the tolerance color column in the details table.

- Point Order

The point are displayed in the order in which they appear in the tree by default. An option was added to sort the order in which they appear by their names.

- Default Settings

The report settings can be applied to other relationships by either setting this relationships configuration as default or by applying the setting explicitly to other relationships.

Reporting Frame

By default relationships are reported relative to the working frame. In order to report relative to a different frame one must be specified and this option provides the control to do so.

Measurement Associations

Associate Data
This control allows new data to be associated with a relationship. Depending on the type it provides options to pick points and/or objects and replacing the current list of objects with the new selection.

Clear Point Associations

This option clears the relationships associations.
Delete Point Associations
This option deletes the points associated with the relationship as part of clearing the relationship.

Measurement Trapping and Trapping Controls

For greater detail on trapping (see"SA Toolkit" on page 681).
Trap Measurements from an Instrument
This indicates trapping of measurements from a live instrument. When trapping is set any measurement obtained from the selected instrument will automatically be associated with the instrument.

Stop Trapping Measurements

This commands stops trapping
Trap Selections
Trap selection acts like trapping from an instrument but allows the operator to graphically select points to be added to the relationship. It is a great way to add additional points without having to reassociate all the points at once.

Configure Instrument
Instrument configuration provides options to control instrument settings when trapping is indicated.

Lock Out Trapping
Excludes the relationship from the list of relationships within the inspection tab of the toolkit (see"Inspection Tab" on page 687).

Change order in List

This changes the order of the select relationship within the relationship category in the active collection. The order in inspection tab mirrors the order of the relationships in the tree so being able to control its position in the list is important .

Properties \& Controls - Special Function Relationships

Group to Nominal Group

This relationship type functions like a group to group relationship but with added inspection guidance.

Key Features:
This relationship assumes that the 1st group associated is the nominal or design group and uses this group for guidance in measuring the corresponding group.

Trapping Controls:
When trapping is started for a Group to Nominal Group relationship bull's-eyes are drawn on each of the points in the nominal group to guide the operator to measure those points on the part. Additional user guidance can be turned on and off within the properties dialog (Figure 24-6).

- Update a vector group with relationship

This function turns on an auto-vector group that provides a direct visual indication of the distance between the points in each group.

- User closest point to match new measurements

With this function enabled the point name control in the instrument interface is automatically set to a default "g2ngrTrap-p\#". As each point is measured it is automatically compared to the points in the nominal group and takes on the same name as the closest point. An initial alignment is helpful in ensuring the correct name is assigned.

- Display closest point watch window

This option turns on a watch window that displays the distance be-
tween the probes current position and the closest point in the nominal group that has not yet been measured, and will update with each measurement.

Points/Groups to Surface Faces

Points to Surface Faces and Groups to Surface Faces relationships function just like Points or Groups to Objects relationship but are tied directly to CAD. By using these relationships individual CAD faces can be referenced directly where as before those faces had to be separated out as unique objects in the tree for reference.

CAD faces will also highlight during trapping for clarity (Figure 24-7).

Properties \& Controls - Geometry Relationships

Geometry Relationships (GR-relationships) allow for dynamic fitting and comparison of geometry. Unlike standard geometry construction operations, GR-relationships will update the size and position of the geometry as measurements are either added or removed from the relationship and any comparison with a nominal geometry is also automatically updated.

GR Properties and Report Options
The Geometry Relationship Properties dialog provides control over all the individual controls for the relationship. Right-click the relationship and select properties, the respective properties dialog will appear (Figure 24-8). ship properties.

Figure 24-9. Geometry relationship report options.

Figure 24-8. Geometry relation-

The report options for the relationship allow the user to set many parameters or specific criteria(Figure 24-9). The interface will allow the user to choose which components to report, using the check box selection. In addition, tolerance and relationship optimization settings can be accessed for each individual parameter by selecting it and pressing the Edit button.

Each component has the ability to be used in a relationship minimization, allowing a user to fine tune a relationship fit based on geometry components (Figure 24-10). The user has the ability to minimize based
on delta and/or the amount out of tolerance. This allows the fit to drive the delta to zero and/or bring the amount out of tolerance to zero.

Figure 24-10. Adjusting geometry relationship criteria.

GR-Relationship Types:

GR-Relationships can be separated into 3 types (as shown in the menus):

Fit Only - Performs a geometry fit using the input points.
Fit and Compare - Performs both a Fit and compares the results of that fit to a specified nominal Geometry. A Fit Only relationship can be converted to a Fit and Compare relationship by assigning a nominal.

Compare Only - This relationship type takes two geometries as inputs, doesn't provide any point analysis but reports the deviations between these two features.

To Build a Compare Only relationship select this type from the Relationship menu (Relationship>Geometry Comparison>Comparison Only). Select two geometries of the same type to compare (Figure 24-11).

Figure 24-11. A Compare Only
geometry relationship.

Fit and Fit and Compare to Nominal GR-Relationships

Specify a nominal geometry and points as inputs and the respective geometry will be fit and compared. For example, specify a nominal circle and measured points. A measured circle will be fit and compared to the nominal (Figure 24-12). Adding a callout for the relationship will yield the comparison.

Figure 24-12. A Fit and Compare to Nominal geometry relationship.

Geometry Fit Controls:
Fit and Fit and Compare relationships are performing a standard geometry fit operation using the associated points and updating that fit when ever the list of points changes. Geometry Fit controls are the same as those offered for construction operations and include:

Fit Settings - Provide basic geometry fit controls such as offset compensation, diameter override, Max Inscribed/Min Circumscribed, etc.

Point List - Shows a list of the associated points in the relationship and includes tolerances and point rejection controls.

Graph - Displays a graph of individual point deviations from the fit geometry an offers the ability to remove points graphically.

Projection Plane-2D GR-Relationships offer the option to turn on a projection plane. Checking the Project to Plane check box will cause the user to be prompted to select the desired projection plane. Projection planes can also be assigned automatically when a relationship is built through designation in the toolkit.

Desired Measurement Count - The desired number of points can be designated for a relationship. This is used for inspection and will cause trapping to stop once the desired number of points has been reached during measurement.

Cardinal Points

Figure 24-13. Cardinal Point Name Control.

Cardinal Points can be turned on for any Geometry. These points can be used as the input for other GR-Relationships to build dynamic geometry. For example if you wish to build a line along the axis of a cylinder you can turn on the cardinal points for the cylinder and use those points to build line. As the cylinder updates the cardinal points will update and so will the position and length of the line.

Different numbers of cardinal points exist for different geometry types and the choice to turn on and off particular points and to control their naming is given when you turn them on (Figure 24-13).

GR-Relationships offer a selection of Auto Vectors to help visualize Point deviations and deviations between features. These include:

Fit Geometry to Points (AVF) - These vectors show the individual deviations between the measured points and the fit geometry. It helps visually display the quality of the fit.

Nominal Geometry to Points (AVN) - This Auto Vector type displays the deviations between the measured feature and the nominal feature. It can be shown as either:

1. Cardinal Points - The deviation of the cardinal points of the fit geometry from the axis or surface of the nominal geometry. This provides a minimal number of vectors to clearly illustrate the relative misalignment of the features.
2. Input Points - The deviations of the measured points as directly compared with the nominal feature as if it were the fit feature. This shows both deviations in form and location.

Minimizing Relationships

In most applications one of the goals is to orient measured points to critical part features. SpatialAnalyzer is able to help you accomplish that task by letting an optimization routine use relationships to drive a fitting process. The net effect is the distances defined between objects in each relationship are minimized. You can use this functionality to produce a best-fit between the points and the critical features. So by creating relationships between the measured points and the part's critical features you can find orientations that yield the best performing part. Since SA's relationships can be made between any object types you're able to define a comprehensive set of part features and then optimize their orientation.

Figure 24-14. Relationships set up in the tree.

Move Objects by Minimizing Relationships

This is a great way to transform objects and instruments into a coordinate system (Figure 24-15). This is often used when traditional alignment methods are not applicable. The relationship minimization gives full control over each individual relationship by using weighting and fit constraints. The user also has control over the translation and rotation degrees of freedom during the minimization. This can allow a minimization to translate and/or rotate about user defined axis.

This is the default mode of operation. The optimization method performs a version of the steepest-descent algorithm on the system. This means it assembles a matrix that is 6 (unknowns) $\times \mathrm{N}$ (number of points), inverts it and determines move directions. Though quick for

Figure 24-15. The Minimize Relationships dialog.
reasonable data sets, it can take a long time when using a large set of points depending on the amount of RAM on the computer. The stopping tolerance is the amount that the objective function (RMS error) must repeat by in order to indicate a minima has been reached.

Run Direct Search Optimization

This optimization provides a powerful method for searching the solution space. It is also required when using the toleranced best-fitting options (in the advanced area) since they introduce non-linearities into the solution space. This method basically steps in a direction, evaluates the fit, then steps in another direction, etc. There is a lot of advanced logic built into the search, but at the core, it is a searching method. The advantage is that it does not have to assemble a large partials matrix and invert it. This means that it can effectively deal with huge point sets. The disadvantage is that since it is trying to exhaustively search, it can sometimes take a long time to complete. At any time during the fit, however, you can cancel the operation and use the current location. To use this mode, you set step sizes. They are set as a ratio of the position and angular perturbation values in the SA units options page. The step size starts at the starting value then decays when it detects no improvement in any direction. Once it decays to the Ending step size, a minimum is reached.

Relationship Fit Settings

Figure 24-16. Relationship
settings.

Fit Weight
Allows more emphasis to placed on the selected relationship. Often times weighting can be tweaked to bring a part in tolerance.

Fit Constraints
A fit region can be described that will represent a "dead" region where the solution can satisfy a zeroed out condition. For example a high limit can be set at +0.1 and low at 0 . This will define a region from 0 to +0.1 . When the solution reaches this region, it will stop.

Sub Sample Options
Sub sampling is useful for large data sets (Figure 24-17). Often all of the data is not required for the fit.

Outlier Rejection
Outlier rejection is a great way of removing stray data for the fitting solution. Stray points can often impose difficulties for the optimization.

Figure 24-18. Outlier rejection options.

Outlier Rejection	
High Limit	$\boxed{0}$
Low Limit	-1
	Set Symmetric
OK	\square

Pipe Relationships

In some industries, such as nuclear energy and shipbuilding, a common need is to align mating sections of pipe in order to calculate and lay off cut planes so that the pipes can be adjoined with a high-quality weld. In general, the goal is for these adjacent pipe sections to be as coaxial as possible and to share enough material overlap such that a valid cut plane can be calculated that enables a quality weld joint.

Consider the example of replacing a steam generator that has reached the end of its service life at a nuclear power plant. A nuclear steam generator typically has a number of nozzles or pipe openings-one variant design has a "hot leg" pipe for hot water, a "cold leg" pipe for cold water, and a pipe for steam (Figure 24-19).

These piping interfaces are critical to the safety and performance of the nuclear power plant, and since they provide a direct barrier between the radioactive and non-radioactive sides of the plant, they must be aligned and cut with optimal precision.

Figure 24-20. The steam generator after virtual assembly.

Since a nuclear reactor must be shut down in order to replace the steam generator-and since downtime at a nuclear power plant is enormously costly-anything that minimizes this downtime is extremely beneficial. Historically, cut planes were calculated manually and refined with the steam generator in its final alignment. However, this proved to be a time-intensive and therefore expensive process. Instead, the steam generator can be digitally assembled (Figure 2420) and resulting pipe cuts can be calculated before the steam generator is in its final location (Figure 24-21). As a result, the pipes can be cut prior to installation-pipe relationships play a critical role in this process.

Figure 24-21. A cut plane calculated by a pipe relationship.

Using Pipe Relationships

The general process of using a pipe relationship is as follows:
3. Define the pipe relationship between mating pipe/fittings.
4. Align the pipes using traditional relationships, pipe relationships, or a combination.
5. If the pipe relationship can find a valid cut plane, the proposed cut can be made. A frame can also be constructed on this cut for layoff purposes.
6. After physically cutting one end of the pipe, the actual cut plane can be fed into the solution, re-solving for a tweaked cut plane on the other end.
7. This tweaked cut plane can then be used to cut the mating piece.

Defining Pipe Relationships

Pipe Relationships can be defined between two objects that have positional and directional information. Typically, this means lines, cylinders, or planes. The particular type of object does not matter-as long as the object properly describes the pipe's position and orientation. When a pipe relationship is created, a tube representing the allowable cut region and ID/OD appears in the graphical view, and the Pipe to Pipe Relationship dialog is displayed (Figure 24-22).

Figure 24-22. The Pipe to Pipe Relationship dialog.

Figure 24-23. Properties of a pipe segment in a pipe relationship.

The first step is to define the properties of each pipe segment (Figure 24-23):

- Inner. The inside diameter of the pipe.
- Outer. The outside diameter of the pipe.
- Begin. The start of the permissible cut region, as a distance along the pipe axis from its origin. This value should typically be less than the End value.
- End. The end of the permissible cut region, as a distance along the pipe axis from its origin. This value should typically be greater than the Begin value.
A pipe relationship will supply several forcing functions to an optimization:
- It will try to make the pipe segments coaxial.
- It will try to make the pipe ends parallel.
- It will try to overlap the cut regions evenly.

After defining the characteristics of the pipe segments, the weighting
factors for the relationship may be modified, if desired. Typically, the default values (Figure 24-24) are sufficient:

Figure 24-24. Weighting Factors
for a pipe relationship.

Pipe to Pipe Realtionship Weights
Overall Weight
Cut Location
Axis Offset
Axis Alignment
Center Pull
Out of material condition (no metal)
Weight
Static Offset
\square Constrain Cut to Region at OD
\square Constrain Cut so ID/OD overlap
OK

- Overall Weight. The weight of the pipe relationship as a whole, which determines the influence of the pipe relationship in the overall optimization scheme.
- Axis Offset. The importance of minimizing the mutual perpendicular midpoint between the two pipe segments (i.e. how "coaxial" the two pipe segments are). Larger values attempt to bring the segments closer together.
- Axis Alignment. The importance of minimizing the angle between the two pipe segments. Larger values will force the pipe segments to be more parallel.
- Center Pull. The importance of overlapping the center of each pipe segment's cut region (along the axis direction). Larger values assign more importance.
- Weight. The importance of having sufficient material for the weld. A value of zero implies that the solution does not care if there is sufficient material for the weld.
- Static Offset. A value that controls "how bad" the solution gets when there is insufficient material for the weld. Higher values assign a larger penalty to having insufficient material, effectively ensuring that material requirement is more crucial in the eyes of the solution.
- Constrain Cut to Region at OD. If checked, ensures that the cut angle at the outer diameter does not cause the cut plane to exceed the defined region. If unchecked, this restriction is ignored.
- Constrain Cut so ID/OD overlap. If enabled, the inner diameter/outer diameter values for the pipes are used to ensure that
there is sufficient material based on the angle of alignment.

To Solve a Pipe Relationship:

1. First take a moment to think about the assembly. If there is more than one pipe segment that will be assembled (that is, if there will be more than one independently moving object in the optimization), then each moving object (pipe segment) should be placed into its own collection. This includes the objects defining the pipe endpoint, the pipe surface/cylinder, and anything else you want to rigidly move with that pipe segment. In this situation, you must use Relationships > Move Collections by Minimizing Relationships in step 7 below.
2. Create a primitive SA object with directionality (circles, lines, cylinders, or planes-but circles are preferred) to represent the end of each pipe opening in the assembly. Each object's normal direction must face the mating pipe segment as depicted in Figure 24-25.

Figure 24-25. The circles defining each pipe opening have their normals pointing toward the mating pipe segment.

Warning: If the ID and OD values of mating pipe segments match, a valid cut plane will typically not be found unless you uncheck the

3. From the menu, select Relationships $>$ Pipe Fitting.
4. Select the object (i.e. circle) describing the first pipe segment, then the second.
5. In the Pipe to Pipe Relationship dialog (Figure 24-22), click the Edit button for each pipe segment and define the ID, OD, and begin/end values for the allowable cut region (Figure 24-23).
6. If any pipe ends are already cut, create a frame representing that pipe end (usually Construct > Frame > On an Object is appropriate) and then click the Force CUT to Frame button (Figure 24-26).

Tip: In general, pipe relationョ ships are best solved by clicking the Direct Search Optimization button instead of the Run Optimization button.

Working With the Cut

7. Create any other conventional relationships governing the alignment, if applicable.
8. Solve the relationship using Relationships > Move Objects by Minimizing Relationships or > Move Collections by Minimizing Relationships, as applicable. Enable/disable and adjust the weights on all relationships as desired.

If the pipe relationship can find a valid cut plane, it will display a dashed plane indicating the location and orientation of the cut plane (Figure 24-21).

Typically, the next step is to create a frame on the cut, which can then be laid off on the real pipe for cutting. This involves making the proposed cut, then constructing a frame on the cut plane. The XY plane of this frame now defines the perfect cut location on the pipe. Watch windows can be used to lay this cut off on the real pipe.

In some applications, it may be desirable to simply calculate the cuts and lay them all off at once, as described above. This would be a faster but less stringent approach. A more rigorous approach would involve laying off the cuts on one segment, performing the cuts on the actual pipe, then measuring the actual cut plane.

Once the actual cut plane is measured, a coordinate frame can be constructed that represents the location of the as-built cut. This asbuilt cut location can then be fed back into the pipe relationship, and the as-built cut can be used to tweak the alignment once more. After the alignment is further tweaked, a new tweaked cut plane can be laid off on the other pipe segment.

This process can be iterated, as desired, for each pair of pipe segments.

1. Once the relationship has been solved (see "To Solve a Pipe Relationship:" on page 677), double-click the pipe relationship in the tree. In the Cut section, ensure that "Valid Cut Available" is indicated.
2. Click the Edit button in the Cut section for one of the pipe segments. In the Pipe Cut Properties dialog, click the Make Proposed Cut button (Figure 24-26).
3. With the cut applied, click the Create Frame on CUT button to create a coordinate frame whose XY plane defines the cut plane (Figure 24-27).

Figure 24-26. The Pipe Cut Properties dialog.

Figure 24-27. A cut frame constructed on the cut plane.

4. Use a Watch Window to lay the cut plane onto the actual pipe.

The above steps can be repeated for the other pipe segment, if desired. However, if applying cuts sequentially, the process contains a few more steps.

1. After cutting the first pipe segment, measure the actual cut and construct a frame on the resulting cut plane. Ensure that this data is aligned appropriately in the SA file.
2. Double-click the pipe relationship, and click the Edit button for the appropriate pipe cut.
3. Click the Force CUT to Frame button, and select the appropriate
frame. This will force the cut to sit on the provided frame.
4. Re-solve the optimization. Based on the as-built cut location, you should see the solution get tweaked to account for the changes.
5. Based on the results, make the cut on the other pipe segment using the steps in "To Lay Off Cut Planes:" on page 678.

Toolkit Inspection

The SA Toolkit provides a streamlined set of tools which can be used for fast \& effective feature inspection. It is designed with the intention of using either Geometry Relationships or GD\&T Features which are both dynamic and can be reused for repeated inspections. For details on either Geometry Relationships or GD\&T features refer directly to the Relationships or GD\&T chapters.

SA Toolkit

The SA Toolkit (Figure 25-1) contains five tabs that provide convenient access to a subset of the most powerful tools in SA. These tabs include GD\&T, Relationships, Inspection, Analysis, and Reporting.

GD\&T.
What was formerly known as the GD\&T bar has been brought on as a tab in the Toolkit bar. This tab is an ideal tool for building GD\&T Annotations. For more information on the GD\&T Tab and its use see the GD\&T Chapter.

Relationships.
The relationships tab enables one-click definition of features (defined by CAD or using primitive geometry) primed for easy inspection using geometry relationships, with or without projection planes. Other relationships can be easily defined as well.

Inspection.
The inspection tab presents all trappable features from all collec-tions-relationships, datums, and feature checks-in a single list. This allows you to easily advance through an inspection routine, trapping measurements for each feature, and instantly providing inspection
results against nominal data.
Analysis.
Some of the more commonly-used analysis tools, such as the frame wizard and geometry fitting, are presented together in the analysis tab.

Reporting.
Functionality for creating reports, making dimensions, and creating/ annotating callout views is gathered together in the reporting tab. To display the Toolkit bar, right-click on the menu/toolbar/status bar area of the SA interface and select Toolkit.

Figure 25-1. SA Toolkit

Tutorials On Using the Toolkit for Inspection
For instructions on using the toolkit (Figure 25-1) refer to the Tutorials section of this manual.

Relationships Tab

Figure 25-2. Projection
Planes

Projection Planes

The projection plane (Figure 25-2) options have been improved in the Relationships tab of the SA Toolkit for projection planes.

There are now three options:
None.
Does not use a projection plane for the feature.
Selected Plane.
You choose a specific plane which will be used as a projection plane. When this option is checked you will be prompted to choose the desired planar feature. The name of the select plane will then be shown.

Plane for Each Feature.
When selected, each additional feature added to the inspection routine will also have a projection plane feature added, so that you first measure the projection plane, then the feature to project to it.

Name Field

A Name field allows you to enter a specific name for a relationship prior to building it. This speeds construction by allowing you to name features in advance. If this field is left blank, then the default geometry type name will be used.

Figure 25-3. Geometry and Compare to Nominal Sections of the Relationship tab.

Geometry \& Compare to Nominal Geometry Relationships

The Geometry section (Figure 25-3) provides access to relationships available through the Relationships>Geometry Comparison>Fit Only menu, while the Compare to Nominal section provides access to the Relationships>Geometry Comparison>Fit and Compare menu. These relationships are functionally the same. The only difference is that the Compare to Nominal section prompts for nominal selection as part of the build process. Nominal features can be assigned or edited at any time.

Each of the different compare to nominal geometry types icons are provided to facilitate selection from CAD faces. The selection of one of these icons does the following:

1. Prompts the user to pick a CAD face of the appropriate geometry type.
2. The nominal geometry definition is drawn from the CAD face and used to build SA geometry using these parameters
3. A Fit and Compare to nominal relationship is build with this newly made nominal geometry assigned.

Creates a point that is the average of all associated points. The points can be projected to a plane before averaging.

From Object

The From Object button (Figure 25-4) is a smart tool that builds a Fit and Compare to Nominal relationship from any geometry. It uses the geometry type from the selected nominal to choose the geometry type and build the corresponding relationship.

Line
Creates a line from the associated points.
Plane
Creates a plane from the associated points.
Circle
Creates a circle from the associated points.
Support has been added for single point circles in a geometry relationship. Single point circles allow you to lay a probe in a hole (assuming the hole diameter is smaller than the probe diameter) and create a circle with a single measurement, based on how far the probe sinks into the hole.

To create a single point circle geometry relationship, create a circle relationship as usual, and enable a projection plane. If the relationship has exactly one point, a single point circle will be created automatically. If you continue measuring additional points, a regular circle relationship will be created instead. Note that the measured point must be on the positive side of the projection plane.

Slot
Creates a slot from the associated points.
Ellipse
Creates a ellipse from the associated points.
Sphere
Creates a sphere from the associated points.
Cylinder
Creates a cylinder from the associated points.

Cone
Creates a cone from the associated points.
Paraboloid
Creates a paraboloid from the associated points.
Compare Group to Nominal Group
A Compare Group to Nominal Group relationship functions like a group to group relationship but with some added features for inspection. When trapping begins a set of bull's-eyes are displayed on the points contained within the nominal group. When a point is measured, it will automatically be renamed to the closest nominal point. And the bull's-eye removed.

Repeat Check Box

Figure 25-5. Other section of the Relationship tab.

Other Section

The Other section of the Relationship tab (Figure 25-5) provides buttons to build relations of types other than geometry relationships. These include the following:

Point to Point
Creates a point to point relationship
Point to Object
Creates a point to Object relationship
Points to Objects/CAD Faces
Creates either of 2 different relationships depending on if you leftclick on the icon or right-click. Left-click builds a points to objects relationship, while right-click builds a points to CAD faces relationship.

Groups to Objects/CAD Faces

Creates either of 2 different relationships depending on if you leftclick on the icon or right-click. Left-click builds a groups to objects relationship, while right-click builds a groups to CAD faces relationship.

Cloud to Objects
Creates a clouds to objects relationship
Group to Group
Creates a group to group relationship
Frame to Frame
Creates a frame to frame relationship
Object to Object Direction
Creates an objects to objects direction relationship

Inspection Tab

Instrument Alignment

Convenient access to various alignment options are available at the top of the Inspection tab (Figure 25-6).

Figure 25-6. Instrument Alignment section of the Inspection tab.

Repeat last

Executes the last repeatable alignment used in the job file. Repeatable alignments include:

- Measure Nominal Points
- Quick Align to CAD
- Frame Wizard
- Nominal Geometry Relationships

This Repeat Last function can only be used after an alignment has already been performed. Therefore it is intended as a benefit to those looking to either align a second instrument to the same features or as a way to build a template file that can be used again and again.
New

repeated use as a template file you will need to first connect to the instrument in simulation and perform the alignment. This alignment will then be available for use with the Repeat Last function.

Measurement Trapping

The Measurement Trapping plane (Figure 25-7) provides a convenient list of all trappable features in the job file. This list can be rearranged and edited as needed to provide a list of features to inspect. Trappable features include:

- Geometry Relationships
- Relationships
- GD\&T Datums
- GD\&T Feature Checks

Trapping simply means direct data association. When you are actively trapping to a feature this means that each measurement that is taken is automatically associated with that feature. In addition to directly
trapping measurements taken from and instrument relationships provide the ability to trap select points already in the job file simply by clicking on those points. To start Trap Selection right-click on the relationship in either the tree or the inspection tab and select Trap Selections.

Measurement Trapping and Navigation

To begin trapping to any individual feature in the inspection tab you can double-click on it. As long as there is at least 1 live instrument trapping will begin.

At the top of the Measurement Trapping section are a set of navigation buttons. When actively trapping to a particular feature, these buttons provide a convenient means to move to the next or previous feature in the list or stop trapping.

Reordering Features in the Inspection Tab

By right-clicking in the navigation buttons at the top of the Measurement section you can change the order in the list of the currently selected feature. Moving that item either forward or backward in the list. The inspection task list is a direct reflection of the tree. By changing the order of the features in the inspection task list you are also reorder the entries in the tree within their respective category. Likewise by reordering the entries in the tree you will also change the order of the entries in the inspection list.

Lock/Unlock Trapping

The availability or display of any feature in the Inspection tab can be controlled on an individual or feature type basis. To exclude or include features in the inspection tab right-click on that feature in the tree and turn on or off Lock Out Trapping. Likewise, by right-clicking on the Relationship, Datum, or Feature Check categories you can select Lock/Unlock Trapping and control the display of multiple features from that category at one time.

Sweep and Sweep \& Move

Figure 25-8. Sweep and
Sweep \& Move sections of the
Inspection tab.

Sweep
The sweep controls (Figure 25-8) are composed of two button icons and two radio buttons. This provides a 4 way control.

- Sweep/Clear Assoc. - clears the actively selected feature
- Sweep All/Clear Assoc. - clears all the features
- Sweep/Delete Points - deletes the points from the actively select feature
- Sweep All/Delete Points - deletes the points from all features

Sweep \& Move
Sweep \& Move was added to allow collection management and easier repeat measurement of common features in separate collections. This function only works with relationships not GD\&T features. When you press the Sweep \& Move Icon you will see the following dialog:

By utilizing the Sweep \& Move feature, a user may choose to either copy or move relationships from the active collection to a destination collection. By selecting COPY, a duplicate set of the relationships will be built in the new collection, constructed point associations will be maintained while clearing measured points from these new relationships. By choosing MOVE, relationships will be moved into a destination collection, leaving the measured points and constructed geometry only in the original collection.

Properties Button
A properties button is also available next to the sweep section. This button provides direct access to the properties dialog of the selected feature in the inspection tab.

Helpful Tools for Inspection

Measurement Counts
Measurement Counts are a property of any feature within the inspection tab. They are used to set the desired number of measurements for a feature. When trapping to that feature you can measure until the desired count is reached and then the trapping will be automatically iterated to the next feature in the inspection list.

Figure 25-9. Desired Measurement Counts.

Measurement Counts are off by default (when set to 0), but global default controls (Figure 25-9) can be set for all features within the User Option> Analysis Tab or within the properties of each Feature individually.

Configure Instrument

By right-clicking on a relationship in the Inspection tab (or in the treebar), a user can configure the instrument settings prior to measurement. By configuring these settings ahead of time, the measurement profile and reflector/tooling will automatically update without user interaction while iterating through the task list.

The Loop and Iterate control is helpful for scanning around a hole with a pin nets. It recognizes that a loop is closed and iterates to the next
feature for you automatically when measurement counts can't be used.

Associated Inspection Callouts

Callout views can be directly linked to relationships for use in inspection. Once linked when you start trapping to that particular relationship the associated callout view is activated. This opens up some very powerful scripting tools. Activating a callout can:

- Set the viewpoint and render mode
- Set the working frame
- Set the visibility layer (such that only objects of interest are shown)
- And display any individual callouts you wish to display.

To associate a callout with a relationship you can do either of the following:

1. Right-click on the relationship in either the tree or the inspection task list and choose Create Associated Inspection Callout. This will build a new Callout View with the particular relationships callout added to it. Edit the properties of the new Callout as desired.
2. Go to and existing callout and use Add Relationship. Each relationship added to callout will then be linked to that callout view.

Enable Trapping Auto Vectors

Within the relationship category is an option to turn on/off trapping auto vectors. This function automatically turns on an auto vector group for the for the feature that is actively being trapped to. It builds a vector group called "Trap Vectors: [Relationship Name]".

Figure 25-11. tEnable Trapping Auto Vectors

- Trapping vectors display the point to Measured Object (AVF)
vectors for geometry relationships or the point to object vectors.
- When the toolkit is advance to the next feature in the inspection tab this vector group is automatically replaced by a new one representing the current feature. When trapping stops the vector group is then deleted.
- Should an auto vector group already exist for a particular relationship in the tree it is updated and then hidden when you move to the next feature.

Toolkit/Toolbar Keyboard Shortcuts

Keyboard shortcuts and T-Probe/4-button remote functions have been added for the SA Toolkit and Instrument Toolbars:

- F6 ('A' button). Toggle measurement in the instrument toolbar.
- F7 ('B' button). Go to the next feature in the toolkit.
- Ctrl + F7. Go to the previous feature in the toolkit.
- F8 ('C' button). Remove last point in the toolbar.
- Ctrl + F8. Stop trapping in the toolkit.
- F9 ('D'button). Iterate the measurement mode in the toolbar.
- F10. Iterate the active target in the toolbar.
- F12. Find the reflector (target search) in the toolbar

Analysis Tab

Figure 25-12. Visualization section of the Analysis tab.

The Analysis tab consists of a set of direct shortcuts to powerful and commonly-used features also available through SA's main menus. A brief synopsis of the function of each button is provided here.

Visualization

The Visualization section of the Analysis tab (Figure 25-12) provides a set of useful graphical controls and object identification tools.

Cloud Thinning
This button brings up the Cloud Display control dialog. It allows you to limit the number of cloud points rendered on-screen, and control the size of the rendered cloud point, in pixels.

Clipping Planes
This button brings up the Clipping Planes control dialog. It allows you to define, edit and turn on and off the display of clipping planes.

Auxiliary View
This button opens an Auxiliary View dialog. Auxiliary graphical views can be rotated, positioned, and rendered independent of the primary graphical view, and they also support selection.

Hover Window

Figure 25-13. Construction section of the Analysis tab.

Construction

The Construction section of the Analysis tab (Figure 25-13) provides a set of usefult construction tools.

Frame Wizard
The Frame Wizard is used to create a coordinate frame based on different combinations of points or features. It allows control of axis components and origin placement based upon these features. For more information see the second on Frame Wizard in the Analysis Chapter.

Objects from CAD
This button provides direct access to a collection of geometry extraction tools. It allows you to pick a geometry type and then graphically select faces on a CAD model, building the nominal geometry from the selected face.

Circle Center Points
This button triggers the Construct>Points>Center>Circles function.
Colorized Graphical Mesh
This button triggers the Construct>Colorized Graphical Mesh>From Proximity Points command. It will prompt for selection of points and surfaces and build a colorized mesh from the point proximity.

Figure 25-14. Fitting section of the Analysis tab.

Fitting

The Fitting section of the Analysis tab (Figure 25-14) provides access to a selection of powerful alignment tools.

Geometry Fit

This button will open the Construct>Geometry by Fitting dialog.

This button will open the Analysis>Best Fit Transformation>Points to Points function.

Relationship Fitting
This button triggers the Relationships>Move Objects by Minimizing Relationships function.

Quick Align to CAD
This button triggers the Analysis>Best Fit Transformation>Points to Surfaces/ Objects>Quick Align to CAD function.

Figure 25-15. Uncertainty section of the Analysis tab.

Uncertainty

The Uncertainty section of the Analysis tab (Figure 25-15) provides a set of powerful analysis tools that take advantage of the uncertainty information contained within measured points.

USMN
This button triggers the Analysis>Coordinate Uncertainty>Unified Spatial Metrology Network function.

Simulate Measurements
When you wish to link constructed points with an instrument station and treat them as measurements you can use this button which triggers the Analysis>Measurement Simulation>Fabricate Measurements function.

Make Uncertainty Fields
This button calls the Analysis>Coordinate Uncertainty>Create Point Uncer-
tainty Fields function.

Geometry Fit Uncertainties

When you wish to determine the uncertainty in fitting a particular type of geometry to a selected set of points you can use this button which triggers the Analysis>Coordinate Uncertainty>Fit Geometry Using Uncertainty Fields function.

Figure 25-16. Scaling section of the Analysis tab.

Scaling

The scaling section of the Analysis tab (Figure 25-16) provides a set of controls to help with scaling points and controlling scale of instruments and their measurements.

Temperature Compensation
This button triggers the Analysis>Temperature Compensation command which prompts to choose a reference frame and then the point groups to scale, allowing for scaling of constructed or imported points.

Scale Bar Measurement

Make Scale Bar
This button triggers the Construct>Scale-Bar>Pick 2 Points command.

Reporting Tab

Figure 25-17. Reports section of the reporting tab.

Reports

The reports section of the Analysis tab (Figure 25-17) provides access to the SA reports in the job file.

Add New SA Report
This button builds a new SA Report.
Pick Report
This drop down menu provides access to a list of all the SA reports

Figure 25-18. Dimensions section of the Reporting tab.
in the Job file. It provides a quick way to open the desired report by clicking on it in the list.

The Dimensions section of the Reporting tab (Figure 25-18) provides a set of quick format buttons for adding dimensions. Dimensions are defined as one of 4 different dimension types:

- Point to Point
- Point to Object
- Object to Object
- Diameter/radius

The individual icons provide not only the ability to add these dimensions to an SA job file as you would be able to do through the Analysis menu, but they provide additional pre-formating options depending on the selected icon.

Callouts

The Callouts section of the Reporting tab (Figure 25-19) provides access to both the callout views in the job and the individual callouts that can be placed in any callout view.

Views
Selection List
This drop down menu provides access to a list of all the callout views in the Job file. It provides a quick way to activate the desired callout view by clicking on it in the list.

Add New Callout View
This button adds a new callout view to the job file in the active collection and prompts for a name.

Close Callout Views
This button deactivates all the active callout views.

Callout Options

This button provides access to the active callout view's right-click menu options.

Callouts

This section provides a set of buttons to build callouts within the active callout view of various types. These types include:

- Text
- Point Label
- Point Coordinate
- Point to Point Comparison
- Group to Group Comparison
- Relationship
- Object
- Vector
- Min/Max Vector Group

This Page Intentionally Left Blank.

GD\&T

Geometric dimensioning and tolerancing, more commonly known as GD\&T, is a system for defining and implementing engineering tolerances for part and assembly geometry. In this chapter, we will discuss how SA supports the engineer's ability to read and communicate GD\&T design from CAD drawings.

SpatialAnalyzer's GD\&T Inspection tools provide engineers with the ability to perform standardized inspections in accordance with the guidelines of the ASME or ISO standards. It provides the tools to allow the technician to import fully annotated CAD models and utilize the annotations and tolerances provided, or build their own annotations from CAD models, SA geometry, or even directly from measured points that define geometry. It also provides the ability for a designer to build an inspection process that walks an operator through the process of measuring the datums and features of interest following predefined measurement location indicators. Once points are assigned to a feature check it is immediately validated with a pass or fail result. The check can then be added directly to dynamic reports.
SA makes every effort to be true to the ASME standard in the GD\&T evaluation process. All calculations are based on the ASME Y14.5M-1994 guidelines but provide users a wide range of flexibility dependent upon their needs. Introduced in the 2012.12.06 version are GD\&T pre-check validations which ensure full compatibility with the desired standard. The supported standards include:

- ASME (1994)
- ASME (2009)
- ISO (1983)
- ISO (2004)
- ISO (2012)

You may select the standard you wish to use by navigating to the Analysis tab in the User Options dialog. Select GD\&T Options and then choose one of the options listed in Figure 26-1.

Choosing a pre-check evaluation does not affect the numeric results but rather allows the user to validate the check in advance to ensure that the check is in accordance with the specific standard. As a result some checks will fail due to a noncompliance with a part icular standard that would pass without pre-checks in place. However, this allows the user to be fully-compliant with the desired version of either the ASME or ISO standard.

Importing CAD with GD\&T Annotations

To import a CAD model with annotations select File > Import > Direct CAD Access. If you would like to change your import preferences, navigate to File > Import > Direct CAD Access Settings.

In the Direct CAD Access Settings dialog, check the Annotations option. Once imported, the annotations will appear graphically and in the tree in the Annotations category (Figure 26-2) .

Figure 26-2. Imported CAD Annotations.

Creating GD\&T Annotations

In many cases the GD\&T annotations will be imported with the CAD model. However, SA provides the ability to add GD\&T annotations to a CAD model that does not have them and provides the tools necessary to conduct a GD\&T analysis on constructed SA geometry and also points within SA that define geometry. To build your own annotations in SA use the GD\&T tab in the SA toolkit (Figure 26-3).

Creation Options

The GD\&T Annotation tab is located within the SA Toolkit. If it is not visible, select View > Show Toolkit Bar from the menu. This toolbar is the starting point for building annotations and setting up GD\&T evaluations when not importing annotations with a CAD model. With a logical workflow starting from the top and working toward the bottom, the toolbar begins with the Creation Options section.

View
This sets the orientation of the text for the annotation to be added. Selecting Current View sets the annotations to the current screen orientation and allows them to rotate to always face the user. When Annotations are imported they are always set to a particular orientation. The view orientations available are drawn from the Preset Views list which can be accessed and edited by going to View > View Control > Preset Views. The view selected, as well as the text size, can be edited within the annotation properties once the annotation is created.

Figure 26-3. GD\&T tab in Toolkit.

Feature Type
The Feature Type setting defines and limits the type of objects to which an annotation may be added. You can choose from CAD Faces, SA Objects or SA Objects (fit to Points). In all cases the GD\&T annotations must be added to the nominal (design) features. If these nominal features do not exist in your job they must be created.

- In all cases the GD\&T annotations must be added to the nominal (design) features. If these nominal features don't exist in your job, they must be created.
- When you select CAD Faces, the annotation will be added to and include the specific selected CAD faces you chose from a particular model regardless of whether or not a model has been dissected into individual faces.
- Selecting SA Objects allows selection of any primitive SA geometry type as the nominal feature.
- SA Objects (fit to points) allows you to add an annotation directly to measured points. When you select this option you will be

Datums

limited in your choices to building Datums, Form, and Orientation Checks. When adding annotations you will be prompted to define the geometry type you wish to fit to the points. This nominal geometry is then created for you from the points selected and the type of feature check used.

Datum Targets

The two buttons in the datum section are intended for the quick addition of datums to a part. Press the Datum letter button and then click on the part to define the tie-in point for the leader line used by the annotation and to select the associated CAD faces. The Datum letters increments automatically to the next available letter. To enter a letter that is not in sequence, hold the letter you wish to use down on the keyboard when you press the datum button. It will then add this selected letter when you click on the part. Datum letter utilization is controlled by the selected GD\&T Standard. ASME does not allow the use of the letters $\mathbf{I}, \mathbf{0}$, and \mathbf{Q}, so they are excluded in the sequence.

- Double or great datum letter designations such as AA or AC can be created and are recognized in SA. However, they cannot be built through the toolkit. Use GD\&T> Make Annotation for GD\&T Datum to build a blank datum annotation, add the Name designation desired and then associate the feature object.

Datum Targets can also be added to a predefined datum feature. They are added by first clicking on the datum target button in the toolkit and then on the datum feature at the location you would like to identify as the target location. Targets acquire the name of the datum and increment numerically. Datum targets are currently tied to a surface face or object and are for visual reference only. They are not tied directly to point locations.

Feature Checks

[^8]Feature checks can be added by clicking on the CAD face, object, or selecting points in the same was as datums are added. However, it is important to first specify the associated datum(s) and tolerance(s) used by the check. In addition to specifying any individual datums used in the check such as ABC you can also use " -" to indicate compound datums such as A-B and use @L or @M to specify the minium and maximum material conditions respectively. The composite true position check shown Figure 26-4.

- Tolerance.0.02@M, 0.01@M
- Datums. AE@MB, A

Figure 26-4. Composite True Position check.

Double letter datum entry in the Feature Check reference is currently not supported through the toolkit. To add Feature Checks that reference double letter datums go to GD\&T >> Make Annotation for GD\&T Feature Check and build a bank Feature check. Within its properties more complex datum structures including double latter datums can be added (such as AB-AC).

GD\&T Dimension Tolerances

Dimension tolerances provide both a means of checking simple dimensional aspects of a part and also provide the base of reference for other checks that use a material modifier. For this reason, any feature with a modifier included in the control frame must also have a dimension on the same feature.

Notes on Selection

Here are a set of helpful hints and things to keep in mind when building annotations using the GD\&T Toolkit tab:

1. The GD\&T Toolkit tab is intended to be a quick means to build annotations in the graphics. For greater control or to edit the annotations simply open the annotation properties.
2. After an annotation has been created it will contain all the feature associate and tolerance information. When the properties dialog is open the associated features will be highlighted and can be positioned as necessary.
3. The Feature Type selected greatly impacts the construction of GD\&T annotations. If you select SA objects and pick a CAD face the annotation will include the entire CAD model or Object as a whole not just the selected face.

- If you select SA objects and pick a CAD face the annotation will include the entire CAD model or Object as a whole not just the selected face.
- Annotations must be added to the Nominal design feature. They can only be added to measured features if the properties are adjusted to match the nominal or if you intend to use the measured feature in its current condition as the Nominal.

Datum Annotations

Figure 26-5. GD\&T Datum dialog.
Once the Creation Options are set, Datums and Datum targets can be added to the model by simply clicking on a CAD face, SA object or selecting points. The datum letter is incremented automatically. To place a specific datum letter on a model, hold down the letter you wish to add on the keyboard when you click the datum button. You can then click on a CAD face or SA object and that particular letter will be used. Datum targets are added with the datum name and a numeric indicator in the same way that datums are added. Simply click on the datum target button and on the point on the datum surface that you wish to add the target. That click point will then be used to anchor the leader line for the annotation. Once a datum/target is selected, the GD\&T Datum dialog will appear (Figure 26-5).

The GD\&T Datum annotation properties dialog allows you to edit the following settings:

- Datum Name (Identifier). The datum letter used as an identifier in the annotation (currently support single and double letter annotations and will automatically exclude $\mathrm{I}, \mathrm{O}, \mathrm{Q}$ for ASME).
- Inspection. MeasurementProfileName sets the measurement mode for the selected instrument when the Datum is created for inspection through the guided inspection feature.
- Feature Type. Provides a selection prompt and resulting selection list of the SA features for reference in the check. You must select either CAD faces or SA objects. The selected SA objects define the annotation placement and the features used during datum alignment. The selected CAD faces define the annotation placement and the features used during datum alignment.

Where applicable, SA Offset Objects provides directional reference information or alignment restrictions for surface datums.

- Placement. This will define the text size and orientation in the job. The View defines the saved orientation of annotation text. The Text Height defines the height of the annotation text. This is expressed in job units. The Text Rotation defines the rotation in the current view.
- Cylinder Mode. Allows for selection between hole and pin cylinder evaluations. It is used to properly define probing offsets.
- CAD Feature. Provides a radio button which forces the selected feature to be interpreted as a general surface.

GD\&T Feature Check Annotation Properties

Figure 26-6. Properties for a True Position check.

- Type. Feature check type.
- Name. The name of the check used to describe the annotation in the tree as well as reporting.
- Measurement Profile Name. Sets the measurement mode for the selected instrument when the Datum is created for inspection.
- CAD Feature. Prompts user to select CAD faces for the respective feature.
- View. Changes orientation of annotation.
- Text Height. Defines the height of the annotation text. Expressed in job units.
- Text Rotation. Defines rotation in the current view.
- Text Above and Text Below. Adds additional text above and below the annotation.
- Number of Primary, Secondary and Tertiary Datums. Enter the respective Primary, Secondary and Tertiary Datums if applicable.
- Zone. Applicable tolerance zone
- Tolerance. Tolerance value for the feature check.
- Material Modifiers. Defines the material modifier for the feature check's selected datum. Choose from Maximum Material Condition, Least Material Condition or Regardless of Feature Size.
- Has Projected Zone. If checked, the projected zone will be used.
- Projected Zone Value. Value used when projected zone is being used.
- Tolerance Lower Tier. Tolerance used in Lower Tier evaluation.
- Outer Tolerance Lower Tier. This designates the amount of the tolerance outside the surface of the part for the lower tier check. It allows for asymmetrical tolerance zones to be set. For symmetric tolerances this value should be set to one-half the total tolerance.
- Material Modifier Lower Tier. Optional material modifier designation for the lower tier tolerance.

GD\&T Dimension Tolerances

To add dimensional annotations you must have first set the desired View and Feature Type followed by the Tolerance type, whether that be Limit (which provides the option to enter the low value limit and high value limit) or Nominal + -- (which provides the option to enter the nominal value and the low and high deviation values from that nominal). These settings are saved with the annotation and used in the evaluation. The tolerance definition can then be edited in the annotation properties later dialog if needed. Figure 26-7 illustrates how the settings in the property grid relate to the annotation graphic:

Figure 26-7. Anatomy of a GD\&T annotation.

Graphical Placement of Annotations

With the annotation editor open the graphical annotation can be moved and placed in a position that is easy for the user to read. The annotation leader line is defined using a click-point on the first surface face or SA Object selected when that feature is assigned in the annotation. To move the annotation simply select the annotation in the graphics by left-clicking the annotation. While holding the left mouse button the annotation can be moved in the plane of the screen. Using orthogonal views can help to precicely locate annotations in 3D. The view can be change under the View parameter in the annotation editor. Controls at the bottom of the annotation editor help in fine tuning the position and orientation of the annotation.

- Φ Rotates the annotation box 90 degrees counter clockwise.
- \quad Rotates the annotation box 90 degrees clockwise.
- Ψ Mirrors the annotation box.
- \perp Straightens the leader line normal to the selected surface face.

Global adjustments to annotation placement and text size can be made by using the utilities available through the Annotation Rightclick Menu. These functions functions will convert CAD imported annotations to NRK Annotations which will graphically change to some degree.

- Set Text Scale. This option will allow you set the text scale for all annotations in the job file at one time.
- Graphically Drag Annotations. This dialog allows you to edit the position and orientation of any or all annotation at one time. Set the view and text rotate and the select an annotation to apply those settings (this function only works with NRK Anno-
tations, use set text scale to convert all the annotations if you wish to edit imported annotations).

GD\&T Entities

Figure 26-8. GD\&T Entities in the Treebar.

If you look in the TreeBar in SA you will find that all imported and constructed annotations are contained within an Annotations category. Often it is useful to contain all the design CAD and Annotations within a single collection. You can then create a new collection for a particular inspection. To inspect a feature simply right-click on the Annotations category and select Make Feature Checks. The annotation will be decoded and two additional categories will be built: Feature Checks and Datums. Feature Checks and Datums are much like relationships in that they maintain the association between measured points and the features specified in the annotation. (For more information on associating points to with datums and feature checks refer to the GD\&T Workflow section).

SA TreeBar
4 If SA Demo Part Inspection Design

- 俞 Instruments
- $\measuredangle_{\hookrightarrow}$ Frames
- YSurfaces

D $\#$ Annotations
\triangle If SA Demo Part Inspection A
D \ddagger Feature Checks

- A Datums

4 If SA Demo Part Inspection B
D $+\frac{1}{+}$ Feature Checks

- A Datums

4 15 SA Demo Part Inspection C

- Feature Checks
- Datums

Datums and Feature Checks

The Datums dialog (Figure 26-9) as well as the Feature Checks dialog (Figure 26-10) have identical settings with a few minor exceptions:

Figure 26-9. Datum properties dialog.

Figure 26-10. Feature Check properties dialog.

- Measured Indirectly. At times, it can become necessary to measure a feature indirectly. Meaning for example, that you measure the table top to represent the bottom surface of a part clamped to the table. Normally the probing direction of a surface defines the way in which we handle probing offsets, however in this case, you are both measuring off the true surface and from the opposite direction. To account for this we have an
option in the Feature Check properties dialog that allows you to specify that the measurements were taken indirectly.
- Use Probing Direction. Probing direction is either the line of sight of the instrument (for a tracker as an example) or the direction vector recorded with a point taken by a 6D probe. Using this information typically ensures proper probe compensation.
- Reverse Probing Direction. There are times when a reflector is visible on the far side of a part but the measurement was taken in the oposite direction of the line of sight. This option allows probe compensation to be manually set in the opposite direction from normal use.
- View. Provides controls for the views saved in the GD\&T Inspection >Design, Inspection>Inspect workflow process (see section on workflow). The views saved from the Inspection Design interface are saved here and can be recalled or edited by going directly to this section in the specific datum or feature check.
- Cloud Thinning. Controls the extent of thinning performed on point clouds associated with this check during evaluation and defaults to the global settings.
- Datum Alignment (Feature Checks only). When doing a GD\&T inspection, alignment is performed relative to the specified datums for each individual check. The current instrument alignment is not used for analysis unless specified. To do so, disable datum alignment for a particular feature check by going to this feature in the feature check properties dialog. When you do so, the datum annotation will be crossed out in the evaluation (Figure 26-11).

Figure 26-11. Disabled datum alignment.

15°
 L.5000 K CHECK PASSED 0.0006

- Nominal Points. Provides control of the selected nominal points used in the GD\&T Inspection Inspect routine. These points are used to lay out the bulls eyes on the part used by the inspector as a guild to measure the part in the correct location. Nominal points can be added to the job through the Inspection Design interface or can be selected manually for a particular feature through this dialog. The highlight button can be used to graphically identify the nominal points.
- Measurement Trapping \& Advancing. This parameter is used to control the number of points captured from a live instrument during trapping. When the specified number of points are associated with the feature trapping is stopped automatically (refer to GD\&T Workflow section).

Figure 26-12. Cylinder Evaluation
Method section.

- Cylinder Evaluation Methods. (Figure 26-12) The way in which cylinders are fit to the data depends on the number of measurements. A full cylinder fit is only attempted if you have 10 or more measurements of the feature. This is essential to understanding how the data is used in the check.
- Enable Pin Nest Detect \& Comp. With greater than 3 measurements (use to define a planar direction) pin nest compensation can be used. The planar offset is applied in the direction of the plane defined by these measurements and then the raidal offset is applied latterally based upon the cylinder type designation, either pin or hole.
- Enable Actual Diameter Override. This option allows the user to manually stipulate a diameter for a check. It was added to allow quick evaulation of other checks such as True Position checks that have a material modifier where only a single point was taken (and therefore the actual diameter is unknown).

Cylinder Evaluation Method

- Choose for me (Automatic)

Full Cylinder Eval
(Fit meas. to cyl.)
Auto: $>=10 \mathrm{pts}$

- Trans-Axis Center Pos. Meas. (e.g. SMR resting on hole) Auto: 1 pt

Center and Surface Axis Meas. (e.g. SMR on hole w/spacer) Auto: 2 pts

- Center \& Diam. at Nom. Direction [e.g. 3 or more meas. projected to nominal plane) Auto: 3-9 pts

Cylinder Evaluation Methods

- Choose for me (Automatic). This is the default used when creating datums and checks with cylindrical features. In this mode, the evaluation method is determined automatically based on the number of measurements. When set to this option the following designations will be made: if one point is associated, Trans-Axis Center Pos. Meas. will be chosen; if two points are associated, then Center and Surface Axis Meas. will be selected; if three to nine points are associated, then Center \& Diam at Nom. Direction will be selected; and if ten or more points are associated then Full Cylinder Eval will be chosen.
- Full Cylinder Evaluation. This method does a cylinder fit from the provided measurements. The points are assumed to be measurements of the cylinder walls (pin or hole), and the length of the cylinder is determined by the extent of the measurements along the cylinder axis. In this case the measurements are used to determine the central axis and radius/diameter of the cylindrical feature.
- Trans-Axis Center Position Measurement. This method takes either a single point or averages a set of points and compares
the resulting point to the nominal cylinder axis while using the nominal direction and radius for the evaluation. An example of this type of check is resting a probe tip of a larger diameter on a hole.
- Center and Surface Axis Measurement. This method assumes that multiple measurements of the cylinder axis were taken at varying depths. A line is fit to the measurements and that line determines the center and direction of the cylinder while the nominal cylinder is used for the radius. For example, using a probe resting on a hole with and without a spacer could be used to define a cylinder center axis.
- Center \& Diameter at Nominal Direction. This method projects the associated measurements to the end cap of the nominal cylinder. The results of the projection are then used to fit a circle. The circle then determines the center point and the diameter while the nominal cylinder is used for the direction. This is an excellent choice in situations where you have very little coverage of the cylinder on either side of a cross section plane to define the cylinder axis.

GD\&T Alignment

When performing a GD\&T inspection, alignment is performed relative to the specified datums for each individual check. The current instrument alignment is not used for analysis unless specifically specified for the specific feature check within its properties dialog (refer to the feature check properties section for more details).

To get an idea of the alignment used by the GD\&T evaluation with specific datums, right-click on the Datum Category and select "Align". You will be prompted to specify the datum scheme, picking primary, secondary and tertiary where applicable. This will then move the instruments and points associated with the datums to the correct orientation based on this datum scheme. Because each feature check is evaluated based upon its own datums it will be necessary to include or exclude only the datums you wish to use in the alignment to simulate the alignment for the particular check. This alignment tool is primarily for visualization and troubleshooting purposes. It will not exactly duplicate the evaluation in all cases. For this reason results should be compared the transform values reported in the feature check summary table.

Figure 26-13. Datum Align Tool

Datum selection can be set in either of two way in the GD\&T Datum Alignment dialog (Figure 26-13):

1. The middle section lists each feature check. If you wish to set the datum scheme to a match that of a particular feature check then the specific check can be clicked on in this list. Doing so will set the datum selection accordingly.
2. The final or "Manual" section allows a datum scheme to be set that is not currently available in the job file or differs from one of the existing datum schemes. You can select and designate any particular datum as primary/secondary or tertiary as needed.

To accelerate and the calculation process and to ensure that an ideal alignment solution is found for a particular check it is highly recommended that an initial instrument alignment, using one of SA's other alignment tools such as Quick Align to CAD or Relationship Fitting,
is performed first prior to performing the check, particularly if using surface datums.

Surface Alignment

When using datums that reference surfaces that are of a complex or non geometric shape (non-planar / cylindrical) some additional requirements are involved:

- The data should be pre-aligned to the part using other nonGD\&T techniques before attempting GD\&T analysis, such as Quick Align to CAD or relationship fitting.
- It is necessary to specify an SA Offset Object within the datum annotation which will be used to determine the degrees of freedom to constrain for that datum during alignment.
This offset geometry is what will "maintain contact" during alignment to subsequent datums and/or the main tolerance feature and so it needs to be chosen in such a way that it represents the control the datum is intended to exert over the solution. For example, a slightly curved plate designated as a datum can be treated as either a planar surface or a cylindrical surface. The offset object selection clarifies this.

GD\&T evaluation begins with an initial alignment step performed internally and also use an iterative solution. When surface datums are involved both are disabled. This was necessary to ensure stable results with surface datums and since the data is required to be close before starting they aren't needed anyway.

GD\&T Evaluation

The GD\&T Analysis within SA follows the ASME standard evaluation. Therefore you will find that the results of a geometry fit or relationship fit which are based on an RMS fit will not return exactly the same results. Take the example of a flatness check. When we build a Geometry relationship fit to the points we report the flatness. This value is based on comparing the point deviations to the best fit plane. In GD\&T, however, flatness is evaluated as two parallel planes bounding the data. These planes are then free to rotate in space to find the closest position they can reach to each other while still containing all the measured points between them. This process will almost always return a slightly better result than an RMS fit because of this additional degree of freedom.

Decimal Precision
It is important to understand that the displayed decimal precision imported with an annotation or set in the Users Options does not limit the underlying GD\&T Analysis. So, for example, if you have the decimal precision set to 2 digits and have a flatness check with a tolerance of 0.02 , the check can still fail if the measured deviation is 0.02001 . This makes sense considering that the standard is based upon hard limits. The measurement is compared directly to the specified tolerance value and any deviation outside the limit signifies nonconformance to those limits. If you can't get the pin in the hole then it fails.

Evaluation Zone/Length

The evaluation zone/length is set by the extents of the measurements associated with the feature check. Therefore if you have a tolerance specification for a particular length part but can only measure a portion of that part. It may be necessary to adjust the tolerance to account for the shortened evaluation zone.

Cylinder Coverage

Figure 26-14. Possible cylinder fit orientations with only eight points defining a cylinder location.

When measuring cylindrical features and using the"full eval" mode, it is important to provide enough measurements so that the intended cylinder orientation can be determined from the measurements.

Consider the following cylinder with 8 measurements in Figure 26-14. It is possible to interpret the cylinder in 3 different basic orientations.

To avoid this problem, cover the cylinder more completely with measurements so that it is clear which of those 3 orientations is intended.

One question which may arise is why the nominal feature is not sufficient to lock in the correct orientation. When SpatialAnalyzer evaluates a GD\&T check it first performs an initial alignment on the data representing the datums. This initial fit is done without knowledge of the nominal orientation because data is often far out of alignment initially as is common with portable metrology. Once a fit is performed the fit cylinder is compared with the nominal cylinder. Using the above as an example, if the wrong cylinder fit result was chosen (not having the nominal information) then the alignment would attempt to rotate the data incorrectly. Providing more complete measurement coverage avoids this problem.

GD\&T User Options

Figure 26-15. GD\&TOptions dialog within the User Options dialog.

There are several important global evaluation settings to select from found in the GD\&T Options within the Users Options Dialog (Figure 26-15):

- High Point Utilization for Feature Alignment. If checked, three high points which also enclose the center of gravity of the points are used while if unchecked, the best-fit geometry is
used (Least Squares).
- Distance Between Checks Used. You can choose between using the Centroid or the Min/Max when reporting the distance between checks.
- Check Pre-Evaluation Validator. SA follows the ASME Y14.5M-1994 standard when performing GD\&T analysis, however, GD\&T pre-check validations can be used to ensure full compatibility with the desired standard. The supported standards currently supported are: ASME (1994); ASME (2009); ISO (1983); ISO (2004).

Choosing to use a pre-check evaluation does not affect the numeric results but rather allows the user to validate the check in advance to ensure that the check is in accordance with the specific standard. As a result some checks will fail do to a noncompliance with a particular standard that would pass without pre-checks in place. However, this allows the user to be fully compliant with the desired version of either the ASME or ISO standard. To use a Pre-Evaluation Check simply select the desired standard in the users options prior to evaluating the feature check.

- Feature Creation Check Boxes. Both the calculated points and geometry used for the evaluation can be obtained for some feature checks by turning on these check boxes in the Users Options. This can be a very helpful diagnostic tool, however, it creates a lot of new points and geometry. Figure 26-16 shows the resulting geometry created by enabling the Feature Creation check boxes on a Composite True Position check.

Figure 26-16. Resulting geometry from enabling the Feature Creation check boxes on a Composite True Position check.

- Cross-Section Criteria. In order for a group of measurements to be considered a cross section, they must be within the de-
fault 1 mm of each other in the cross section direction. In other words if you fit a plane to the data none of the points would be greater than .5 mm from the plane. In order to take measurements in this format a geometry trigger measurement mode would be easiest. This cross section criteria can be adjusted by selecting GD\&T Options under the Analysis tab in the User Options dialog. The number of cross sections used in the analysis is reported in the summary table of the check.
- Datum Combination Tolerances. These tolerances are used to determin how nominal features are to be handled. It accountes for slight variations in a nominal model and allows for grouping of nearly perfect objects as needed within these categories.

GD\&T Workflow

SA provides the option for a GD\&T inspection designer to layout exactly how and where to measure a part. It also provides a rehearse function that allows the designer to walk through the script in simulation to check the workflow. Once complete, the resulting script can then graphically walk a measurement technician, with little to no metrology knowledge, through the measurement process. This guided inspection is broken into 3 pieces: Design, Rehearse and Inspect.

Guided Inspection - Design

To build a guided GD\&T Inspection an inspection designer should begin with a fully annotated model. This annotated model can either be imported from a CAD package or built within SA. SA objects should be converted to bounded surfaces before beginning the inspection design to allow nominal guild points to be placed on the nominal features. The design process should be conducted as follows:

1. Begin by right-clicking on the annotations in the tree and building feature checks. The majority of the inspection design including view orientations and nominal points are saved with the datums and feature checks.
2. Right-clicking in the tree and select Inspection > Design. There are three location where you can find this option. You can right-click on the collection containing the GD\&T datums and feature checks to work through the design of all datum and feature checks at once, or you select the datums or feature checks only if you only want to work on designing the portion of the GD\&T inspection.
3. Once started the GD\&T inspection designer walks through designing the inspection for each GD\&T feature in order just
as a user would measure them. For each feature the following designations can be made:

- Save View for Inspection. If checked the current view will be saved with the datum or feature check and the view will be set to this view when the Inspection > Rehearse or Inspection > Inspect routines are run.
- Create Nominal Points. Nominal point measurement locations can be layed out on the model by graphically clicking on the model in the graphic view. The click selection order will be duplicated in the guided inspection. These point locations are saved as a point group and are saved with the Group Name and Point Name specified in the dialog. If you wish to remove the associated point locations you can use the "Clear NomPts" button at the bottom of the dialog.
- Measurement Profile Name. The measurement profile for the instrument being used for the inspection can be set through the inspection designer as well. When the inspector is prompted to measure this feature the measurement profile specified here will be sent to the active instrument.
- Enable Inspection Automatic Measurement. When enabled this option will automatically begin the specified measurement mode on the active instrument.
- Inspection Design - Item \# of \#. This set of toggle buttons provides a convenient way of progression the included inspection features. The total number of features included in the item list depend on the selection method, whether you selected to design only the datums, feature checks, or included the entire inspection in the design by selecting Inspection > Design for the entire collection. The settings for each inspection feature are saved automatically when you exit the current feature.

Guided Inspection - Rehearse

Once a guided GD\&T inspection has been built the designer can then use the Inspection $>$ Rehearse routine to simulate the measurement process. This option allows the designer to walk through the inspection process in simulation using mouse clicks for measurements to simulate the complete GD\&T inspection routine built through the Inspection>Design process.

1. To begin the inspection right-click on either the collection, the datums or the feature check categories and select Inspection $>$ Rehearse depending on the number of features you wish to include in the rehearsal. When you do so the following dialog will be displayed with the following options (Figure 26-17):

Figure 26-17. Inspection > Rehearse dialog.

- Group Name/Point Name. Specifies the group and target names for the click points (simulated measurements) to be saved.
- Random Noise Magnitude. This entry allows you to add random noise to the data measurements to simulate a more realistic result. The recorded point location will be randomly generated within the specified radius of the point click point on the surface.
- Skip Measured Features. When checked this option allows the feature progression buttons to skip features that already have measurements associated and progress to features that do not. This is helpful when all but a few skipped features have been measured and you want to automatically progress to those particular features.
- Number of Nominal Points. These progress buttons provide the number of design measurements expected for the features and allows the user to skip through the measurement points to record measurements for only the points desired. It also allows you to backtrack and add additional measurements at a particular guide location.
- Inspection Design - Item \# of \#. This set of toggle buttons provides a convenient way of progression the included inspection features. The total number of features included in the item list depend on the selection method, whether you selected to design only the datums, feature checks, or included the entire inspection in the design by selection Inspection>Design for the entire collection. The settings for each inspection feature are saved automatically when you exit the current feature.

2. Simply click on the surface where the bulls eyes is displayed to simulate a measurement of that location. The bulls eyes will automatically increment through the saved measurement locations. When all measurements are taken for a feature the
dialog will automatically increment to the next feature in the list just as the inspection was designed.

Guided Inspection - Inspect

Once a guided GD\&T inspection has been built through the Inspection>Design process, a measurement technician can then right-click on the collection and select Inspection>Inspect to conduct the inspection of a part. The guided inspection will walk the operator through the inspection laid out by the designer and allow them to measure the part as specified. As measurements are taken they will be associated with the appropriate feature is the tree and an analysis will be carried out automatically. For an operator it can be as easy as measuring the point on the part designated by the bulls-eyes laid out on the nominal CAD part. The process flow is as follows:

1. To begin the inspection right-click on either the collection, the datums or the feature check categories and select Inspection> Inspect depending on the number of features you wish to include in the inspection. When you do so the inspection will begin and the following will occur: the view will be set to the saved view for the feature; the measurement profile will be set on the instrument specified; or the first inspection point will be displayed on the nominal part.
2. A dialog box (Figure 26-18) will be displayed with the following options and active trapping will begin for that feature:

- Skip Measured Features. When checked, this option allows the feature progression buttons to skip features that already have measurements associated and progress to features that do not. This is helpful when all but a few skipped features have been measured and you want to automatically progress to those particular features.
- Highlight Cylinder Features. This check box triggers an additional cylinder to be graphically drawn on the CAD model to clearly depict which cylindrical surface to measure in addition to highlighting the specific CAD faces.
- \# of \# Nominal Points. These progress buttons are displayed
only when saved measurement locations are included in the inspection. They provide the number of design measurements expected for the features and allows the user to skip through the measurement points to record measurements for only the points desired. It also allows you to backtrack and add additional measurements at a particular guide location.
- Inspecting \# of \# Features. This set of toggle buttons provides a convenient way of progression the included inspection features. The total number of features included in the item list depend on the selection method, whether you selected to design only the datums, feature checks, or included the entire inspection in the design by selection inspection>design for the entire collection. The settings for each inspection feature are saved automatically when you exit the current feature.

3. Simply measure the actual part where indicated by the bulls eye is displayed on the nominal part within SA. The bulls eyes will automatically increment through the saved measurement locations. When no nominal measurement locations are save with the feature it is assumed that the measurement technician will measure the appropriate number of on the designated surfaces.
4. When all measurements are taken for a feature the dialog will automatically increment to the next feature in the list just as the inspection was designed. If nominal measurement locations were not included in the inspection design then the feature should be incremented manually when sufficient measurements are take.

Direct Data Association and Trapping

In addition to classical Design and Inspection routines intended to separate the GD\&T inspection design phase from the inspection or operation phase, SA provides a number of tools available to more advanced GD\&T users performing the inspection of a part.

Trapping Measurements from a Live Instrument

Measurements can be captured or "Trapped" directly from a live instrument while measuring without either building or utilizing the guided inspection process. For an advanced user, directly measuring points on a part and having those measurements automatically associated to a particular feature can be the fast way to conduct an analysis. Trapping can be started for any datum or feature check in either of two ways:

Trapping through the Instrument

1. Connect to your instrument.
2. Right-click on the particular Datum or Feature Check you wish to trap.
3. When finished measuring, right-click on the feature a second time and select Stop Trapping Measurements.

Trapping through the Inspection Tab in the Toolkit

1. Connect to your instrument.
2. Double-click on the particular Datum or Feature Check you wish to trap measurements to in the Inspection tab.
3. When finished measuring, press the stop button (INSERT ICON) or press the progress button (INSERT ICON) to move to the next or previous item in the Inspection tab list.

Either of these operations will begin trapping to the feature. If you have more than one instrument you will be prompted to choose which instrument you wish to trap measurements from. While trapping is active the feature will become highlighted in both the Inspection tab and in the tree as well as being displayed with the point count in the Heads Up Display and will remain highlighted until trapping is stopped.

Directly Associating Data with a Feature
As soon as Annotations are available, Feature Checks and Datums can be built and data can be associated with those features. A user could potentially measure all the features on the part independently of the GD\&T analysis process and then come back after the fact and associate the appropriate measurements with the corresponding Datums and Feature Checks. To associate data with a datum or a feature check just right-click on the feature in the tree and select Associate Points or Associate Clouds. This will clear the list of currently associated points and or point clouds associated with the feature, if any are currently associated, and associate the selected points or clouds with the feature. Once features have associated data they can be evaluated all at once by right-clicking on the feature checks and selecting Evaluate all Checks.

Feature Inspection Auto Filter

If you have measured your part independently of any type of Guided Inspection or Measurement Trapping and you have pre-aligned to a CAD model it is quite simple to perform a GD\&T analysis using the annotations contained in the model. To do so simply do the following:

1. Navigate to GD\&T > Feature Inspection Auto Filter. This filter goes through all the measurements in the job within a specified distance from the part, whether they are individual points, point groups, or even point clouds, filters them into individual groups associated with the CAD surface, and assigns them to

Figure 26-19. Evaluated feature checks.
the appropriate feature check or datum in one operation.
2. If you need to pick up additional point measurement taken along the axis of of a cylinders these can be obtained with a second run using the Aditional True Position Point Detection check box.
3. Once this is done then navigate to GD\&T > Evaluate all Feature Checks to complete the GD\&T analysis.

This is a particularly useful approach to GD\&T analysis when using a scanner. If you initially locate a scanner and then fully scan the part you are evaluating you can then filter the scan data to the CAD Faces associate the individual scans to the appropriate Features and in two clicks of a mouse button go from a single unfiltered cloud to a completed GD\&T analysis ready for reporting.

GD\&T Reporting

Figure 26-20. Full Feature Check reporting options in the Report Bar.

Once feature checks have been evaluated the number of points used and the PASS/FAIL status is displayed in the tree. The report bar will provide the complete results of the analysis. Datum point associations, locations, and offsets can also be viewed as you select individual datums. Feature checks display only a single line pass or fail results just as displayed in the graphic view by default but more detailed information can be obtained by turning on additional reporting features by right-clicking on the feature of interest and selecting Reporting Options (Figure 26-20).

When a Check fails it will report two numbers. The first number (0.0208) is the "Measured Deviation" or the size of the tolerance zone required for the part to pass (this is a diametrical zone). The last number (0.0128), is the "Distance out of Tolerance" or the distance you would have to move for the check to pass (or the radial distance out). Within the Summary table is a "Fit Transform" section. This tells you how far the data had to be transformed from its current location to fit the GD\&T datums. The fit residuals for the datums are also reported. By checking to see if there was a bad fit to one of the datums or if the transform is significantly larger than you would expect you can quickly determine when a datum alignment needs to be changed.
These feature check results can easily be added to a report through a drag and drop process or a composite report can be generated for all the feature checks at once by right-clicking on the Feature Check category and selecting Composite Quick Report > Generate this will automatically generate a report containing a snapshot of the part in the saved view used for the measurement and the resulting success or failure of the check. By right-clicking on the check you can select to add either a summary table, showing more detail on the overall residuals, or a Details view displaying the point coordinates and offsets for each point used in the analysis.

Dimensions \& Callouts

The ability to depict as-built distances and angles provides a great way to communicate measurement results visually. Through the use of both Dimensions and Callouts users have a range of flexible tools to graphically display and clearly report results.

Dimensions
Dimensions are a part of the 3D environment and link points or objects together to display lengths and angles.

Callouts

Callouts are screen oriented annotations that display the properties of points or objects and are linked to those features with a leader line but are not part of the 3D environment.

Dimensions

Dimensions provide a method to annotate the graphical view with both linear and angular dimensions between any combination of points and objects (Figure 27-1). They are dynamic entities: Both the numeric values and the leader lines update as the points and objects move in the job file. This allows you to set up dimensions in advance and see changes graphically as fits or alignments are updated with each new measurement.

Figure 27-1. Dimensions between hole centers.

Types of Dimensions

There are several different types of dimensions that you can create:

- Point to Point. Shows the linear distance between two points.
- Point to Object. Shows the linear distance between a point and any object.
- Object to Object. Shows the linear distance or angle between any two objects.
- Diameter/Radius. Shows the diameter or radius of a circle or cylinder.

Working With Dimensions

To Create a Dimension:
Do one of the following:

- From the Query>Make Dimension menu, select the desired dimension type. Select the appropriate points or objects to dimension. A new dimension will appear in the graphical view.
- When the Query Results dialog is displayed as the result of an appropriate query, check the Create Dimension checkbox (Figure 27-2):

Figure 27-2. The Create
Dimension checkbox in the Query
Results dialog.

Common Properties

All dimensions in a collection have a set of common properties which can be adjusted for all dimensions in the collection at once. These include the text size for the dimension, and the dimension orientation.

Display Orientation \& Size

Dimensions can be oriented based on their leader lines, or can be set to always face the screen:

- Screen. The dimension always faces the screen.
- Along. The dimension is oriented along the leader line.
- Text Size. Controls the height of the displayed dimension.
- Text Offset Along Dimension Line. This value allows the user to shift the placement of the text along the dimension line and can be entered as either a positive or negative number.
- Dimension Radial Offset. For angular dimensions this value controls the vertical shift of the text inward or outward from the apex of the dimension.
- Angular Location. This button functions as a toggle allowing the user to set alternative angular display components.
- Dimension Notes. Notes can be added to the Dimension as trailing text.
- Color. Dimension color can be set independently as needed for the text, leader and arrow head. The default colors are defined within the Users Options (Figure 27-3).

Figure 27-3. User Dimension Color Options

To Change Settings for All Dimensions in a Collection at Once:

- Right-click the Dimensions category in the tree $>{ }^{d} \rightarrow$ Dimensions and select Set Common Properties to open the Common Dimension Properties dialog.
To Change the Size of All Dimensions in a Collection:
- In the Common Dimension Properties dialog, enter a new value in the Text Size field, then click 0K.
To Change the Display Orientation of All Dimensions in a Collection:
- In the Common Dimension Properties dialog, select the Screen, Along, or Leave Unchanged option.
To Change a Single Dimension's Properties:
- Double-click the dimension in the tree, or
- Right-click the dimension in the tree or graphical view and select Properties.

Dimension Properties

Point to Point Dimensions

These dimension types depict the distance between two points (Figure 27-4).

Figure 27-4. The properties of a Point to Point dimension.

Each point has an offset setting:

- No Offset. Dimension from the target or point's center.
- Add Target Offset. Adds the target's offset to the dimension. This simulates an inside caliper (as if you'd measured the inside of a box).
- Subtract Target Offset. Subtracts the target's offset from the dimension. This simulates an outside caliper (as if you'd measured the outside of a box).
- Dimension Components. Dimensions can be set to report either the direct line deviation (Magnitude) or can report a single axis deviation (X, Y, Z) relative to the reporting frame.

You can also control the display orientation for the dimension, as described in "Common Properties" on page 731.

Point to Object Dimensions

Figure 27-5. Properties of a Point to Object dimension.

Figure 27-6. Point to Origin.

The point end of this dimension is the same as described in "Point to Point Dimensions" on page 732. There is an additional option to Use Radial Offset Component. If enabled, the radial component of the measurement offset will be used for compensation instead of the planar comonent. This is useful, for instance, when you are measuring the distance from the closest point in a hole to a surface edge plane and are acquiring the hole measurement with a pin nest. On the other end of the dimension, the object can have one of four settings:

- Origin. Distance to the object's internal origin (Figure 27-6). For instance, the center of a circle or plane.

- Axis. Distance to the object's projected (extended) axis (Figure 27-7).

Figure 27-7. Point to Axis.

Figure 27-8. Point to XY Plane.

Figure 27-9. Point to Surface.

- Plane. Distance to the plane of the object, if applicable (Figure 27-8).

- Surface. Show the distance to the closest point on the object's surface/line/curve (Figure 27-9).

You can control the display orientation of the dimension as described in "Common Properties" on page 731.

Object to Object Dimensions

In addition to dimension linear distances between objects, object to object dimensions enable angular dimensioning as well (Figure 2710).

Figure 27-10. Object to Object Dimension properties.

Note: The internal Z axis of an object is typically the object's normal (for planes, circles, etc.) the Z axis (for frames) or the line direction (for lines).

The dimension can be tied to one of three features of each object:

- Origin. The distance from the object's internal origin. This feature setting for the dimension does not allow angular dimensioning, therefore the Angular option becomes grayed out.
- Z Axis. The distance to the object's projected Z axis (if Linear is selected), or the angle to the object's internal Z axis (if Angular is selected).
- XY Plane. The distance to the object's XY plane (if Linear is selected), or the angle to the object's XY plane (if Angular is selected).

Two settings particular to angular dimensioning dictate where the angular dimension appears:

- Dimension Radius. The distance of the angular dimension from the mutual intersection of the two objects.
- Angular Location. This button cycles through the four quadrant representations of the given angle, as illustrated in Figure 27-11.

Figure 27-11. Angular quadrants

You can control the display orientation of the dimension as described in "Common Properties" on page 731.

Diameter / Radius Dimensions

Figure 27-12. A diametrical dimension.

Diameter/Radius dimensions are ideal when the diameter or radius of a circle, cylinder, or sphere needs to be dimensioned (Figure 27-12).

The diameter/radius dimensions are shown in Figure 27-13:

Figure 27-13. Properties of a Diameter/Radius dimension.

- Diameter/Radius. Specify whether you'd like to dimension the object's diameter or radius.
- Display Angle. Specifies the angle around the circle to which the dimension is oriented.

You can control the display orientation of the dimension as described in "Common Properties" on page 731.

Callouts

Figure 27-14. Geometry relationship callouts in the graphical view.

Callouts offer a quick and easy way to annotate the graphical view in SpatialAnalyzer with screen oriented labels that are dynamic and easy to read. However, they also offer a wide range of control and flexibility to provide the means necessary to both annotate and display a complex 3D job from different perspectives. A simple example callout is shown in Figure 27-14.

Circle: Small Hole Measured - Small Hole				
Diameter	Nominal	Measured	Delta	Tolerance
X	-3.7500	0.7504	0.0004	
Y	3.7500	-3.7600	-0.0100	-0.0050
Mag XYZ		3.7500	0.0000	Pass

Creating a Callout View

Callouts are typically composed of two functional parts:

- Callout View. Which defines the perspective used to display the callout and controls any additional visibility settings.
- Callouts. These are the actual annotations added to the graphics that display information about the particular objects of interest. Multiple callouts can be added to the same Callout View.

Creating a Callout View

To create a new callout view simply press the 娄button in the Main Toolbar or use the add icon on the Reporting page of the Toolkit. This will create and activate a callout view in the tree. Double-Clicking a callout view in the tree will activate or deactivate (turn on and off) this callout.

Figure 27-15. An activated callout as it appears in the tree.

Adding Callouts to a Defined Callout View
Callouts can be added to just about any object displayed in the graphics in SA. To add a callout first define a callout view or set an existing callout as active and then select a callout type from the drop down list in the Main Toolbar or from the icons in the toolkit. You can then add callouts to points or objects by clicking on them in either the graphics or in the tree bar (Figure 27-16).

Figure 27-16. Adding Callouts

Types of Callouts

Text
Allows user to enter text in a callout placed in the view.
Point Labels
Point Label callouts provides a quick way to add a name label to a specific point or set of points. These callouts can be converted directly to Point Coordinate callouts if desired at any time.

Point Coordinates
Point Coordinate callouts are pre-configured to provide basic point name and position information (Figure 27-17).

Plane: : 4
X
Y
Z

Right-Click the Point Coordinate or Point Label callout to access the properties and display configuration for that callout type (Figure 2718).

Figure 27-18. Point callout properties.

Point Comparison
A Point Comparison callout can be used like a dimension to display the difference in position between two selected points. Their deltas are computed by subtracting the first selected from the second selected. Right-Click the callout to access properties (Figure 27-19).

Figure 27-19. A point comparison callout.

Figure 27-20. Properties for a point comparison callout.

Group Comparison

This callout option provides an efficient way to compare the corresponding point pairs in two selected groups. It adds individual point comparison callouts to each of the matched points in each group. Their deltas are computed by subtracting the first selected from the second selected. Right-Click the callout to access properties.

Vectors

Vector callouts annotate selected vectors with a vector group. They can be configured to display both the magnitude and tolerance information as needed (Figure 27-21), which can be configured through the right-click properties (Figure 27-22).

Min/Max Vector Group
In many cases users are only really interested in annotating the largest or smallest deviations displayed by a vector group. The Min/Max Vector Group callout provides a means to specify how many callout to add and have them added automatically to the vector group by picking any single vector in that group.

Figure 27-21. A vector callout.

Figure 27-22. Vector callout properties.

Relationship
While relationships are not actually graphical entities, they can still be used in displaying key information about the objects or points within the job file. Callouts can be added to any relationship by selecting the relationship either through the tree or by using the F2 selection menu. An example Geometry relationship callout is shown in (Figure 27-23). Right-Click the callout to access the extensive relationship callout properties (Figure 27-24).

Figure 27-23. A relationship callout.

Object and Object Label

These annotations can be added to any object. Just like point labels the Object labels only list a name for the object but can be converted to full object callouts at any time. Annotates selected object properties (Figure 27-25). Right-Click the callout to access properties.

Figure 27-25. An object callout.

Callout View Properties

Figure 27-26. Callout view properties.

Save Viewpoint

The callout view defines the perspective on the job set when the callout is displayed/activated. In its simplest form, it sets the view orientation and zoom depth on the 3D objects shown in the graphics. In addition the callout view properties allows you to do the following:

The Save Viewpoint button provides the operator the ability to redefine the saved view orientation and zoom depth used to display the features of interest. The initial view is saved when the callout is created and can be redefined at any time.
Lock Viewpoint
The Lock check box allows a user to lock the current view of the callout when activated so that the graphics cannot be rotated.

The Recall Working Frame checkbox allows the callout to set the working frame to a specified frame when the callout is activated. This can be helpful when reporting a section of the job relative to a particular coordinate frame. However, changing working frame will require a job recompute which can slow the display process.

Recall Visible Layers
The Recall Visible Layers check box allows a user to configure the job to an even greater extent when setting callouts. This function allows the operator to define which objects are either shown or hidden when the callout is enabled. This visibility is defined as a layer which is named and saved in Layer Manager (see "The Layer Manager" on page 114).

Annotation Display Properties
The final section of the callout view allows the default graphic display options to be set for the callout view. This will set the default properties for each new callout added to that particular callout view.

If you cannot communicate your results with your customer, then all of your measurement and analysis work is pointless. Fortunately, SA provides you with many different tools and capabilities for reporting your measurement results.

SA Reports

The SA Report allows a user to "drag and drop" items from the tree into the Spatial Analyzer Report Designer Editor where items can be arranged, formatted and edited to convey the user intent. If values/ information change in the tree, the SA report will reflect that change.

The Report Designer

The Report Designer is the canvas on which the user will create their report. The Report Designer supports standard functionality such as click and drag, re-sizing and Left/Right Clicking with context menus. The Report Designer also contains a toolbar (Figure 28-1) with useful reporting tools and options.

Report Toolbar
Figure 28-1. The Report Designer
toolbar.

- Print Current Report. Displays print dialog for the current SA Report.
- + 四 皆 Save As PDF. Allows the current SA Report to be saved as a PDF document.
- \triangle Global Reporting Options/Page Setup. Displays SA Report options such as Page Layout, Default Fonts and other options.
- Report Refresh. Refreshes the SA Report with the current values from the tree.
- © Document Zoom In. Increases the scale of the report.
- $\Theta_{\text {D }}$ Document Zoom Out. Decreases the scale of the report.
- Document Zoom 100\%. Restores the report scale back to 100\%.
- 图 Export to Excel. Exports the current SA Report to Microsoft Excel.
- 室 Auto Adjust Report Whitespace. Removes excess vertical spaces between report items.
- Lock Report. When clicked the SA Report becomes static and will no longer receive updates from the tree.
- ? Help. Displays useful information regarding how to navigate and interact with the Report Designer.

Report Header

Figure 28-2. A report header in the Report Designer.

Page Layout

Creating an SA Report
An SA Report can be created several ways--as the result of a:

- Quick Report
- Composite Report
- Report Template

To create a blank SA Report, use the menu item Reports>Add SA Report.

Figure 28-3. An SA report as it appears in the tree.

To open/edit an existing SA Report, expand the SA Reports category in the tree and right-click and select View. You can also double-click the respective SA Report to view it (Figure 28-3).

Adding Items to the Dynamic Report

Simply click on an item in the tree and drag into the report window. Once inside the report, items can moved by dragging them.

Adding Snapshots to the Report

Use the Camera Button to take a snapshot of the SA graphic window. The snapshot will be placed into the tree under the Pictures category.

The picture can be placed into the report by dragging, as with other items (Figure 28-4).

Once the picture is in the report it can be re-sized by dragging a corner of the image.

Adding Text to Report

Click any open space and start typing to add text. Or paste text from clipboard into any open space (Figure 28-5).

Report Fields

Fields are text boxes that accept input via the keyboard or can be set by a Measurement Plan. There are two types of fields: Input fields and Output fields.

- Input Fields. Fields intended for input from the user. They display a yellow background (red until filled in, if a required field).
- Output Fields. Fields intended to display output. These fields have gray backgrounds.

To add a field to a report, right-click on the canvas and select Add New Field.

To add an input field, choose the Input radio button. If it is a required field, check the Required option. A required field will have a red background until it is filled in, and any attempts to print the report or send it to PDF will display a warning dialog.

To add an output field, choose the Output radio button. The value displayed in output fields can be set from a specific value, or from a tag (see below).

Tags
Every field (both input and output fields) can be assigned a tag. There are two types of tags: system tags and user-defined tags.

- System tags include << Date/Time >> and << Filename >> and automatically populate the field with the current date/ time or filename (additional system tags will be added in the future). System tags can only be assigned to output fields. To create a system tag, select one of the system tags from the dropdown list in the Tag field.
- User-defined tags are tags that you have created yourself (such as "MyTag" that allow you to reference the field from measurement plans so that a script can fill out the field automatically. To create a user-defined tag, just type a unique tag name into the Tag field. You can also assign an existing tag to a field in order to populate multiple fields with the same value.

Field Value

A field value is used to populate the field. Field values are always displayed in the field itself, and are changed when a script or a user modifies the field.

Tables

To add a table to a report, right-click the canvas and select Add New Table. Specify a name for the table, and the desired number of rows and columns.

Tables can be resized by dragging their corners, or the left/right/bottom sides. Interior cells can be resized by dragging any internal horizontal or vertical line. Drag the interior of any cell to move the entire table.

To modify the number of rows or columns in a table, right-click the table and select Table Properties.

To insert or delete rows or columns or to change the alignment of a cell, right-click a cell and then choose Cell Options.

Add an input or output field to a cell by right-clicking a cell and selecting Cell Options.

Modifying Items in the report

Items in the report can be modified by right-clicking the report item and selecting Report Options. Depending on the item, a context sensitive menu will appear. All items have the following common options: Report Options, Remove from Report, Bring to Front, Send to Back, and Properties.

Events

Figure 28-6. A best fit transformation event in the tree.

SA Events provide detailed information for major events that occur in SA. These events can be viewed in the Report Bar or be added to any Report (Figure 28-6). Events are created automatically when certain functions are performed and are stored in the tree.

SA Events are generated for:

- Best-Fit Transformations
- Best-Fit Geometry
- Move Objects by Minimizing Relationships
- Unified Spatial Metrology Networks (USMN)
- Quick Align to CAD
- Queries
- CAD Imports
and more to come!

Object Report Options

Items in the tree have report options that can be accessed and configured per the users needs. You can access by right-clicking the object and selecting Report Options (Figure 28-7).

Figure 28-7. Report options.

Report Options			
Components			
Point A	\square Point B	\checkmark Delta	\checkmark Mag
	$\square Y$	囯z	
Format			
\square Include Summary Table			
(1) Single Line, Name, XYZ, XYZ, Delta			
\bigcirc Multi-Line: X YZ Horizontal			
	Point A Point Delta Told Tol d Tol Tx Amt.Out Ax	Y Y Y Y Y d dMag Sy It	
O Multi-Line: $X Y Z$ Vertical			
	Pta PtB Dell \times X $d x$ Y Y $d y$ Z Z $d z$ $d m$	$\mathrm{T} \cdot$ $\mathrm{T}+$ Amt. Tx Tx 0 Ox Ty Ty $0 y$ Tz Tz $0 z$ Tm Tm Om	
O None			
Tolerance Fields Point Order			
Vhow		Sort by Point Names	
Default Seltings			
Make Default		Apply to All	
OK			Cancel

Quick Report

A Quick Report is a fast and easy way to create an SA Report of a single object or multiple objects when using Composite Quick Report.

Creating a Quick Report

To create a Quick Report of a single item, right-click the item of interest in the tree and select Generate Quick Report. An SA Report of the object will be created and saved in the tree.

Creating a Composite Quick Report

A Composite Quick Report is a fast way to create an SA Report of several items. A Composite Report can be created by right-clicking a category in the tree and selecting Composite Quick Report or from the menu Reports>Composite Report - All Collections.
To exclude or include an item from a Composite Quick Report, simply
right－click the respective item in the tree and select Include in Composite Quick Report．

Report Bar

Figure 28－8．A vector group in the Report Bar．

The Report Bar can serve as quick reporting tool allowing the user to view items quickly and also store the views in a tabular format（Figure $28-8$ ）．The report bar can also combine the report tabs into a compos－ ite report．

Report Bar Toolbar

－Capture Current View．Creates a picture item in the tree of the current graphical view．The picture will display in the report bar under the current tab．
－Clipboard Help．Displays help information regarding meth－ ods of copying Report Bar data to the clipboard．
－Object Properties．Displays the current tab object proper－ ties．
－图Current Object Report Options．Displays the report op－ tions for the current tab．
－⿴囗 Include Current Object in Composite Report．Sets the current object to be used in a Composite Report．
－\quad Quick Report．Generates a Quick Report from the current tab．
－Generate Quick Report from Tab Order．Generates a Quick Report from all Report Bar tabs．
－Io New Report Tab．Creates a new tab in the Report Bar．
－Close All Tabs except Current．Closes all Report Bar tabs except for the currently selected tab．

- \approx Refresh Report. Refreshes the Report Bar with current information.

Displaying the Report Bar

To display the Report Bar use the menu option Report>Report Bar Visible.

Using the Report Bar

Adding an Item

Figure 28-9. The item currently selected in the tree is displayed in the Report Bar.

To add an item in the Report Bar simply select an item in the tree by single-clicking the item. Once selected it will display in the Report Bar. The currently selected item in the tree will always display in the current Report Bar Tab (Figure 28-9).

Adding multiple items to the Report Bar requires multiple tabs. Add a new tab by using the 居icon. The new tab will appear with the currently selected tree item. Select the next item from the tree to view.

Removing an Item
To remove a Report Bar item, click the " X " icon in the bottom righthand corner of the Report Bar (Figure 28-10). All tabs, except the current tab, can be cleared by using the icon.

Figure 28-10. Removing a Report Bar item.

Generating a Report
If needed, an SA Report can be generated from one or all of the Report Bar tabs. Use $\#$ to generate a report of the current tab or to generate a report from al Report Bar tabs.

Report Templates

SA Report Templates offer a repeatable method for creating reports of items from the tree. Once created they can be used repeatedly.

Creating an SA Report Template

Select Reports>Add New SA Report Template from the menu and a report template will be created in the tree (Figure 28-11).

Figure 28-11. The SA Report Template dialog.

Figure 28-12. The Report Instructions box.

Inside the SA Report Template the inputs and outputs are controlled in the Report Instructions box (Figure 28-12). Simply use the Add or Remove buttons to control items availability in the report.

The OutputSelection defines the output format and location of the report when it is generated (Figure 28-13). Choose from embedded locations or external locations.

Figure 28-13. The Output Selection box.

Generating the Report

Once the Report Template is designed and saved, a report can be generated. Simply right-click the respective SA Report Template and choose Generate (Figure 28-14). The report will be created and saved in the prescribed output format.

Figure 28-14. Generating a
report from a template.

Measurement Uncertainty

"A measurement result is complete only when accompanied by a quantitative statement of its uncertainty." - National Institute of Standards and Technology (NIST). This chapter introduces measurement uncertainty, discusses how uncertainty is calculated in SA, and provides some guidance on refining measurement uncertainty estimation.

What is Measurement Uncertainty?

Put simply measurement uncertainty is a statement of how sure you are that the objects true position is where you say it is.

Being able to estimate uncertainty is important. Many organizations have standards requiring that measurements include a statement of the measurement's uncertainty. For instance, the International Organization for Standardization (ISO) "Global Product Specification" requires that part measurements have both measured values and uncertainties, and the National Institute of Standards and Technology (NIST) specifies that "a measurement result is complete only when accompanied by a quantitative statement of its uncertainty."

It is important to realize that uncertainty calculations are always going to be a process of estimation. Instrument manufacturers have put a lot of effort into isolating and quantifying the accuracies of their measurement systems and reporting an accuracy spec with their product. However, in a real measurement application there are many more factors that can influence uncertainty. Examples include:

- Instrument uncertainty and accuracy at a given distance
- Added targeting or tooling uncertainty
- Environmental influences, such as wind, vibration, etc.
- Operator influences, particularly with instruments that rely on sighting.
- Geometry contributions
- Fixturing influences
- Scale or temperature uncertainty
- Networking instruments builds interrelated measurement systems whose combined characteristics are dramatically different than the individual source measurements.

In addition, measurement uncertainty statements typically report a spherical uncertainty and do not address the more complex geometric nature of a measurement in determining its accuracy. Surprisingly the simplification of reporting a +/- value may lead you to overestimate the true uncertainty if you were to look at the position in 3 dimensional space.

SA takes a different approach to uncertainty estimation by striving for objectivity. It provides a clearly defined set of variables to actively model the uncertainty in measurements from the primary contributing variables, it provides a means to build and visualize these uncertainties in 3D and then evaluate the influence of instrument position and point distribution based upon these defined variables. It provides a tool that enables metrologists, engineers, customers, and even managers to communicate effectively.

Measurement Uncertainty and Visualization in SA

The best way to determine the uncertainty in the measurements from your instrument in your environment is to measure a point many times under those conditions. For example, if you were to simply measure a point 100 times you would end up with a group of points all with slight deviations from one another. There would be a greater number of points near the center of the group and fewer as you looked outward from that center location to the few outliers along the periphery (Figure 29-1). This variation can be described in statistical terms as a Gaussian distribution.

Figure 29-1. Multiple measure-
ments of the same target

SpatialAnalyzer takes this fundamental principle and expands on it to provide the ability to compute and report unique measurement uncertainty estimates for each and every supported instrument. Rather than providing a long list of computed uncertainty estimates, SA presents uncertainty data visually as a point cloud (around the measurement) that represents the target's region of uncertainty. This point cloud is called a sensitivity cloud and represents what you could expect to see if you were to take many measurements of that same point location.

Mathematically SA utilizes a Gaussian random number generator (utilizing a Box-Muller algorithm) to build this sensitivity cloud. Considering that real-world, natural processes tend to have a Gaussian distribution this is a logical choice to model the expected distribution. It builds uncertainty clouds in three dimensions based upon the uncertainty values of the instrument and a user specified number of samples. The amount and type of error that is inserted is based on the precision of the measuring device.

Calculating Uncertainty of a Point in SA

To calculate the uncertainty of a point in SA you can simply go to the properties menu of a specific point and press the Compute button (Figure 29-2). This will build an uncertainty cloud for that point. You can also build a set of uncertainty clouds for selected points using the command Analysis> Coordinate Uncertainty>Create Point Uncertainty Fields

The magnification and confidence interval for uncertainty cloud display properties can be changed under the User Options. These computed values and resulting uncertainty cloud are based upon several setting:

1. The User Options settings for the confidence interval, the number of samples to compute, and the magnification value used to help visualize the cloud in the graphics.
2. Instrument Uncertainty settings for the instrument that took the measurement.

Confidence Interval and User Option Settings

The Users Options provides a set of controls for both uncertainty computation and reporting purposes on the Analysis tab (Figure 29-3).

Figure 29-3. Uncertainty Computation Controls

The Confidence Interval directly determines the reported uncertainty magnitude values reported for a point. For example, if you use the default 1.0 sigma Confidence Interval then you are making a statement in your report that you have a 68.26% confidence that the true measurement lies within the uncertainty parameters. If you want higher confidence, you can set the uncertainty to 3.0 sigma for example, which will greatly increase the uncertainty magnitudes reported but allow you to state a 99.74% confidence (Figure 29-4). Distribution

Figure 29-4. Normal or Gaussian

The number of samples used in this calculation can also be adjusted. The default is 1000 . Increasing the number of samples give you a better estimate but will also take more time to compute while reducing the number will accelerate the process but cause outliers to have a bigger influence on the results.

Sensitivity clouds are handled separately from all other point clouds. For this reason we have a separate magnification value to help visualize these clouds graphically. Increasing the magnification value will scale the cloud about the measurement to make it easier to see. The deviations can also be depicted as lines drawn from the measured point.

Instrument Uncertainty Values

The most important part in calculating the uncertainty of a measurement is the uncertainty parameters of the instrument that took the measurement. The Uncertainty Variables can be accessed through the instruments property menu and will depend on the type of instrument (Figure 29-5).

Looking more closely at the uncertainty settings for a Tracker or Total Station you will see there are 4 parameters, which are depicted graphically in (Figure 29-6):

- Theta or Horizontal Angle. The angular accuracy of the instrument in determining vertical position of a target.
- Phi or Vertical Angle. The angular accuracy of the instrument in determining horizontal position of a target.
- Distance Error. The fundamental accuracy of the instrument in determining distance at any range.
- Parts per million. Which compounds the distance error the further the point is from the instrument base.

PCMM arms on the other hand are not spherical measurement devices. Rather than having 4 uncertainty variables, arms have a degree of uncertainty in each and every joint that must be considered independently. Therefore, a 7 Degree of Freedom arm will have 7 separate joint uncertainty values each of which could potentially be changed. Each of these variables will contribute to the instruments measurement uncertainty.

Default Instruments Uncertainty Settings

The first question that every instrument reseller asks when they start to use SA is "why are the default instrument uncertainty values so high". It's important to remember that the default Instrument Uncertainty Variables are not intended to match the manufacturer instrument specifications. Rather, they are intended to encompass all the uncertainty in the measurements. These values have been determined to be a conservative first guess as to the overall error resulting from the instrument accuracy and real-world variability resulting from work in the field. In many cases these values have turned out to be accurate depictions of the true measurement uncertainty.

It's helpful to keep in mind that the default values are intended to be a initial estimate. Through the use of a USMN network alignment it is possible to experimentally determine the true instrument uncertainty parameters for your instrument in your environment. These values can then be entered into the Instrument Properties and to provide a better estimation of further point uncertainties within those specific condition. For more information on the process refer to the Chapter on USMN (see"Using USMN" on page 782).

Basic Uncertainty Computation Process for a Tracker/Total Station:

A basic point uncertainty computation for a tracker or total station or other spherical measurement device is performed as follows:

1. The linear distance from instrument to the coordinate is determined.
2. The Confidence Interval set in the Users Options is used in conjunction with the Uncertainty Variables set in the instrument properties to determine the range of potential uncertainty in each parameter (Horizontal Angle, Vertical Angle, and Distance).
3. The point coordinates values are perturbed using a Gaussian random number generator (utilizing a Box-Muller algorithm) to build a new point coordinate, injecting random error into each of these instrument variables.
4. The process is repeated as many times as is necessary to built an uncertainty cloud as large as is requested.

The distribution of the resulting uncertainty points can be viewed in 3 dimensions and will have different characteristics depending on the instrument uncertainty variables and the distance. A direct comparison between a laser tracker and a total station provides a good example of the differences in cloud shape with different uncertainty parameters.
Figure 29-7 depicts a magnified uncertainty cloud for a laser tracker. Laser trackers have accurate distance measurements, but often the angular measurements are not nearly as accurate. As a result the uncertainty clouds inherits a flat "pancake" shape--there is less uncertainty in distance than angle, so the uncertainty cloud tends to be thin (along the line of sight) and wide (perpendicular to the line of sight).

Figure 29-7. A tracker measurement's uncertainty cloud.

Figure 29-8. Changes in Cloud shape with Distance

Notice also that as measurements get further away from the tracker, the uncertainty becomes larger, manifested as larger uncertainty clouds (Figure 29-8).

On the other hand, a total station's azimuth/elevation angle measurements can be far more accurate compared to its distance measurements. Notice how the uncertainty clouds are elongated and cigarshaped: there are high uncertainties along the line-of-sight, but low uncertainties perpendicular to the line-of-sight (Figure 29-9).

Figure 29-9. The uncertainty cloud for measurements from a total station.

Figure 29-10. Comparing the shapes of the two uncertainty clouds.

Viewed side-by-side (Figure 29-10), the differing characteristics of each instrument result in drastically different measurement uncertainties (in size, shape, and density):

Basic Uncertainty Computation Process for a PCMM Arm

The uncertainty characteristics of a portable CMM arm are even more complex, depending on the behavior of the encoder in each joint and the configuration of the arm when the measurement is taken. However, the computation process follows the same sequence:

1. The individual joint angles and lengths for each segment are recorded with each measurement along with the final point
coordinate relative to the instrument base.
2. The Confidence Interval set in the Users Options is used in conjunction with the Uncertainty Variables set in the instrument properties to determine the range of potential uncertainty in each parameter (Each individual joint's uncertainty)
3. The point coordinates values are perturbed using a Gaussian random number generator (utilizing a Box-Muller algorithm) to build a new point coordinate, injecting random error into each of these instrument variables.
4. The process is repeated as many times as is necessary to built an uncertainty cloud as large as is requested.

Figure 29-11. The uncertainty cloud shapes for a portable arm.

Uncertainty for Points with Multiple Observations

For instruments that do not provide a distance component, points must be built with more than one observation. It is also possible to combine additional shots into any point computation. The uncertainty of that point therefore is based upon 2 factors:

1. The network or instrument placement uncertainty for each instrument measuring the point. This uncertainty needs to be determined as part of the network alignment operation.
2. The composite point uncertainty. Which is calculated based up on the size of the overlapping point uncertainty fields.
Because the instrument placement uncertainty plays such an impor-
tant role in point uncertainty calculations for combined point uncertainties this subject is covered as part of the weighted bundle section of the USMN chapter (see"Weighted Bundle" on page 778).

Measurement Analysis with Uncertainty Fields

This section addresses applications of coordinate uncertainty fields beyond the uncertainty in a measured coordinate value. Often, the measurement task is not only to determine XYZ coordinate values of points as measured by the instrument, but also to evaluate the true, as-built, shape of an object. In these cases, the coordinate values measured by the instrument are only an intermediate result in the metrology job.

This means that in order to determine the uncertainty of the actual geometrical analysis operation, other methods must be used. The discrete point cloud uncertainty fields are well-suited for such an analysis.

Point to Point Distance Uncertainty

The uncertainty in the distance between two points can be computed with a function within SpatialAnalyzer. Use the menu selection Query >> Sensitivity Cloud to >> Sensitivity Cloud. Select any two points that have uncertainty fields associated with them to complete the process. SA uses the uncertainty cloud from each point to compute the geometric uncertainty between the points (Figure 29-12).

The analysis includes:

- Nominal Length. The length between the points
- Uncertainty. The uncertainty in that nominal length reported based on the standard deviations of all the distances pairs between the two uncertainty fields.
- Min \& Max. The minimum and maximum distances between the points.
- Range. Distance between the min and max distance.

Geometry Fit Uncertainty

The fitting of measured data to geometrical shapes is quite common in measurement analysis. One of the most common is the sphere fit. Tooling ball measurement is very common since it is often used to corresponding common measurements or transform into nominal coordinate systems. The measurement device may measure several hundred points on the tooling ball, perform a best-fit sphere analysis, and return the center of the sphere as the XYZ value. In this case, a statement of the uncertainty in the sphere fit should accompany the XYZ center point of the sphere.
Using the discrete point cloud representation of the uncertainty field, it is a straightforward task to determine the effect of the measurement uncertainty on the resulting geometrical fit. A description of this process follows:

First, a geometrical fitting operation is performed on the actual measurement values, or the optimal common points as determined in the simultaneous system combination portion of the USMN solution. This result is stored as the baseline for the geometrical properties. In the case of a sphere-fit, the results are a center point (X, Y, and Z), and a radius.

Next, the geometric fit operation is repeated for all the points in the uncertainty fields. The result is a list of geometrical parameters representing the "uncertainty field" of the geometry. These sets of parameter values may be evaluated using methods similar to the uncertainty field numerical evaluations. By computing the standard deviation of each of the variable lists, and applying the desired confidence interval, a fit uncertainty statement may be given.

If the uncertainty fields for the points in the fit contain a different number of uncertainty field points, the largest quantity is used in the analysis. When the uncertainty field index exceeds the total number of points in the smaller clouds, they just loop back to the first point and reuse the cloud.

Sphere Fit Uncertainty Example

The measurement of a tooling ball with a laser tracker is accomplished by sweeping the laser tracker target across the sphere to obtain sufficient coverage for a sphere fit. Typically, laser tracker targets are 1.5 inch spheres with a center-mounted retro-reflector. Figure 29-13 shows two sets of measurement data on a $1 / 2$ inch tooling ball. One set shows typical coverage of the sphere while the other shows inad-

Figure 29-13. Tooling Ball measurements using an SMR
equate coverage.

Notice that the data is offset from the actual sphere. This target offset is one of the factors that must be properly handled in all measurement analysis. In the case of a sphere fit, this is accomplished by adjusting the objective function so that the optimal solution is one where the measured points are $1 / 2$ of the target diameter away from the best-fit sphere.

As discussed previously, the analysis begins with a computation of the best-fit sphere for all the actual measured points. This is stored as the nominal value to which all subsequent fits are compared. Then, the first point from each cloud is used and another fit is performed. The results are tabulated. This process is repeated for the second point, third, and so on until all the points in the cloud are exhausted. The result is a tabulation of sphere fit results. By applying basic statistics to these results, a statement of their uncertainty is made. In this particular case, the entire process was repeated twice, once for the small data set, and then again for the larger data set. The results of this analysis are shown in Table 11.6.

Figure 29-14. Sphere Fit Analysis

	Small Coverage	Large Coverage
Sphere Center:		
Ux	0.0018	0.0003
Uy	0.0027	0.0004
Uz	0.0012	0.0002
Umag	$\mathbf{0 . 0 0 3 5}$	$\mathbf{0 . 0 0 0 5}$
Udia		
	0.0067	0.0008
Analysis time (P-4 1.3 GHz)	3.3 sec.	3.7 sec.
Points in Fit	186	222
Field Points	1000	1000

Sphere Measurement Coverage Comparison

This example not only underscores the importance of adequate measurement coverage when fitting a sphere, but it also demonstrates the need for uncertainty analysis. Depending on the measurement instrument and the shape of the uncertainty fields, the uncertainties in geometrical fits can be significant.

Cylinder Fit Uncertainty

Applying these methods to other geometrical shapes is a straightforward process. In this example, two sets of cylinder measurement data are investigated. The first maintains a thin area of coverage on the surface of the cylinder, while the second covers a larger portion of the surface. The analysis methods are identical to those in the previous example with the exception of the parameters that are tabulated. Figure 29-15 shows the actual measurement data sets used in this example and the resulting best-fit cylinder. Figure 29-16 shows the numerical results of the analysis and provides a comparison of the two measurement geometries. Notice the reduction in the uncertainty of both the axis of the cylinder and the diameter in the case of the

Figure 29-15. Cylinder Measurements

	Small Coverage	Large Coverage
Cylinder:		
U Axis (deg)	0.0021	0.0009
U Diameter (inches)	0.0027	0.0005
Analysis time (P-4 1.3 GHz)	14.7 sec.	32.3 sec.
Points in Fit	217	495
Field Points	1000	1000

How to Perform a Geometry fit with Uncertainty:

In order to calculate the uncertainty in the Geometry fit

1. Use Analysis>Coordinate Uncertainty>Create Point Uncertainty Fields to build the uncertainty clouds for your measurements.
2. Use Analysis>Coordinate Uncertainty>Fit Geometries using Uncertainty Fields to begin the analysis.
3. Select the geometry type to use for the Fit.

The analysis will be performed and the results reported for review. To save the results externally select the Save to File option or simply choose Accept. This will build an event in the tree with the recorded statistics that can be added to a report (Figure 29-17).

Geometry Fit Uncertainty Analysis

 3/21/2016 11:13:46 AMGeometry Fit Uncertainty Analysis
131 points: Uncertainty field count ranges from 1000 to 1000 68.26\% Confidence Interval (1.0 sigma)

Working Frame: A::WORLD, Units: (in)/Degrees
Cylinder:
Diameter Uncertainty: 0.0004 [Inches]
Cylinder axis uncertainty: 0.2011 (deg.)
Angle about $+X$ from $+Y$ in $Y Z$ plane: 0.1353
Angle about $+Y$ from $+Z$ in $X Z$ plane: 0.1488
Angle about +Z from +X in XY plane: 145.2861
Analysis time: 0.7 sec
Cylinder Fit Results:
Radius $=0.5516$ (in) (free)
Diameter $=1.1032$ (in)
Length $=0.3452(\mathrm{in})$
Translation (in): $x=4.7252, y=1.9704, z=0.3409$
Rotation Degrees: $\mathrm{Rx}=-0.3168, \mathrm{Ry}=-0.0355, \mathrm{Rz}=153.4826$
Direction: $x=-0.001914, y=-0.005223, z=0.999985$
Proj. Ang. Degrees: Rx from $\mathrm{Y}=90.2993$, Ry from $\mathrm{Z}=-0.1097$, Rz from $\mathrm{X}=-110.1259$
DEVIATION STATS
Mean $=-0.000000 \quad$ RMS $=0.001916$ (in)
Magnitude
\mid Max $|=0.004960 \quad| \operatorname{Min} \mid=0.000015$ (in)
Signed
Max $=0.004960 \quad$ Min $=-0.004409(i n)$

Interpreting the Results

The following information is reported when performing a Geometry fit with Uncertainty analysis:

Fit summary:

- Number of points. (131 points) The number of point selected for the analysis.
- Uncertainty field count ranges. (1000 to 1000) Each point has it's own uncertainty cloud build prior to the analysis. This field states the min and max number of uncertainty points build for list of point using in the computation.
- Confidence Interval. (1.0 sigma or 68.26\%) As uncertainty is statistic process, we give the result at 1 sigma in this case. You could change this value inside User Option>Analysis>Uncertainty
- Working Frame. (A::WORLD) Result are always given in specific
axis, this is the frame used for the result (the active one when the analysis was done).
- Units. ((mm)/(deg)) Values without units mean nothing, so the results are given using.

Feature Uncertainty Results :

The computed uncertainty values for the feature:

- Feature Type. (Sphere, Plane, Circle, Cylinder, Line, Paraboloid)
- Center Uncertainty. ($X=4.7252, Y=1.9704, Z=0.3409$) The component uncertainty of the center point along each axis of the working frame (Circles \& Sphere's only).
- Diameter Uncertainty. (0.0004in) The uncertainty in the diameter of the feature (Circle, Sphere, and Cylinder only)
- Normal Vector Uncertainty. (0.2011(deg.)) 3D angle uncertainty in the normal vector of the feature described.
- Projected Angles. The component representation of the normal vector of the feature axis:
- \quad Angle about +X from +Y in YZ plane. (0.1353) Angle uncertainty about the X axis, trigonometric orientation

Angle about +Y from +Z in XZ plane. (0.1488) Angle uncertainty around Y axe, trigonometric orientation

Angle about +Z from +X in XY plane. (145.2861) An gle uncertainty around Z axe, trigonometric orienta tion. Note that it's normal to have a big uncertainty in rotation about a cylinder's axis because this position is not constrained.

- D Uncertainty. (0.0124 [Millimeters]) The 3D equation of a plane can be described by $A x+B y+C z+D=0$, where D is the uncertainty in the placement/distance from the reporting frame origin (Planes only).
- Position. ($x=-0.258814, y=-0.000017, z=-0.965927$) reported origin or centroid location of the plane also resolved by the ABCD notation.

Rotation. ($\mathrm{Rx}=-169.2707, \mathrm{Ry}=-10.5442, \mathrm{Rz}=134.0061$) representation of a planes normal vector relative to the working frame.

- Percent Coverage. The extent of surface coverage provided by the measurements (Sphere's only).
- Focal Length Coverage. (0.001) The uncertainty in the focal
length (Paraboloid only).

Computation Statistics:

- Analysis time. $(0.1 \mathrm{sec})$ Statistics calculation take time, especially if you have a lot of points and larger numbers of uncertainty samples (minimum 300, generally 1000).

Feature Fit Results:

The computed statistics of the best fit feature. This section describes the position, orientation, and size of the best possible feature fit determined by the uncertainty analysis.

Deviation Statistics:

The deviation statistics for the best fit feature.

- Mean. The mean deviation of the points from the feature.
- RMS. RMS = Root Mean Square or the quadratics mean if you prefer.
- Magnitude:
\mid Max $|=0.049358 \quad| \operatorname{Min} \mid=0.049352(\mathrm{~mm})$ min and max error value in absolute (without + or -)
- Signed

Max $=0.049358 \quad$ Min $=-0.049356(\mathrm{~mm})$ min and max error value

Unified Spatial Metrology Network

Spatial Analyzer provides one of the most advanced network alignment tools on the market (USMN). Through the use of advanced weighting algorithms, customized instrument uncertainty and by calculating the intersections between 3D uncertainty clouds it provides the most robust network alignment possible.

What is USMN

Figure 30-1. Part of a large USMN network.

What is USMN?

USMN (Unified Spatial Metrology Network) is an advanced tool for combining common measurements for two or more instruments into a single instrument network. It has several major benefits over other analysis tools, such as a best-fit:

- It provides a means for calculating a "weighted bundle": the most likely position and orientation for all instruments and targets in a measurement network.
- It provides the capability of calculating realistic uncertainties for measurements in a measurement network.
- It can be used to evaluate the real-world uncertainties of instruments on an individual basis.
Let's consider each of these benefits in order to get a true grasp on the benefits of USMN.

Weighted Bundle

Figure 30-2. Comparing the Shapes of Two different Uncertainty Clouds

As discussed in the previous chapter on Measurement Uncertainty (see "Measurement Analysis with Uncertainty Fields" on page 769), each instrument type has its own uncertainty characteristics. By simulating measurements of a point while inducing normalized random error using those uncertainty variables its possible to build uncertainty clouds for points measured by that instrument. This provides an accurate estimate of the points uncertainty both visually in 3D as well as numerically. Viewed side-by-side (Figure 30-2), the differing characteristics of each instrument result in drastically different measurement uncertainties (in size, shape, and density):

Now, consider the situation in which a long part is to be measured. Due to its shape, this part might require multiple instrument stations along its length. In order to tie all of the measurements into a single coordinate system, a number of common points are measured between adjacent sets of instruments, and then these points are bestfit together to determine the overall instrument network. For some cases, this method is a perfectly valid approach, and in fact, this is the approach taken by other metrology software packages for tying a network of instruments together. In particular, fairly small instrument

Figure 30-3. Positional errors resulting from leap-frogging an instrument along a length.
networks with low uncertainty requirements can use this approach without problems.

However, using best-fit introduces error stack-up, very similar to the idea of tolerance stack-up in engineering drawings. This error stackup can be significant. Figure 30-3 depicts an instrument network using a best-fit compared to the true instrument positions (ghosted). A slight error for the first set of common points (between Instruments A \& B) will move the position and orientation of Instrument B out of its true position. By fitting Instrument C to Instrument B, not only does Instrument C inherit the error from the first set of common points (which has now been "leveraged" by its distance from those common points), but now errors in the common points between Instruments B \& C cause even more error to stack up. The end result is a network that could potentially be quite different from reality.

When more accuracy is desired--or when the measurement network is elongated, large scale, fairly 2-dimensional, or C-shaped (nonclosed, meaning the first instrument is not tied back to the last), then best-fitting is usually inadequate. Some examples of real-world measurements that get significant benefit from USMN include particle accelerator measurements (very large and mostly 2-dimensional), large linear measurements with high accuracy requirements (such as the catapult rail on an aircraft carrier), and large "open" networks (such as measurement of two sides of a building).
Instead of using a best-fit, USMN takes an intelligent weighted bundle approach. USMN examines each common measurement and considers the characteristics of the instruments that measured them and their positions in space. Components of instrument observations which are considered to have low uncertainty are assigned a higher weight than components that are considered to have higher uncertainty. If a total station and laser tracker measure a common point from different angles, then the angular measurement from the total station will be assigned more weight than that of the tracker, and the distance measurement from the laser tracker will be assigned more weight than that of the total station.

Once these weights are assigned, the instrument transforms are ad-
justed to calculate their most likely positions based on all available information. The net result is an instrument network that is significantly closer to reality than the best-fit network described above.

In summary, USMN considers each instrument's uncertainty variables and perturbs instrument positions in order to get minimal measurement closures on the common points. This is similar to a traditional bundle process, except the optimization process uses the estimates of the instrument uncertainties and the range of each observation to weight the individual contributions for each measurement.

Network Measurement Uncertainties

Instrument measurements (observations) can have uncertainties calculated that indicate the uncertainty of a given measurement relative to the instrument. But when instruments are networked together, this simple uncertainty no longer applies, because the common point position in a networked measurement is really determined by a combination of instruments that measured the common point. In fact, the computed common point in the real world never lies on top of any of the component observations (because the world is not perfect--unfortunately!). This highlights the second major advantage to USMN: the ability to calculate "net uncertainties" for common points.

Refer to Figure 30-4. A total station and laser tracker have measured a common target in a nest. Due to noise, operator error, and a number of other factors reminding us that the world is not perfect, each instrument "sees" the target in a slightly different position in space. As a result, the measured points end up in slightly different positions.

Not only can USMN calculate the most likely position of the real target based on instrument characteristics (referred to as a USMN Composite Point), but it can also calculate the uncertainty of that composite point. In Figure 30-4, the composite point is closer to the total station's line-of-sight position (due to lower angular uncertainties of the total station), but is also much closer to the laser tracker's distance measurement (due to less uncertainty in the laser tracker's distance measurement). The uncertainty of the composite point itself has less uncertainty than either of the instrument observations, because much of the total station's uncertainty along the line of sight is rendered extremely unlikely based on the laser tracker's measurement.

"Real-World" Instrument Uncertainties

As mentioned earlier, instrument uncertainty values as published by the manufacturer are a good way to compare different measurement systems, but they are a poor way to predict real-world measurement uncertainty. A number of factors, such as the calibration/performance of an individual instrument, the technique of the operator, and the measurement environment have significant effects on uncertainty.

Each instrument in SA has associated with it Instrument Uncertainty Variables (Figure 30-5). These can be found in the Instrument Properties window. Uncertainty variables are used to model an individual instrument's uncertainty characteristics.

Figure 30-5. Uncertainty variables for a tracker.

Tracker / EDM Theodolite Uncertainty		
Angle Measurement (arcseconds)		
Theta or Horizontal Angle	1.0	
Phi or Vertical Angle	1.0	
Distance Measurement		
Error (in job distance units)	0.0003	
Parts per million	2.5	
Enter 1 sigma values		
OK		Cancel

If you look at the uncertainty variables for a laser tracker or total station, four values are provided (see image). These values together dictate the uncertainties for the horizontal angle, vertical angle, and distance components for an instrument. They are used in concert with a measurement's relative position from the instrument to determine the uncertainty of the individual measurement.
By default, the values assigned to uncertainty variables are experimentally determined, conservative values for a given class of instrument. In other words, they generally give a result that is "in the ballpark", but are probably a bit worse (higher uncertainty) than can truly be achieved with the instrument. This is done to a) err on the safe side, b) avoid conflict with instrument manufacturers, and c) avoid the need to continually update data as instruments evolve, which could be a time-consuming task.
In order to get the most realistic uncertainties for measurements and USMN, it is necessary to use uncertainty variable values that closely match the individual instrument, operator, and measurement environment characteristics. But how is this done? Manufacturers don't (and can't possibly) publish these values, and they differ from one instrument to the next and (to a lesser extent) from one operator/ measurement situation to the next.

USMN itself can be used to determine the most accurate values for
these variables. This is done by setting up a set of monuments, and then moving an instrument around through the workspace, measuring each of those monuments in turn.

Consider a situation in which an instrument, its operator, and the environment is perfect (and therefore would have zero uncertainty). A perfect instrument, after having measured all monuments from different positions, would see a given monument in the exact same location in space. When fit together (using a traditional best-fit), there would be zero error. The observations would lie on top of each other perfectly. USMN would see this "perfection" and would report uncertainty variables of zero (no error).

Of course, in reality this never happens. In the real world, an instrument can measure a monument two different times and "see" it in a slightly different place. By analyzing the error between measurements of a common point from the same instrument, in different positions, USMN can perform a complex calculation and determine the real-world uncertainty variables for a given measurement situation.

Using USMN

A USMN analysis can be performed by choosing Analysis>Coordinate Uncertainty>Unified Spatial Metrology Network. In this same menu is a second setting: Unified Spatial Metrology Network with Point Groups which is specifically for aligning your network solution to a nominal point group.

Observations and Point Group Requirements for USMN

When setting up a network for analysis with USMN, there are several organizational requirements for instruments, measurements, point groups, and point names. The requirements for USMN analysis are as follows:

Point Naming and Observation Requirements:
As with any measurement network, common targets must be measured by more than one instrument to form a network, therefore:

1. Individual point names must be common between groups as USMN will associate measurements from different instruments based on point names.
2. Points in different groups with the same name must represent the same target. For example, MeasStation1::P1, MeasStation2::P1, ... MeasStationN::P1 will be combined to compute the composite point P1.

Points without measurements are ignored, unless the point group is
included as a 'Nominal Group.' Therefore:
3. A specific point in a given point group should have observations from only one instrument.
An instrument can make more than one measurement to a specific point. As an example, an instrument can have a front and back sight to a point or an instrument might have N front sight measurements to a point. Observations that are marked as 'ignored' are not included in the USMN network. The measurement details dialog for a point provides an interface to determine whether or not an observation is ignored.

Consider an example tree for a job ready for a USMN network as seen in the following figure (Figure 30-6).

Figure 30-6. Organizational setup for a USMN.

- Points 1 and 2 (in the Station1 group) have no common measurements with other instruments.
- Points 4, 5, 6, and 7 are shared with Station2.
- Point 9 is shared by Station2 and Station3.
- Point 10 is shared by Station2, Station3, and Station4.
- Points 11-13 are shared by Station3 and Station4.

To help identify potential problems with point names, a warning dialog will display showing the Network Build point and instrument listing. This dialog helps to identify any potential problems when you first start the USMN process (Figure 30-7). You may see something line the following:

In the above dialog point groups are marked in red or blue to provide a warning that a user may want to exclude them.

- Red. Point groups marked in red indicate that there could be a potential collision. The instrument measured a point of the same name multiple groups. These points must represent the same target or be removed from consideration.
- Blue. Points only measured by a single instrument are marked in Blue. These points do not contribute to the network solution and excluding them will increase the solution speed. Use the Check box to easily exclude all points measured by a single instrument.

The primary output from USMN is a Composite Point Group. This group contains the optimal point coordinates (the most likely posi-
tion of the points) after solving the network. Inputs to USMN include both the instruments and their measurements. For a measurement to affect the calculation, it must have been measured from multiple instrument stations. The observations from different stations are made into different point groups, but should have the same target name.

USMN Dialog

Figure 30-8. The USMN dialog.
The primary purpose of the USMN dialog is to help you optimize the network confidently and get the best Composite Point Group possible from the instrument stations and measurements. To do this, it provides many controls all accessed directly through the main dialog. The window is composed of 7 main parts (Figure 30-8).

1. Instrument Section

This section lists the instruments whose measurements are included in the USMN network solution. Instruments can have different weights applied. So, for example, if one instrument station was set up in an unstable location, i.e. near a HVAC blower, up high on a large tripod, on a separate concrete pad, etc. The influence of that particular station on the entire network could be reduced by reducing the instrument's weight relative to the other stations.

Each instrument has a checkbox indicating whether that instrument is allowed to move during the calculation. A USMN bundle (or any bundle, or that matter) is a relative solution. That is, the solution can be reached relative to any instrument. As a result, all instruments may be checked (meaning all instruments will be perturbed to find the solution) or one may be unchecked (so that the solution is reached
by perturbing all instruments EXCEPT the unchecked instrument). In both cases, the same end result is reached for the network itself, although the networks will end up in different places in space (and the uncertanties will be relative to different baselines). Regardless, allowing all instruments to move will typically take longer to solve, but the resulting point uncertainties will be more uniform and representative of a network in which no one instrument is more important than another. Although the network solution is the same, the calculated uncertainties for the USMN Composite points will be different, because they are relative to different baselines. However, the relative uncertainties (differences between uncertainties) between each pair of points will remain the same.

More than one instrument may be fixed (unchecked) during a solution, although this is typically only done in rare cases and is generally not recommended, as the end result is a solution that is not an ideal spatial representation of an instrument network.

An individual instrument in this list may be double-clicked to access specific instrument properties (Figure 30-9). This instrument Properties dialog provides access to the following settings:

- Weight Factor. The overall weight applied to the instrument. (weights can also be edited directly in the USMN dialog).
- Moving. This sets the check box determining if a particular instrument is considered to moved as part of the network.
- Degree of Freedom. This set of 7 controls allows restriction of motion of a particular moving instrument as part of the network. Only checked fields are allowed to move. (note: XYZ component restriction are relative to the working frame, for instrument frame reference align the instrument model with the working frame prior to running the USMN).
- Component Uncertainty. Provides direct access to the instruments Uncertainty Variables.
- Point Computation Error Function. Error can be computed using the instruments uncertainty variables. If you choose to do so weights an be applied independently to each variable. Alternatively error can be computed with respect to the XYZ of the working frame.

2. Measurement Section

This section shows the current statistics with respect to each point in the network. These statistics will recompute as the network is adjusted and recomputed. This measurement-specific information is provided in number of columns which are described below (Figure 30-10).

Weight	Point	Max Eri	Ranking	Ux	Uy	Uz_{2}	Umag	Meas
V 1.000	5	677.8988	98\%	0.0003	0.0003	0.0003	0.0006	0123
(1.000	4	740.6439	93\%	0.0002	0.0003	0.0003	0.0005	0123
(V) 1.000	2	934.0787	86\%	0.0003	0.0004	0.0004	0.0007	0123
(1.000	6	659.9032	83\%	0.0004	0.0004	0.0004	0.0007	0123
(1.000	1	1000.0606	82\%	0.0004	0.0004	0.0005	0.0008	0123
(V) 1.000	9	1046.6028	72\%	0.0004	0.0005	0.0006	0.0009	0123
(1.000	11	811.4360	72\%	0.0004	0.0003	0.0005	0.0007	0123
(V) 1.000	7	829.8603	66\%	0.0006	0.0006	0.0008	0.0012	0123
(v) 1.000	13	904.8971	57\%	0.0006	0.0005	0.0007	0.0010	0123
(1.000	10	996.8901	40\%	0.0007	0.0007	0.0011	0.0015	0123
(V)1.000	12	816.5475	38\%	0.0007	0.0005	0.0008	0.0011	0123

The point list is automatically organized in the interface. Points with the highest ranking are listed first. A high ranking indicates a point with a higher chance of problems. Points with lower ranking suggest the target solution is better. However, each column can be sorted from either high to low or low to high by clicking on the column title.

- Weight. Each measurement can have a weight applied. If a point is considered less important or perhaps more erroneous, its weight can be reduced.
- Point. Each point measured by an instrument in the USMN network is listed by name.
- Max Err. The maximum error is listed for each point that has
been measured by more than one instrument. This depicts the maximum error between any individual measurement of a point and its optimal value.
- Ranking. Displayed as a percentage, this indicates the percentage of the expected 3 -sigma envelope consumed by the maximum measurement residual. This is an efficient method of determining which points may have measurement outliers. A point with a ranking of 100% has observations which are consuming the entire 3 -sigma envelope. Points with smaller rankings are more tightly clustered around the optimal value. Lower rankings indicate better measurements.
- Ux/Uy/Uz/Umag. The component and magnitude uncertainties (in the active coordinate frame) for the optimal point. (These values only appear after an uncertainty field analysis has been performed).
- Meas. A list of the instruments that have observations for a given point. For instance, if a point shows $0 _3$, this indicates that instrument index 0 and 3 each have a measurement for that point, while instruments 1 and 2 do not.

Further detail for a single point can be obtained by double-clicking the point in the list (Figure 30-11).

Figure 30-11. Measurement Section- Expanded

The Point Properties dialog displays the contributing shots used to compute the network point. It provides control over:

- Overall Weight. The weight used in the USMN for the point.

Specific details on each point are displayed in the following columns:

- Weight. The weighting factor applied to the particular point, this weight is used in the composite point computation.
- Instrument. Instruments that measured the point.
- Error. Component error (Err 1, Err 2, Err 3) shows the error contribution per component.
- Mag. The magnitude error for each point used in the composite point computation.
- Ranking. The percentage of the expected 3 -sigma envelope consumed by the maximum measurement residual.

3. Solve Section

Figure 30-12. Solve Section Controls

This section contains the parameters and controls for actually calculating the USMN solution (Figure 30-12). They are summarized below:

Auto Solve, Trim Outliers, and Re-Solve	
Auto Solve	\square Do this automatically
Best-Fit Only	Instrument Settings
Best-Fit then Solve	Trim Outliers
Solve	Exclude Measurements

- Auto Solve. This button performs a "Best-Fit then Solve" (see below), trims outliers at 100% (see below), then performs a "Solve" (see below). This automated process is recommended for well-understood networks and in applications where the process has to be automated. It is not recommended when first optimizing an unfamiliar network of measurements. Anytime outliers are eliminated from the network, the causes and details should be characterized and documented.
- Do This Automatically. When the USMN dialog is displayed, an Auto Solve is automatically performed once.
- Best-Fit Only. Performs a best-fit of the networked points. This is equivalent to performing a traditional best fit. Performing a best-fit prior to initiating the USMN solve drastically speeds up the calculation, because it provides for a much better initial starting point for the calculation.
- Best-Fit then Solve. Performs a Best-Fit (see above) and Solve (see below) in one step.
- Solve. Initiates a USMN calculation from the instrument's current positions.
- Instrument Settings. Allows you to modify properties for all instruments at one time.
- Trim Outliers. Removes points or observations exceeding a specified Ranking threshold from the USMN solution. Recall that ranking is an indicator of the quality of a point. Points above the ranking threshold can either be weighted to zero or removed from USMN entirely. Therefore, this is an effective means for preventing poor measurements from tainting the USMN solution.
- Exclude Measurements. Any measurements that should not be included in the USMN calculation can be excluded with this button.

4. Uncertainty Field Analysis Section

USMN does not by default calculate the uncertainties of the resulting optimal (USMN Composite) points, because this calculation can take a fair amount of time. As a result, you must initiate this calculation yourself (Figure 30-13).

Uncertainty Field Analysis
Figure 30-13. Uncertainty field
analysis controls.

Uncertainty field analysis works by using the instrument uncertainty characteristics to slightly perturb measurements following a realistic Gaussian distribution. Each iteration of perturbed measurements is then treated as a separate USMN network. Each iteration is solved in turn, which allows for statistical generation of optimal point uncertainties.

- Samples. Specify the number of perturbations, or iterations, to perform. Higher numbers take proportionately longer to solve, but have more accurate uncertainty values. It has been statistically determined that 300 or more samples will provide results within 5% of the "statistically true" value, so 300 is considered the default. About 10,000-15,000 samples are required to get a result within 1% of the statistically true value.
- Time Limit. When checked, the uncertainty field analysis will time out at this limit, regardless of the number of samples requested. In this case, the number of completed iterations will be used.
- Begin. Initiates the Uncertainty Field Analysis.

5. Summary

The summary section lists a general summary of the USMN calcula-

Figure 30-14. Example Summary
tion with the current settings. Each time the USMN network point list is updated or edited these value should be used as a review of the overall solution. The summary provides the following results (Figure 30-14):

```
Summary
    Point Error: Overall RMS \(=0.0015\), Average \(=0.0010, \mathrm{Max}=0.0085{ }^{\prime} 10^{\prime}\)
    System Solution Time: 0.0 sec, Robustness Factor \(=0.130979\), Unknowns 18, Equations 132
    Uncertainty Magnitude: Average \(=0.0009, \mathrm{Max}=0.0014\) ' 10 '
    \(68.26 \%\) Confidence Interval ( 1.0 sigma), Samples: 300, WCF: A.:WORLD
    Uncertainty Analysis Time: 4.7 sec
```

Pointing Error:

- Overall RMS. The RMS deviation of each measured point to the solved network points.
- Average. The average of each measured point to the solved network points.
- Max. Largest Point Error for the network. The point name with this showing this error is listed in parenthesis.
- System Solution Time. Time to arrive at the network solution.
- Robustness Factor. Is a indicator of the numeric instability of the solution.
- Unknowns. The number of instruments in the network that are free to move times the 6 degrees of freedom considered in the solution (the first instrument in the list is not counted).
- Equations. The sum of the number of points from each of the instrument used in the network, times 3 to provide a 3 dimensional solution.

Uncertainty Magnitude:

- Average. Average of the uncertainty magnitudes for each of the included network points
- Max. Largest point uncertainty for the network. The point name with this showing this error is listed in parenthesis.
- Confidence Interval. The Sigma uncertainty interval used for the calculation.
- Samples. Number of samples used for each point in the computation.
- WCF. Working Coordinate Frame used to determine XYZ uncertainty.
- Uncertainty Analysis Time. Time to compute the uncertainties for the network.

It also provides access to information about scale bars included in the USMN calculation.
6. Reporting Section

This section provides a set of simple export options and some extremely sophisticated analysis tools for reporting results (Figure 3015).

Figure 30-15. Reporting Section

- Reporting. Three buttons provide a means to export the USMN results as a text file, and HTML file or an Excel file. These results are the same as those saved in the Event.
- Instrument Uncertainty Analysis. This button computes the individual instruments uncertainties based upon the network solution (It requires Uncertainty Field Analysis to be performed first).
- CoVar. Analytical uncertainty covariance matrices for both points and instrument base locations can now be generated as *.csv file output.

The covariance can be reported as either the Error or Uncertainty. For large networks that take a prohibitively long time to solve with the Monte Carlo approach (Uncertainty Field Analysis > Begin), the point uncertainties can be approximated with the Uncertainty Covariance matrices.

Instrument Uncertainty Analysis

Once an Uncertainty Field Analysis is performed for a network this network solution can then in turn be used to determine the resulting uncertainty parameters in the Instruments that measured those points based upon the solved network points. Press the Instrument Uncertainty Analysis button to access the results (Figure 30-16).

Figure 30-16. Instrument Uncer-
tainty Analysis

This uncertainty is then reported per instrument for each of 3 Uncertainty Variable in the instruments properties (or XYZ for instruments with many variables).

The default instrument uncertainty values are generic values which have proven over time to provide an accurate estimate of the uncertainty of an instrument in an unknown environment under unknown conditions. However, if you wish to determine the best possible accuracy values for a particular instrument under your conditions you can use USMN to do so, using the following procedure:

1. Establish network of 8 or more fixed monuments to serve as control points.
2. Measure all the control points from at least 4 different physical locations using the same instrument, adding new stations to the job file for each instrument plant.
3. Perform a USMN on the network, compute the Uncertainty Field Analysis and check the Instrument Uncertainty Analysis results.
4. Copy the resulting values into your instruments properties, updating the instruments Uncertainty Variables.
5. If desired, rerun the USMN Analsysis with the new Instrument Uncertainty Variables and compare the resulting Instrument Uncertainties.

Here is an example graph of the change in accuracy (Vertical \& Horizontal Angle and Distance) as a result of 10 iterations of this process with an inhouse instrument. As you can see the values converge to a stable condition with repeated iterations.

Figure 30-17. Angular \& Distance Uncertainty Convergence

If you look at the change over the ten iterations, it quite small-less than the resolution of the encoders (Horizontal Angle Change ~ 0.06, Vertical Angle Change ~ 0.001 arcseconds and Distance Change ~ 0.00012 "). The initial "guesses" for this solution (which are the default values in SA) turn out to be good enough to get close on the very first iteration.

This provides a means of evaluating the performance of your particular instrument under particular real-world conditions. Those values can then be used for the instrument uncertainties when you perform your true measurements and provide an even an even greater confidence that the uncertainty in your points reflect the results you will see with your instrument.

Analytical uncertainty covariance matrices for both points and instrument base locations can now be generated as *.csv file output (as of SA version 2015.11.06).

Methods employed are those as described in the paper "On the Representation and Estimation of Spatial Uncertainty" by Randall C. Smith and Peter Cheeseman published in "The International Journal of Robotics Research", Vol. 5, No. 4, Winter 1986.
Uncertainty covariance report includes:

- Composite point uncertainty covariance matrix data relative to working frame
- Instrument base uncertainty covariance matrix data relative to world frame
- Chi-square "Goodness of Fit" assessment (values $\ll 1$ indicate data too good to be true, values $\gg 1$ indicate measurement errors much greater than expected)
- Robustness: Solution solver SVD ((min(singular values) / max(singular values)) -- negative values reflect the number of redundant degrees of freedom
- Singular value tolerance threshold (minimum value an singular value is permitted to assume to be considered non-zero)
- Number of input equations
- Number of ignored equations
- Number of active equations
- Number of variables
- Number of independent variables
- Working frame
- Composite instrument base parameter covariance matrix
- Composite instrument base parameter correlation matrix

The input points used to develop a composite point are used to generate an error covariance matrix. This data may be helpful in terms of evaluating the data spread of the input points about the composite point. This data will not be generated for any composite point with less than three input points.

R-Click on "CoVar" button will allow the user to experiment with different values of singular value tolerances (default is 0.01).

7. Apply Results Section

The Apply Results section controls how the calculated results are applied to the job file (Figure 30-18).
Apply Results
∇ Create composite group: USMN Composite
∇ Create point uncertainty fields
∇ Apply instrument and point group transforms in SA
\square De-Activate measurements weighted to zero
Apply \quad Cancel

- Create Composite Group. When checked, creates the optimal (USMN Composite) point group, using the name specified in the user entry field.
- Create Point Uncertainty Fields. When checked, applies uncertainty fields (calculated via the Uncertainty Field Analysis) to the USMN composite points. These fields represent the resulting uncertainty of the network points.
- Apply instrument and point group transforms in SA. If unchecked, no instruments or points in SA will be physically
moved in the file.
- De-Activate measurements weighted to zero. If checked, any measurements that have been weighted to zero in the Measurement Section will be deactivated in SA.

Basic USMN Solution Process

The following describes the steps for a basic USMN solution process, without calculating uncertainty fields for the USMN composite group.

1. Ensure that the job file matches the requirements in Observations and Point Group Requirements for USMN.
2. Select Analysis>Coordinate Uncertainty>Unified Spatial Metrology Network.
3. When prompted, select the instruments to include in the USMN network, then press Enter.
4. The USMN dialog will be presented (see USMN Dialog).
5. Ensure that the instrument settings are correct (moving/nonmoving, weights, DOF constraints, etc).
6. Click Best-Fit then Solve.
7. Examine the max error and ranking values.
8. If desired, click the Trim Outliers button and trim any measurements beyond your desired ranking.
9. Click the Solve button and observe the results.
10. Verify that Create composite group is checked.
11. Click the Apply button. The instruments/point groups will be located, and a USMN Composite point group will be created representing the ideal position of each meausurement.
For a more in-depth example on basic USMN, see the tutorial Basic USMN.

Measurement Plans

SpatialAnalyzer contains a powerful scripting environment that gives you the ability to automate tasks ranging from measurement, to analysis, and reporting. Scripts can introduce efficiencies into your metrology processes that cannot be overstated.

About Measurement Plans

Measurement Plans (MPs) is the name given to the scripting capability built into SpatialAnalyzer. MPs are similar to macros in that they can repeat a series of steps for you-but the similarities end there. MPs actually have significantly more capability-scripts make calculations, branch to different behavior based on decisions, gather user input, read and write to files, and execute custom code. In that sense, scripts share more traits with a programming language than a macro.

However, true programming languages have a complex syntax, often take many years to master, and have a high learning curve. MPs are designed to share as much capability as possible with programming languages while still dramatically lowering the learning curve compared to learning a programming language.
Scripts can vary from simple utilities constructed in just a few minutes to comprehensive inspection plans that provide go/no-go automation and drive other machinery such as robots or CNC machines.
MPs are available for editing and executing on SA Ultimate or higher. They cannot be created, edited, nor executed on SA Professional.

Running a Measurement Plan

Scripts can be created in two formats:

- Embedded. An embedded MP is stored in the SA job file and listed in the tree (Figure 31-1).
- External. An external MP is stored as a separate MP file on the file system. It is completely independent of any job file.

Both embedded and external scripts have essentially the same functionality and behavior (although there are some advanced reasons why you might choose one over the other).

Figure 31-1. An embedded MP.

If you would like some example scripts to view or run, they are included with the SA install in the Samples/MP Scripts folder.

To Run an External MP:

Figure 31-2. A script ready to run in the MP Bar.

1. From the SA menu, select Scripts $>$ Run Measurement Plan.
2. Navigate to the .mp file and select it.
3. The script will load into the MP Bar (Figure 31-2). If the Auto-Run MPs option is enabled (see "To Enable/Disable Auto-Running of Scripts:" on page 799), the script will begin executing immediately. If this option is disabled, you must click the run button in the MP Bar to run the script.

MP Bar		$4 \times$
	(1) Done	
Status	Inspection Step	-
$\Rightarrow 0$	REM Step Comment	\#
1	Set Interaction Mode	
2	Ask for String	
3	Step Status Test	
4	Notify User Text Array	
5	Jump To Step	
6	Ask for Integer	
7	Step Status Test	-
- III	\square	

To Run an Embedded MP:

1. In the tree, locate the script in the Measurement Plans category (see Figure 31-1) and double-click it, or right-click it and select Run from the context menu.
2. The script will load into the MP Bar (Figure 31-2). If the Auto-Run MPs option is enabled (see"To Enable/Disable Auto-Running
of Scripts:" on page 799), the script will begin executing immediately. If this option is disabled, you must click the run button in the MP Bar to run the script.

To Run a Script from the MP Editor:

1. Load the script into the editor.
2. Do one of the following:

- Click the run button at the top of the editor,
- From the editor's menu, select File > Run, or
- Press Ctrl + R.

3. The script will load into the MP Bar (Figure 31-2). If the Auto-Run MPs option is enabled (see "To Enable/Disable Auto-Running of Scripts:" below), the script will begin executing immediately. If this option is disabled, you must click the run button in the MP Bar to run the script.

To Enable/Disable Auto-Running of Scripts:

1. Click the User Options icon or press Ctrl+U (default keyboard shortcut.
2. Navigate to the Automation tab. Toggle the Auto-run MPs (applies for double-click in tree and Scripts>>Run Measurement Plan) option.

Quick MPs

You can assign Measurement Plan scripts to the menus (Figure 31-3), so that any script can be executed by selecting it specifically from the SA menu (or from a toolbar, if you've customized the SA user interface). You can assign up to 30 scripts to Quick MP slots for easy execution.

This immediate execution of Quick MPs is excellent for listing a library of commonly-used scripts or for testing a script during development.

Figure 31-3. Scripts have been assign to Quick MP slots 1, 2, and 3.

To Assign a Script to a Quick MP Slot:

1. In the menus, select Scripts > Quick MP > Configure Quick MPs.
2. In the QuickMP Assignments dialog, click the Add button.
3. In the Quick MP Assignment window, specify the parameters for the script:

- ID. Which of the 30 slots (from one through 30) should be used for the script.
- Display Name. The name for the script that you'd like to use in menus or toolbars.
- Location. Select Embedded MP if the script is embedded, or External MP File if the script is an external file.
- Collection/Name/File. If the script is embedded, specify the collection containing the script and the name of the script itself as it appears in the tree. If the script is external, the path to the script file to run.

4. Click OK to accept the settings, then OK again to close the QuickMP Assignments window.
5. Save the changes to the UI profile as specified in "Custom UI Profiles" on page 50.

If you now select Scripts > Quick MP, you should see your script listed.

To Edit a Script's Quick MP Slot:

1. In the menus, select Scripts $>$ Quick MP $>$ Configure Quick MPs.
2. In the QuickMP Assignments dialog, select the Quick MP to modify and click the Edit button.
3. Specify the desired settings as indicated in"To Assign a Script to a Quick MP Slot:" on page 800.
4. Click OK to accept the settings, then OK again to close the QuickMP Assignments window.
5. Save the changes to the UI profile as specified in "Custom UI Profiles" on page 50.

To Remove a Script from a Quick MP Slot:

1. In the menus, select Scripts > Quick MP > Configure Quick MPs.
2. Select the Quick MP script to delete, then click the Delete button.
3. Save the changes to the UI profile as specified "Custom UI Profiles" on page 50.

To Run a Script from a Quick MP Slot:

1. In the menus, select Scripts > Quick MP.
2. Choose the script you'd like to execute.
3. The script will execute immediately, even if the Auto-Run MPs option is disabled (see "To Run an External MP:" on page 798)
To Assign a Script to Any Menu or Toolbar:
4. Assign the script as a Quick MP as described in "To Assign a Script to a Quick MP Slot:" on page 800.
5. Assign the Quick MP slot's menu item to a toolbar or menu as described in "Customizing Toolbars \& Menus" on page 51.

Working With Measurement Plans

Measurement Plan Scripts are not text-based. Instead, SA uses a graphical editor for writing scripts, which is not as basic as a macro recorder but also not as complicated as a text-based scripting environment.

Tip: In general, we recom\Rightarrow mend using external script files unless your script is fairly short and simple.

As described in "Running a Measurement Plan" on page 798, you can create your script as an embedded script or as an external script. There are advantages and disadvantages to each.

Embedded Measurement Plans:

- Are stored as part of the SA file, therefore are easier to find and bundle with a script.
- Are easier to execute and edit, since you can access them directly from the tree.
- May not work if you need to create a new SA file or load an SA file as part of the script, since such actions will clear the embedded scripts from the tree.
- Make version maintenance, reuse, and distribution of scripts more difficult, since you need to export the script to a separate file in order to use it with other SA files.

External Measurement Plans:

- Are stored as a separate .mp file, therefore you must navigate to the file to execute it.
- Are able to work with any scripting commands-creating a new SA file or loading an existing file does not create problems.
- Are much better suited to script maintenance, reuse, versioning, and distribution.
You can start writing an embedded script or start writing a script in an external file. Likewise, you can export an embedded script to an external file or import an external script file as an embedded script.

To Start a New Embedded Measurement Plan Script:

1. In the menus, select Scripts > Embedded Measurement Plans > Create New.
2. Specify a name for the new script. This is how the embedded script will be named in the tree.
3. The MP Editor will appear, ready for input.

To Start a New Measurement Plan Script in an External File:

1. In the menus, select Scripts > Create/Edit Measurement Plan.
2. The MP Editor will appear, ready for input.

To Import an External Script File as an Embedded Script:

1. Select Scripts > Embedded Measurement Plans > Embed existing .MP file.
2. Navigate to the script file to embed and select it.

To Export an Embedded Script to an External File:

1. Right-click the script in the tree and select Export from the context menu.
2. Specify a file name for the new external file, then click Save.

To Edit an Existing External Script File:

1. From the menu, select Scripts > Create/Edit Measurement Plan...
2. The MP Editor will appear.
3. Do one of the following:

- In the editor's menu, select File > Load, or
- Press Ctrl + L.

4. Select the desired file.

To Edit an Existing Embedded Script:

1. Right-click the script in the SA tree and select Edit from the context menu.

To Start a New Script in an Existing Editor Window:

- From the editor's menu, select File $>$ New, or
- Press Ctrl + N.

To Save Your Script:

- From the editor's menu, select File >Save or File > Save As..., as applicable, or
- Press Ctrl + S (Save) or Ctrl + Shift + S (Save As...).

Protecting Scripts

Once you have finalized a script, you will often want to protect it from accidental (or intentional) modification. You can password-protect a script so that it cannot be modified. Once protected, the script will no longer load into the editor. However, protecting a script does not prevent it from being executed, or from viewing the commands used to create the script.
To Password-Protect a Script:

1. Load the script into the editor.
2. From the editor's menu, select Protect > Set Password.
3. In the Set Password dialog, enter the desired password twice, then press OK.
4. Save the script.

To Open A Protected Script:

1. Load the script into the editor as usual.
2. When prompted, enter the password for the script.

To Remove Protection from a Script:

1. Load the script into the editor. You will need the password for this operation.
2. From the menu, select Protect > Remove Password.
3. Confirm the operation.

Generating SDK Code

The MP Editor has the capability of automatically generating the SDK code needed to repeat a script's functionality in both the C++ and Visual Basic languages. This code can then be copied, pasted into an SDK project, and (with limited changes) be executed directly in compiled code. For more on the SDK, refer to the next chapter (SA SDK).

To Generate SDK Code for a Script:

1. Load the desired script into the editor.
2. From the editor's menu, select SDK > View SDK Code.
3. In the SDK Code Viewer dialog, select the desired language, Visual C++ or Visual Basic.
4. The code will automatically be copied to the Windows clipboard and can be pasted directly into any text editor or Integrated Development Environment.

The MP Editor

Figure 31-4. The MP Editor.

If you will be writing Measurement Plans, you'll be doing it in the MP Editor (Figure 31-4). Some companies even have employees whose primary (or only) job responsibility is to write Measurement Plansthese people may spend most of their working hours in this editor!

For those used to the legacy MP Editor in SA 2014.04.15 and earlier, this new editor has an enormous number of improvements. The most notable are:

- Command list and script are now integrated into one window. More screen real estate is devoted to your script.
- Multiple commands can be displayed at once for easy reference.
- Every command is a collapsable tree item, allowing easy expand/collapse behavior. This is particularly useful for "keeping track" of commands that you haven't finished editing.
- Commands can be rearranged through easy drag and drop.
- Commands can be locked to prevent changes once they're finalized.
- Changing entry methods (such as switching from "Enter Meth-
od" to "Reference" is dramatically faster than before with quickselect buttons.
- Most references can be selected directly in the step editor (instead of the large table that was displayed in older versions), causing less disorientation.
- Long comments can be seen completely, whereas they would be obscured in the old editor.
- A variable list shows any defined variables and their types for reference.
- A debug mode allows you to get "MP Watcher" functionality directly in the editor. You can see argument values directly in the editor as the script executes.
- Current variable values are displayed while in debug mode.
- A Connections viewer allows you to easily view commands that reference or are referenced by the current command, and jump to those steps quickly.
- Lots of keyboard shortcuts for loading, saving, running, expanding and collapsing, selecting, etc. are available-making for a fast workflow.
- Automatic expansion and collapse of applicable commands (an option) makes for quick selection of references.
- An "expert mode" suppresses warning messages about deletion of commands.
- Configurable alternating row colors for less eyestrain.
- Automatic refresh of subroutine arguments.
- Faster setting of breakpoints/comments.
- More obvious indentation.
- For new commands, if a step reference becomes invalid, it will switch to -1 , forcing a command to fail instead of jumping to the start of the script. This makes it easier to find incomplete arguments in a command.

Overview

The MP Editor provides a graphical interface for writing scripts. It carries a few traits from a traditional IDE (Integrated Development Environment) that experienced programmers might recognize. But most importantly, it is not a text editor. Scripts are written in a point-andclick, drag-and-drop fashion instead of writing text-based commands. This makes the learning curve more acceptable for most users.
There are three main sections in the editor (Figure 31-4):

- Command List. This is a hierarchical tree showing every com-
mand that could possibly be added to a script, organized by type.
- Variables/Connections View. This view shows either a list of the variables, variable types, and (if debugging) variable values defined in the current script, or shows the connections for the currently selected command. (For now, think of connections as the commands that relate to the selected command in some way).
- Step List. The majority of the window is devoted to the Step List, which displays the individual steps of the script itself and allows for editing of the script's arguments.
A Measurement Plan is a procedural script that executes one line at a time. Normally, the script executes in a linear fashion, proceeding from one command to the next. However, there are commands that cause execution to jump to another location in the script. There are also commands that branch to different parts of the script (or to different scripts altogether) based on some value.

Everything in Measurement Plan scripting is zero-based. That is, all counting begins with zero, whereas in the regular world we typically start counting from one. The first step in a script is step zero, the first argument in a command is argument zero, the first item in a list (array) is item zero, and so on. If you have any programming experience, you will be used to this convention.

About Commands

Figure 31-5. A newly-added command, in expanded form.

Figure 31-6. A collapsed com-
mand.

Figure 31-7. A command's parameters.

When a command is first added to a script, it will be in expanded form so that it can easily be modified (Figure 31-5).

0 ■Integer Math Operation					
- integer <<Click to Enter Step Comment >>					
A.	Integer	First Value	Enter Value	0	(8)
A1	Math Operator	Operation	Pick		(0_{0}
A. 2	Integer	Second Value	Enter Value	0	(4) (0)
A3	Integer	Resultant Value	Result Only	Result Only	

Commands can also be collapsed to one line at any time to save space or simplify your view (Figure 31-6).

0 \#linteger Math Operation〈Add 3 3 5〉

To understand the command's parameters, let's look at this command in more detail. Each item in the command's detail view is numbered in Figure 31-7 and discussed below.

1. Step Number

Every command in a script has a specific step number, used to order and identify steps in the script. Step numbers start from zero, so the first step in a script is step zero. You can rearrange single steps or entire groups of steps.
2. Command Name

The name of the command is listed at the top of the entry. This is a read-only field that allows you to view the name of the command being examined. The name of the command in Figure 31-7 is Integer Math Operation.

3. Comment

Each step can have a user-defined comment (Add $3+5$ in this case). This comment is simply a single line into which you can type anything you'd like. Comments are typically used to provide "human-readable" text to accompany the commands, so that someone reading a script (often times, that's you!) can understand the intent of the command.
Comments can only be one line in length. When you collapse a command, the comment appears to the right of the command name. When expanded, the comment appears below the command name in a field that can be edited.

A few tips regarding comments:

- Keep them brief. Long comments clutter up the screen, take time to enter, and take longer to read.
- Comment Only When Necessary. New script writers have a tendency to add a comment to every line. Don't. Only add comments if you feel like they're needed.
- Don't be redundant. If the command itself is clear, there's no need to add a comment. For instance, in Figure 31-7, it's clear that we're adding $3+5$, so the comment is redundant.
- The above three rules are not set in stone. If you feel like a comment is needed, add one. For example, it may be clear what a command is doing when you're looking at its details, but when it's collapsed, you can't see what it's doing. So it may be acceptable to add a comment in that case. Use your own discretion.

4. Arguments

Every command added to a script has zero or more arguments. Arguments are the vehicle by which you can communicate with a command, and by which a command can communicate with you as the script's author. There are two types of arguments:

- Input Arguments. These are values that can be supplied to a
command as input. They help the command determine what it is supposed to do. Most input arguments are required, but some are optional.
- Return Arguments. Return arguments are used to return information or results back from a command after it executes.

In Figure 31-7, the command has three input arguments: zero through two (A0 through A2). It has one return argument: A3 (notice the grayed-out "Result only" fields).

In this example, we want to perform a math operation on two integers (whole numbers). We obviously need to provide both of those numbers, in addition to the math operation that we want to perform. Those are the input arguments.

Once the command completes, we need a place to store the result of the operation so that we can refer to it later. The result of the addition in this case is stored in A3.

5. Data Type

Every argument has a data type (this will not be new for those with programming experience). A data type indicates the type of information that an argument is expecting. You must feed an argument data of a compatible data type-otherwise, SA will prevent the operation or the script will fail at runtime. For instance, you cannot provide a letter to an argument expecting a number. After all, what is the numeric value of that letter?

There are just four primary data types:

- Integer. Whole numbers, such as 10, 10000, 0, and -502. These values are represented exactly, but there is a limit to the range of this number. In general, you need not worry about this limit for scripting applications.
- Double. Decimal numbers, such as 3.1415926535, 2.781, 0.0, or -1.125 . These numbers are in general not represented exactly, so expect numerical errors to creep into your calculations. These errors are typically well beyond the precision of portable metrology work, so they're not usually a worry, but you should take care when trying to compare one double value to another. You may expect them to be the same but they may actually be very slightly different. Double values also have limits on the range of values they can represent, but in general you need not worry about this limit for scripting applications.
- Boolean. A value that represents one of two possible values, such as true/false, on/off, left/right, or yes/no.
- String. A sequence of one or more alphanumeric characters, such as a sentence or prompt.

Note: Some data types are simply more descriptive names for other data types. These are called Proxy data types. Collection Name is an example of a proxy data type.
6. Description
7. Entry Method

There are many more data types in scripts in addition to these four, but virtually all other data types in scripts are derivations of these four main types. For example, there is a Collection Name data type, but it is really a string. This means that any argument that expects a Collection Name can also be fed a string, and vice versa.

Every argument has a description field. This is more of a human-readable description of what the argument is for.

A dropdown which appears when clicking in this column allows you to specify how you want to supply the information for the argument. For example, do you want to type it in, or feed it from some other command?
There are many entry methods. The most common are covered here:

- Enter Value. The argument's value is typed directly into the command-known as hard coding the value.
- Reference. The value is fed into the argument from some other command. For example, the result of a math operation might be fed into another command for further processing.
- Variable. The value for the argument is retrieved from a variable by specifying the variable's name. The variable must be of a compatible data type for the given argument.
- Pick. The value is selected from a limited dropdown list of values.
- Dialog. The value is specified graphically in a dialog.

8. Argument Value

The argument's value is specified in this field.

- Hard coded values appear as typed.
- References appear as a combination of step number and argument number. For instance, Ref \{S3 A4\} indicates that you are feeding the value stored in step 3 , argument 4 into the current argument.
- Variables are specified by entering the variable name.

9. Entry Method Quick-Select

A series of buttons for the most common entry methods are listed to the right of the argument value. By clicking these buttons, you can immediately change the entry method for the argument and directly enter the value. Users familiar with SA's legacy script editor will find this new method of argument entry dramatically faster than the old method, while also requiring less clicking.

Entering Commands

Before you add a command to a script, you must find it in the Command List first. When you are just starting out, you will probably find commands by browsing the list. However, once you have more experience under your belt, you will begin memorizing key phrases of common commands and find them by simply typing a phrase to search for in the Search field above the Command List.

To Add a Command to a Script:

1. Select the step after which you'd like the new command to be added. (If no step is selected, the new command will be added to the end of the script).
2. Find the desired command in the command list, or search for it by typing into the Search field. Use the + and - buttons to expand or collapse categories in the command list.
3. Double-click the desired command, or select it and press Enter.

To Delete a Command from a Script:

1. Select one or more commands by clicking on their command name. (Standard Windows contiguous and non-contiguous selection is supported).
2. Press the Delete key.

Editing Commands

Once you have commands in your script, various editing operations can be performed.
To Select a Single Command:

- Click in the row containing the command's name, or
- Use the up/down arrow keys on the keyboard while the step list has focus.

To Select Several Contiguous Commands:

1. Click the row containing the first command's name.
2. Hold down Shift and click the row containing the last command's name.

To Select Several Non-Contiguous Commands:

1. Click the row containing the first command's name.
2. Hold down Ctrl and click additional rows containing subsequent command's names.
All clicked commands will now be selected.

To Select All Commands:

- Use contiguous selection above, or
- Choose Edit > Select All from the editor's menu, or
- Press Ctrl + A.

To Clear Your Selection:

- Click away from any commands in the step list, or
- Choose Edit > Deselect All from the editor's menu, or
- Press Ctrl + Shift + A.

To Rearrange Commands:

- To move a single command, drag it by clicking on its command name and drop it anywhere on the command you'd like the command to follow.
- To drop a command BEFORE another command, hold down the Shift key while dropping.
- To rearrange multiple steps, select them (standard Windows contiguous and non-contiguous selection is supported), then drag and drop them onto the step after which you'd like the group of steps to appear. Hold down Shift when dropping to place the group of steps before the command.

To Expand or Collapse Commands:

1. Select one or more commands (standard Windows contiguous and non-contiguous selection is supported).
2. Do one of the following:

- Click the $\boldsymbol{\square} \boldsymbol{\square}$ button,
- Double-click the row containing the command name, or
- Press the right arrow (expand) or left arrow (collapse) keys on the keyboard.

To Copy Commands:

Note: Cut is not currently supported.

1. Select one or more commands.
2. Do one of the following:

- From the editor's menu, select Edit > Copy, or
- Press Ctrl + C.

To Paste Commands:

1. First copy one or more commands as described above.
2. Select the command after which you'd like to paste.
3. Do one of the following:

- From the editor's menu, select Edit > Paste, or
- Press Ctrl + V.

Resizing Columns

Although it may not be obvious, the MP Editor has a number of resizable columns. You can adjust these to better fit the column's contents, or if you have made the editor window large.

To Resize Columns:

1. Expand any command so that its arguments are visible.
2. Place the cursor just to the left of the Description, Entry Method, Value, or Entry Method Quick-Select Button columns. The cursor will change to indicate that you can drag left and right.
3. Drag the column to the desired width.

Hard Coding Argument Values

Hard coding involves manually entering values into an argument. This is done when the value for an argument is known at development time and is not expected to change.

To Hard Code an Argument Value:

1. Ensure the entry method dropdown for the desired argument is set to Enter Value, or click the ${ }^{\oplus} .$.
2. Enter the value into the argument's value field, as specified below (the most common cases are described):

- Simple Data types. Doubles, strings, integers, and other simple data types can be entered by typing the values directly into the field.
- Boolean types. For arguments of type Boolean, you can either type TRUE or FALSE (case insensitive) or, as a shortcut, type a nonzero value to represent TRUE and 0 to represent false. (It will automatically convert this value to TRUE or FALSE when you press Enter.
- Collection Object Names. If you're entering the name of an object, type the collection name, followed by two colons, followed by the object name. For example, Measured: :AxisLine. If you leave off the collection name and simply type AxisLine, the command will try to find the object named AxisLine in whichever collection is active at the time the command is executed.
- Point Names. To specify a point name, type the collection,

Figure 31-8. The String List Editor.
group name, and point name separated by a pair of colons. For instance, Measured::Tie-Ins::1. You can leave off the collection name to indicate that you want to find the group and target in the active collection at the time the command is executed. For example, Tie-Ins: : 1 will look for point 1 in a Tie-Ins group for the active collection.

- Reference Lists. Some commands, such as Concatenate Strings, expect reference lists, which are simply lists of items. To enter these, click the entry field, which will open the List Editor (Figure 31-8). Use this to add, rearrange, or remove items from the list.

Referencing Arguments

The true power of scripting comes not from a script that repeats a sequence of steps exactly as before, but in making decisions and behaving differently based on parameters that may be different from the last time the script was executed.

The most common way of supporting this"non-hard coded" behavior in scripts is through the use of references. A reference is essentially a link or a connection to another value in your script. It is a way to feed a value from some other command in your script into the current argument.

For example, one step may multiply two values together. You can then feed the result of that calculation into an input argument in another command to further operate on it.

To Reference an Argument:

Note: An argument cannot reference itself. Such circular

Warning: Do not attempt to reference an argument that will not contain a value at the time the command is executed. This results in undefined (and generally incorrect) behaivor.

1. Ensure the entry method dropdown for the desired argument is set to Reference, or click the button.

The editor will highlight yellow all arguments that are of a compatible type for the given argument. If an argument is already being referenced, it will be highlighted blue. If the Auto Expand/Collapse Steps option is enabled in the MP Editor options, any commands containing compatible arguments will be automatically expanded to show
them. These commands will collapse again when the reference is selected.
2. Click on the highlighted argument to reference, or Esc to cancel.

Using Variables

Most if not all programming languages support the concept of variables. Variables allow you to define a name that is associated with a value. This allows you to refer to that value by name. The advantage of this is that while a script is running, you may change or overwrite the value of that variable, but anywhere you refer to it by name, you'll always retrieve its current value. In many scripting situations, this can lead to dramatically simpler scripts.

Variables must be of the appropriate data type to store a given value. For instance, an integer variable can store a whole number, but it cannot store a double. Likewise, a point name variable can store a point name, but it cannot store a vector.

You can define a variable by using the Set [\qquad] Variable commands. (There is a different command for each variable type). These commands create a variable with the specified name that stores the specified value. You can then refer to that value by its variable name.

To overwrite or change the value stored under a variable, simply use another Set [___ Variable command using the same variable name.

To Enter a Variable Argument:

1. Ensure that the entry method dropdown for the desired argument is set to Variable, or click the v button.
2. Type the name of the variable into the argument's value field.

The value of the variable will be retrieved at the time the command is executed and used as the argument's value.

Variables View
In the bottom-left-hand side of the MP Editor is a dropdown that allows you to select the Variables view (Figure 31-9).

Figure 31-9. A list of the defined variables.

Note: For simplicity, variables defined in other scripts are not displayed. Variables defined in subroutines are not visible to a calling script, so listing a subroutine's variables would be pointless. While editing a subroutine, the editor doesn't know which script is considered its parent, so a parent script's variables are not displayed either.

Connections View

The Variables view allows you to see all of the defined variables in the current script, as well as their data type. Additionally, while debugging, the value of the variable at the current point of execution is displayed in the Value column.

In addition to debugging uses, having a list of defined variables available allows you to easily reference the name when typing a variable in by hand.

Occasionally, you may wish to see or jump to commands which are somehow related to the currently selected step. For example, if you delete a command, it would be nice to see which commands reference that step. After all, by deleting that step, any commands that reference it will need to be corrected.

As another example, you may have a command that jumps to a given step. If you want to insert a new command before that step and have the command jump to it instead, you will need to adjust the step reference. These types of situations are where the Connections View comes in handy.

Commenting Out Commands

Sometimes, you may wish to "comment out" commands. Commenting out commands will temporarily disable them-they remain in your script, but the script will skip them during execution. As a result, you can easily remove a portion of your script and then restore it into the script with a simple click. This is extremely useful while testing your script-you may wish to try something without a section of commands, or you may wish to remove a block of your script simply to shorten the length of time it takes for a script to execute. Deleting these commands instead would not be a great approach, since adding them back in would require a lot of work.
Although commented commands are not executed, they are still a part of your script—references to those commands remain. If other
commands reference a commented command, they will most likely fail at runtime, because the commented command is not executed, so its values may not be calculated.

Steps which have been commented out will have a speech bubble icon next to them (Figure 31-10).

Figure 31-10. Steps 0 through 3 are commented out.

To Comment Out Commands:

1. Select the commands you'd like to comment out.
2. Do one of the following:

- Click in the right half of the gray column to the left of the selected step numbers until a small comment bubble icon appears \upharpoonright, (Figure 31-10), or
- Right-click the selection and select Comment Line (REM) from the context menu.

To Uncomment Commands:

1. Select the commands to uncomment.
2. Do one of the following:

- Click in the right half of the gray column to the left of the selected step numbers until all icons are cleared, or
- Right-click the selection and deselect Comment Line (REM) in the context menu.

To Clear All Comments:

- Right-click any step and select Clear All Comments from the context menu.

Setting Breakpoints

When testing, you often want to run a script at "full speed", then have the script pause at a certain point so that you can slowly step through a certain area of your script. For example, if there is a tight loop at the start of a script that executes thousands of times, it would be exhausting to step through the loop manually one line at a time. Instead, what is needed is a way to run the loop at full speed, then pause afterward.

Breakpoints enable this capability. Any line can be set as a breakpoint,

Figure 31-11. Steps 5 and 12
have been set as breakpoints.
and you can set as many breakpoints in your script as you'd like (Figure 31-11). When set as a breakpoint, an executing script will pause prior to executing the line on which the breakpoint is set. You can then choose to step forward one line at a time, or continue running "at full speed".

To Set Breakpoints:

1. Select the commands you'd like to set as breakpoints.
2. Do one of the following:

- Click in the right half of the gray column to the left of the selected steps until a breakpoint icon appears (Figure 31-11), or
- Right-click one of the selected steps and choose Breakpoint (BRK) from the context menu.

To Clear Breakpoints:

1. Select the steps whose breakpoints you'd like to clear.
2. Do one of the following:

- Right-click one of the selected steps and uncheck Breakpoint (BRK) in the context menu, or
- Click in the right half of the gray column to the left of one of the selected steps until no icon is displayed.

To Clear All Breakpoints:

- Right-click any command and select Clear All Breakpoints from the context menu.

Locking Commands

When you are satisfied one or more command's parameters, you can lock those commands to prevent accidental modification. Locking a command provides a number of advantages:

- They cannot be reordered in the script, so you cannot accidentally move them around.
- They cannot be deleted.
- Changes cannot be made to their arguments.

To Lock or Unlock Commands:

1. Select the commands you'd like to lock/unlock.
2. Do one of the following:

- Right-click one of the selected commands and toggle the Lock entry in the context menu, or
- Click in the left half of the gray column to the left of one of the selected steps until the lock icon appears (to lock) or disappears (to unlock).
To Unlock All Commands:
- Right-click any command and select Clear All Locks from the context menu.

Entering Comments

Note: Multi-line comments are not currently supported.

When a command is expanded, a line directly beneath the command's name says << Click to Enter Step Comment >>. In this field, you can type any comment to help document your script. Simply click in the field and start typing.

When you collapse a command, its comment will be placed next to the command name.

Indenting Commands

You can indent commands to help set them off as being part of a loop or branch of code, similar to how programmers indent their code to improve readability of the source code.

To Indent Commands:

1. Select the commands you'd like to indent.
2. Press Tab. The command will shift over by one tab space.

To Remove Indention:
3. Select the commands you'd like to unindent.
4. Press Shift + Tab.

Setting Command Colors

You can change the background color of one or more commands in the editor to help differentiate a section of your script.

To Change Command Colors:

1. Select the commands you'd like to change.
2. Right-click one of the selected commands and choose Set

Background Color from the context menu.
3. Choose a new color, then click OK. To reset the color back to its default, choose white.

Writing Your First Script

Let's go through the process of writing a short simple script just to see how it's done. This script will ask for a number between 1 and 10 , and it will count up to that number starting from 1 . For instance, if the user enters 2 , our script will display 1,2 , then exit.

1. Start a new script in the editor.

We first need to ask the user for the number to count to. We'll do this using the Ask for Integer command, which allows the user to enter a whole number and returns the value entered.
2. In the search field above the command list, type Ask For I.

The search field will filter the available commands down-the Ask For Integer command should be the only one remaining.
3. Double-click the command in the command list, or select it and press Enter. It will get added as the first line in our script.
4. In the Question to Ask argument, click in the box and type Please Enter a number from 1 to 10, then press Enter.
5. In the Enforce Min/Max Values? argument, click in the box and type 1, then press Enter. The value becomes TRUE. This allows us to ensure that the user can only supply a value within a given range.
6. Set the Min Value to $\mathbf{1}$ and the Max Value to 10.
7. In the search field/command list, find the command Exit Measurement Plan (again, starting to type this name in the search field is the fastest way to find the command). Add it to the script (it will appear at the end).
8. Back in the Ask for Integer command, set the Step to jump to ifCanceled argument to 1. If the user clicks the cancel button, the script will jump to the Exit Measurement Plan command in step 1 and exit.
9. Make sure a line in step 0 is selected, then add the command Create Counter. In the Counter Value argument, set the value to 1 . This will be the initial value of our counter.
10. Next, add an Integer Comparison command. This will allow us to check the current counter value against the value the user entered so we can determine when to stop counting.
11. Click below the command name where it says << Click to Enter Step Comment >>. Type Keep Counting? or a similar comment.
12. In the Integer A argument, click the reference quick-select button , then click the yellow box in Step 1, argument 0. The argument should now say Ref \{S1 A0\}.

We have now set this argument to reference the current counter's value in step 1 , argument 0 . This will feed the current counter value into this argument at runtime.
13. In the Comparison Type argument, click the box and select <= from the dropdown list.
14. For Integer B, again click the reference button and select step 0 , argument 7.

Essentially, this command is now comparing the "current" counter value against the number that the user entered. If the current counter is less than or equal to the supplied number, the command will jump to the Step ifTRUE step. Otherwise, the command will jump to the Step ifFALSE step. However, we don't yet have these steps written, so we can't yet fill them in.

Let's consider what happens if the current counter is less than or equal to the supplied value. In this case, we want to display the current counter value.
15. After the Integer Comparison command, add a Notify User Integer command. Click the command name to select it and press Tab to indent the line over once (we're now inside the body of a loop).

Your script should now appear as depicted in Figure 31-12.

Figure 31-12. Our first script, so far.
16. In the Reported Value argument, click the reference button and select step 1 , argument 0 (the counter value). This will display
the current counter value to the user at runtime.
We need to increment the counter, or else we'll be stuck in an infinite loop.
17. Add an Increment Counter command after the Notify User Integer command. Click the reference button and select the counter in step 1, argument 0 . Press Tab to indent the command name.
When this command is reached, the current counter value will automatically be incremented by one.

Almost done. Now that we've incremented the counter, we need to jump back to our test-the comparison-to see if we should continue the loop.
18. Add a Jump to Step command. In the Step D a argument, enter 2 to jump back to the Integer Comparison command.
The last thing we need to do is fix the step references in the Integer Comparison command.
19. In the Integer Comparison command, set the Step if TRUE value to 3 . This will enter the body of the loop if we're still counting.
20. Set the Step if FALSE value to 6 . When we're done counting and the counter becomes greater than the entered value, we'll exit the script.
21. Select all commands by pressing Ctrl + A. Then press the left arrow key to collapse all commands at once.
Let's lock the commands so we don't accidentally change them.
22. Ensure all commands are still selected, then click the left side of the column to the left of the step numbers. A padlock should appear on every line, indicating the lines are now "read-only" (Figure 31-13).

Figure 31-13. All steps are now locked.

That's it! Our script is done. Let's test it.
23. Click the run button \square in the editor. If auto-run is disabled (see "To Enable/Disable Auto-Running of Scripts:" on page
799), click the same button in the MP Bar.

Did your script run as you expected? If not, try to find any errors and correct them.

Debugging

A large portion of the time spent writing a script is often spent on debugging -that is, finding any bugs and errors in the script and correcting them so that the script runs flawlessly in an execution environment.

There are several ways to test and evaluate your script's behavior.

Stepping Through a Script

One of the most obvious but still useful techniques for testing a script is to simply step through its evaluation one line at a time. This gives you the opportunity to view the effect of each command as it's ex-ecuted-typically, scripts execute too quickly to observe what's happening.

When a script is loaded into the MP Bar, you can step forward one line at a time by clicking the Next Step 체 button.

In the MP Editor, you can enable debugging mode by clicking the Debug button When you do this, the Next Step button ⿶ㅔ will appear in the editor window, allowing you to step through the script.

Debug Mode

The MP Editor has a debug mode that you can enable. Debug mode (Figure 31-14) provides several benefits for testing:

- You can step through a script one line at a time.
- Each command's arguments will display their runtime values, so that as you step through the script you can see the actual runtime values stored with each argument.
- The Variables view shows the current value of each variable as you step through the script.

Figure 31-14. Debug mode shows variable values (left column) and current argument values.

Note: Scripts will run noticably slower in debug mode. This is typically fine, since you're testing-but it is something to be aware of.

These three items provide most of the tools you need to discover errors in your script.

Debug mode only works with a single script. This means that if a subroutine is called, you will not see any changes in the MP Editor window until the subroutine returns and execution continues in the current script. To view values in parent scripts and subroutines as a script executes, use the MP Watcher.

1. In the editor, click the Debug button . In debug mode, all arguments will become read-only and they will display their current values.
2. Run the script or step through it using the controls at the top of the window.

MP Watcher

The MP Watcher is very similar to debug mode in the editor. It is a separate window that allows you to view the current values of all command arguments as a script is executing. However, the MP Watcher adds each line to a list as it is executed. This means that unlike debug mode in the editor, if a script calls a subroutine, the subroutine's values can be seen while that subroutine is executing. Moreover, in a loop each iteration through the loop will add additional lines to the list, whereas in debug mode the previous iteration is "overwritten" with the current iteration's values.

The MP Watcher is shown in Figure 31-15. It will only show commands that are executed starting from the time that the window was opened. In other words, it is possible to run partway through a script, then open the MP Watcher. Only commands from that point on will be displayed.
Scripts will run noticeably slower with the MP Watcher open, so make
sure that this window is not open when execution speed is important. (Typically, this is fine, since the window is only used during the testing phase of script development).

To Print the Contents of the MP Watcher Window:

- Click the Print button.

To Export the Contents of the MP Watcher to an Excel Spreadsheet:

- Click the Excel Export button.

To Export the Contents of the MP Watcher to a PDF File:

- Click the PDF Export button.

To Clear the Contents of the MP Watcher Window:

- Click the Clear button.

To Search for Content in the MP Watcher Window:

- Click the Search button. You can search for text in the title, the comment field, for a specific value, or search among a specific command.
To Limit the Number of Steps Displayed in the MP Watcher:
- Click the Options button. Set the Max Displayed Steps option, then click OK.

SA SDK

The ability to automate measurement, analysis, and reporting tasks in SA can prove to save an enormous amount of money, time, and effort. Automation through Measurement Plans or the SA SDK can introduce efficiencies in your metrology processes unmatched by anything else.

The SpatialAnalyzer SDK provides a means by which to write custom applications that utilize Measurement Plan functionality within Visual C++, VB.NET, or other development environments that support Active X controls. Once the SDK engine has been added to the development environment, Measurement Plan steps can be executed from within the programming language.

The advantages of the SDK over Measurement Plans include the following:

- Since the code is written in a full-featured programming language (such as Visual C++ or VB.NET), it offers the full flexibility and power of those programming languages.
- Complex math operations and data manipulation is often easier than when written in MPs.
- There is no need to write routines to transfer data back and forth between MPs and custom external applications--all data is handled within the SDK application itself.
- SDK code is compiled and can be distributed as a true application.
- SDK code is more difficult to reverse engineer than MPs, so pro-
prietary processes can be kept more secure.
The disadvantages of the SDK when compared to MPs include the following:
- It is more difficult to understand for a user not familiar with programming. Creating automated routines is less intuitive.
- It requires at least basic knowledge of a real programming language and development environment.

SDK Engine

Figure 32-1. The window displayed when the SDK Engine is running.

Whenever a client application that you have developed is executing, the SpatialAnalyzer SDK engine will automatically start and appear minimized on the Taskbar. Figure 32-1 shows the engine in its maximized state:

Automatic Code Generation

SpatialAnalyzer supports the automatic generation of SA SDK code for Visual Basic and Visual C++ languages through the MP Editor. This is an excellent way to prototype SDK applications, or convert MPs into full SA SDK applications. To access this sample code, set up an MP with your desired arguments. Then, press the SDK Code Generation button in the MP Editor (Figure 32-2).

The necessary code will be displayed in a window and automatically copied to the Windows clipboard (Figure 32-3).

Figure 32-3. The SDK Code Viewer.

You can then paste this code into your SDK application.

Setting Up an SDK Project

VB.NET

1. Create a new Visual Basic Windows Forms Application project within Visual Studio (Figure 32-4). Select File>New Project.

Figure 32-4. Creating a new VB.NET project.

2. Type a name for your application, then press OK.
3. Select Project>Add Reference...

Figure 32-5. Adding the SpatialAnalyzerSDK COM object.

Figure 32-6. The default form.

4. In the Add Reference dialog, select the COM tab, then scroll down in the list and choose SpatialAnalyzerSDK. Click OK (Figure 32-5).
5. Double-click the form in your project. You should be presented with the code for the form1_Load method of your form (Figure 32-6).

6. Replace this class code with the following:

```
Public Class Form1
'Declare an object for the SA SDK Interface
Private NRKSdk As SpatialAnalyzerSDK.SpatialAnalyzerSDK
'Declare an enumerated type that defines the various return codes from the SA
'SDK Interface.
Enum MPStatus
    SDKERROR = -1
    UNDONE = 0
    INPROGRESS = 1
    DONESUCCESS = 2
    DONEFATALERROR = 3
    DONEMINORERROR = 4
    CURRENTTASK = 5
End Enum
'Allocate the SDK Interface object
Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.
EventArgs)
Handles MyBase.Load
    NRKSdk = New SpatialAnalyzerSDK.SpatialAnalyzerSDK
End Sub
End Class
```

Figure 32-8. The MFC Application Wizard.

Visual C++

Figure 32-7. Creating a new MFC C++ project.
7. Ensure $S A$ is running, then compile and run the application.

1. Create a new Visual C++ MFC project within Visual Studio (Figure 32-7). Select File>New Project...

2. Type a name and location for your project, then click OK.
3. For purposes of illustration, let's assume a dialog application is created (Figure 32-8). Note that the Dialog based radio button is selected:

4. In the next dialog, ensure that Automation is selected (Figure 32-9).

Figure 32-9. Ensuring that the Automation checkbox is selected.

Figure 32-10. Adding a new class.

Figure 32-11. Adding an MFC
class.

5. Now add the SDK to the application. From the Solution Explorer, right-click the application in the tree and select Add>Class (Figure 32-10).

6. Select MFC Class From TypeLib, then click Add (Figure 32-11).

7. Select SpatialAnalyzerSDK<1.0> from the Available type libraries dropdown. Then click the >> button to add ISpatialAnalyzerSDK to the Generated Classes section. Click Finish.
8. CSpatialAnalyzerSDK.h will automatically be added to
your project and contains all of the available SDK declarations.

Sending Commands to SA

Establishing a Connection

The SDK consists of a set of function calls that allow the specification and execution of MP Steps. Before executing any commands in SA, your SDK code must first connect to SpatialAnalyzer. You can connect to SA using one of two methods: connect (deprecated) and connectex. The deprecated connect() method returns a simple boolean yes or no answer, indicating whether the connection was successful:

```
'Connect to SA. If unable to connect, display a failure message.
If Not(NRKSdk.Connect("localhost")) Then
    MsgBox("Failed to connect with automation server!")
End If
```

The connectex() method allows you to pass a long integer variable (by reference) and obtain a status code from the command which indicates whether a connection was successful or not, and why:

```
'Connect to SA. If unable to connect, display a failure message.
Dim statusCode As Long
NRKSdk.ConnectEx ("localhost", statusCode)
If (statusCode)
    Msgbox("Connection error, code: " & statusCode)
End If
'Possible values for statusCode include:
'CONNECTED = 0,
'CONNECTION IN USE = -1 An SDK Client is already connected to SA
`INVALID_LICENSE = -2 Invalid SA SDK license
''COULD_NOT_CONNECT = -3 Failed to connect to specified host
'SDK_SOCKET_ERROR = -4 Other Socket error
```

Executing an MP Step
Once you've successfully connected, you can now execute any MP command by adhering to the following process:

Declaring the Command
The first step in executing a command is to tell the SDK which MP command you want to execute by using the setStep() method:
'Tell SA which MP step we're defining.
NRKSdk.setStep("Construct a Point in Working Coordinates")

This example would tell SA that you are in the process of defining the construct a Point in Working coordinates command. Note that the string provided as an argument to the setStep() method must match the name of the MP command exactly.

Once you've declared the command, you need to provide input argu-
ments using the argument setting methods such as setvectorArg() and setPointNameArg():

```
'Set the "Working Coordinates" argument of the command.
NRKSdk.SetVectorArg("Working Coordinates", 10.1234, 20.2345, 30.5678)
'Set the Point Name argument of the command.
'We want to put this point in the active collection, in the TestGrp point
'group, and name it "TestPt".
NRKSdk.SetPointNameArg("Point Name", ">", "TestGrp", "TestPt")
```

When doing this, the first string provided to the methods is from the Description field of the MP command. This string must match what is seen in the MP, in English. The remaining arguments to the method depend on the type of argument.

Executing the Command

Now that the MP command is fully defined, you need to tell SA to execute the step. This is performed using the executestep() method:

```
'Create a boolean variable to hold the result of the execution.
Dim bSendStatus As Boolean
'Execute the step, and assign the result to our boolean variable.
bSendStatus = NRKSdk.ExecuteStep()
```


Checking the Result of a Command

If the SDK fails to execute the command (for example, because you have not properly defined the arguments), then bSendStatus (above) will be false. If the command succeeds, the value will be true and you can further obtain the MP step result using the getMPStepResult() method. That is, you can determine whether the MP step passed, partially failed, or completely failed:

```
'Only do this if the MP command executed properly.
If (bSendStatus) Then
    'Declare a long integer to hold the result code.
    Dim result As Long
    'Get the MP step result, and assign it to result.
    NRKSdk.GetMPStepResult(result)
    'Check the result of the MP command.
    Select Case result
        Case MPStatus.DONESUCCESS
                            Msgbox("Success!")
                Case MPStatus.DONEMINORERROR
                            Msgbox("Partial Success!")
                Case MPStatus.DONEFATALERROR
                            Msgbox("Failure!")
                Case MPStatus.SDKERROR
                    Msgbox("There was an SDK Error!")
                'Create an object to hold the error message
                Dim msgArray As Object
                'Display the text returned from execution attempt to
                'user...
                If (NRKSdk.GetMPStepMessages(msgArray)) Then
                    'Declare a variable to hold the array index.
                        Dim i
                        'Declare a string to hold the message
                                Dim msg As String = "r>
                            'Loop through the array to assemble the
                        'message.
                                    For idx = LBound(msgArray) To
                                    UBound (msgArray)
                                    msg += msgArray(idx) + Chr(10) +
                                    Chr(13)
                                    Next
                                    'Now display the message.
                                    MsgBox(msg)
                End If
            Case MPStatus.UNDONE
                msgbox("Command hasn't been executed!")
            Case MPStatus.INPROGRESS
                msgbox("The command is currently being executed...")
            Case MPStatus.CURRENTTASK
                msgbox("The step is the current task.")
    End Select
End If
```


Getting Return Arguments

If an MP contains a "Result Only" argument, then the result argument can be retrieved by a calling the appropriate argument get methods, such as getVectorArg() and getPointNameArg(). For example, if the MP step successfully executes and a vector result argument is returned, the following code could be used to retrieve the result:

```
If (bSendStatus) Then
    'Declare a long int to hold the return code.
    Dim result As Long
    NRKSdk.GetMPStepResult(result)
    If (result = MPStatus.DONESUCCESS) Then
        'Get the return values and store in variables.
            Dim xVal, yVal, zVal As Double
            NRKSdk. GetVectorArg ("Vector Representation", xVal, yVal, zVal)
        End If
End If
```


The OPC Interface

SA supports the OPC standard, enabling a wide-variety of possibilities for real-time communication between itself and other applications or process control hardware. This chapter discusses the capabilities and use of this interface.

What Is OPC?

OPC is an acronym that originally stood for "OLE for Process Control", but has since been renamed to "Open Platform Communications". It is a standard originally developed in 1996 to enable communication of real-time factory data between various hardware devices and software applications from different manufacturers.

OPC as a communication standard enables various devices in a manufacturing environment to communicate among themselves-for instance, allowing real-time measurement data to be monitored by other hardware, or to track part progress through an assembly line in a real-time database.

SA \& OPC

The OPC DA (Data Access) server functionality is available in SA Ultimate (64-bit only). SA's implementation is based on version 2.05 of the OPC DA specification. Any client that complies with this specification can communicate with SA's server-that is, that client has the ability to read from and write to SA's OPC server.

Prerequisites

In order to activate and use the OPC DA server in SA, the following prerequisites must be satisfied:

- The OPC Core Components Redistributable (x64) 3.0 package must be installed on the system,
- 64-bit SA Ultimate must be installed,
- SA's OPC server must be registered and enabled, and
- The OPC server DCOM and network settings must be configured for remote client access.

The OPC Foundation (http://www.opcfoundation.org) provides a compliance test client for the data access 2.05 specifications to all of its members. A sample client which can be used to try out new SA functionality can be downloaded for free from one of the following websites:

- www.softing.com/opc (select OPC Classic options)
- www.matrikonopc.com/products/opc-desktop-tools/opc-explorer.aspx

Configuring the OPC Server

- Tip: It is recommended that you create a system restore point prior to changing the system configuration.

Step 1: Creating a DCOM User

Windows 7 Home Premium
$>$ Note: For Windows 7 Home Premium, this must be an administrator account.

1. Login to Windows 7 under an administrator account.
2. Under the Windows Control Panel > User Accounts, select Manage another account. Then click Create a new account.
3. Add a new administrative user OPCUser, password nrkopc.

Windows 7 Professional

1. Under the Windows Control Panel, select Administrative Tools, then select Computer Management.
2. Expand the Local Users and Groups item in the tree.
3. Right-click Users and select New User... from the context menu.
4. Enter OPCUser for the User Name and nrkopc for the password. Enter a description as well (Figure 33-1).
5. Click Create, then Close.
6. Add the new user to the Distributed COM Users group (Figure 33-2).

Step 2: Disable Windows Firewall

1. Under Windows Control Panel, select Windows Firewall.
2. From the sidebar, select Turn Windows Firewall On or Off.
3. Select the Turn off Windows Firewall (not recommended) option.

Step 3: Adjust User Account Control Settings

1. As administrator, type uac in the start menu.
2. Set the UAC to Never Notify, then click OK.
3. Restart the computer.

Step 4: Install SA

1. Log into the OPCUser account.
2. Install $S A$ as usual.
3. If SA automatically starts at the end of the install, close it.

Step 5: Install OPC Core Components

1. Run the OPC Server Utility (C: \Program Files (x86) \New River Kinematics\SpatialAnalyzer <version>\} x64\OpcServerUtility.exe).
2. If the core components are missing on your system, the utility will notify you-continue with the following. Otherwise, skip to step 6.
3. To install the missing components, you download the OPC Core Components Redistributable (x64) package from the OPC Foundation website (https://opcfoundation.org/).
4. After installing the core components, restart your computer.

Step 6: Register the NRK OPC DA Server

1. Login to the OPCUser account.
2. Ensure $S A$ is not running, then run the OPC Server Utility (see Step 5, item 1).
3. Click the Register SA OPC Server button.

Step 7: Enable the OPC Server in the SA Configuration

1. Run SA Ultimate ($x 64$) or greater.
2. In SA's User Options dialog, select the Machine Configuration tab.
3. Turn on the Enable OPC Server option. The server will now run in the future whenever $S A$ is running.

Step 8: Test the Server with a Local Client

1. Install a client onto the machine. For instance:

- www.softing.com/opc (select OPC Classic options)
- www.matrikonopc.com/products/opc-desktop-tools/opc-explorer.aspx

2. Start the client application.
3. Verify that the NRK OPC DA Server is presented in the list of
local v2 data acess servers.
$>$ Note: At least one tag (NRK SA Version) is always available in the OPC server's address space. If you add an instrument to your job file, SA automatically adds the instrument's coordinates to the address space.
4. Connect to the SA OPC server and browse its tags.
5. Add items to the client's group and verify that data is updating as appropriate.
6. Once proper local operation is verified, close the local OPC client and SA Ultimate before continuing on.

Step 9: Configuring System-wide DCOM Settings

1. Ensure you're logged in as OPCUser.
2. Run the OPC Server Utility (step 5, item 1).
3. Click the View DCOM Configuration button.
4. Right-click on My Computer and select Properties from the context menu.
5. In the Default Properties tab, ensure that the Enable Distributed COM on this computer option is enabled. The Default Authentication Level should be set to Connect, and the Default Impersonation Level should be set to Identify (Figure 33-3).

Figure 33-3. Setting the computer's default component services properties.

6. Select the COM Security tab. Click the Edit Default... button in the Access Permissions group.
7. In the Access Permission dialog, add permission for Everyone and the ANONYMOUS LOGON users, then click OK.
8. Click the Edit Limits... button in the Access Permissions group.
9. In the Access Permission dialog, add permission for Every-

Note: Both of these are required for OPC functionality.

Note：Do not adjust system－wide COM security Launch and Activation permissions limits（the Edit Limits．．．but－ ton）．
one and the ANONYMOUS LOGON users，then click OK．
10．Click the Edit Default．．．button in the Launch and Activation Permissions group．
11．In the Launch and Activation Permission dialog，add permis－ sion for Everyone and the ANONYMOUS LOGON users，then click OK．

12．Click OK again to close the My Computer Properties dialog．

Step 10：Configure the OPC Server＇s Specific DCOM Settings

1．In the Component Services window，open the properties of the NRK SA OPC DA Server（Figure 33－4）．

Figure 33－4．Opening the properties for the NRK SA OPC DA Server component．

Note：The OPC clients are not allowed to launch SA．For this purpose the Local Path parameter is not configured and the Location tab＇s parameters are not set．

Figure 33－5．Settings for the Security tab．

（4）Component Services			＝
$\%_{0}$ ，File Action View Window Help			
\square Console Root A	Name	Application ID	－
4 （6．）Component Services	（⿳⺈⿴囗十一日攵NRK SA OPC DA Server	\｛D14E733B－27FC－4612－997A－2015255FCEFD\}	
$4 \square$ Computers	管 Nv3DAppShExt	\｛A4CF1DBB－664A－4600－9CE3－96FBAA344504\}	
4．My Computer	堾 NvCpl	\｛048F26EF－2F89－46C9－99E7－481E40F3F2EC \}	
－ 9 COM＋Applications	㫪 NVIDIA．Installer2	\｛F370E41B－AFAD－4B49－AFD4－0FEF3FC1375D\}	
$4 \square$ DCOM Config	－Nvvsvc	\｛C5EDFC9D－B018－41A4－9877－39AB18469C3A\}	
D 鲁 \％SystemRoot\％\sys	A NVXDApiX	\｛B92B577B－628A－442B－A017－E86FB518C6FD\}	
	a NVXDBat	\｛EF73A51A－EE4A－4E16－9D3A－649245C8F44F\}	
	－NVXDPIcy	\｛9C5791C4－BCD3－48B8－A10D－CA0279320836\}	
－A \％euctammatoMruct．	－${ }_{\text {a }}$ NvXDSvnc	\｛4680B596－CF8C－44E1－A676－4AAA819E041F\}	

2．In the General tab，set the Authentication Level to Default．
3．Verify that the Security tab＇s Launch and Activation Permissions are set as indicated in Figure 33－5（no launch is allowed）．

4．Verify that the Security tab＇s Access Permissions are set as indicated in Figure 33－6．

Figure 33-6. The Security tab's Access Permissions.

5. In the Endpoints tab, verify that DCOM Protocols and Endpoints are set to defaults (the default is TCP/IP).
6. Set the Identity to Interactive User to allow displaying of the SA GUI elements on the server side.

Refer to the following section to configure the client side.

Configuring the OPC Client

Step 1: Create an OPC User Account \& Install Components

1. Follow the instructions described in "Step 1: Creating a DCOM User" on page 836.
2. Follow the instructions described in "Step 5: Install OPC Core Components" on page 838.

Step 2: Configure System-Wide DCOM Settings

1. Ensure you're logged in as OPCUser.
2. Run the OPC Server Utility (step 5 , item 1).
3. Click the View DCOM Configuration button.
4. Right-click on My Computer and select Properties from the context menu.
5. In the Default Properties tab, ensure that the Enable Distributed COM on this computer option is enabled. The Default Authentication Level should be set to Connect, and the Default Impersonation Level should be set to Identify (Figure 33-3).
6. Select the COM Security tab. Click the Edit Limits... button in the Access Permissions group.
7. In the Access Permission dialog, add permission for Everyone and the ANONYMOUS LOGON users, then click OK.
8. Click the Edit Limits... button in the Launch and Activation Permissions group.
9. In the Launch and Activation Permission dialog, add permissions for Everyone, Distributed COM Users, and ANONYMOUS LOGON, then click OK.

Step 3: Test the OPC Server Connection

1. Restart the computer.
2. Install a client onto the machine. For instance:

- www.softing.com/opc (select OPC Classic options)
- www.matrikonopc.com/products/opc-desktop-tools/opc-explorer.aspx

3. Start the client application.
4. Browse the remote OPC server to verify that data is being received.

Using SA's OPC Server

Once the server is up and running, the server's identifications (class ID, description, and program ID) are displayed in the client (Figure 337).

Figure 33-7. The SA OPC DA server identifications.

- \{D14E733B-27FC-4612-997A-2015255FCEFD\}
- NRK.SA.OPC.DaServer.DA. 1
- NRK.SA.OPC.DaServer.DA. 1

The following parameters are available to the OPC server:

- Active coordinate values for each live instrument as a 3-entry array of doubles (XYZ).
- Active coordinate values for each live instrument as separate values (X, Y, and Z).
- The current SA version.
- The full name of each instrument.

Figure 33-8. Tags for singlecoordinate items in the OPC server.

Figure 33-9. A coordinate as an array.

The tag name for each coordinate includes the collection and instrument ID for the associated instrument-for example, A: :0.x (Figure 33-8).

Item	Value	Quality	TimeStamp
\odot A:0.	-195.745613286698	GOOD	$10: 18: 53.401$
\odot A:0.y	$9.02854736148172 \mathrm{E}-14$	GOOD	$10: 18: 53.402$
\odot A:0.2	-172.072930905314	GOOD	$10: 18: 53.403$
\odot NRK SA Version	SA $2014.04 .07 \mathrm{~b}(\times 64)$	GOOD	$10: 04: 37.883$

Point coordinates are presented with A::0.xyz tag names in the array format (Figure 33-9):

Item	Value	Quality	TimeStamp
\circ A:0.xyz	$[0,2](-195.745613286698,9.02854736148172 \mathrm{E}-14,-172.072930905314)$	GOOD	$10: 18: 53.404$
\circ NRK SA Version	SA $2014.04 .07 \mathrm{~b}(\times 64)$	GOOD	$10: 04: 37.883$

Measurement Plan commands have been added to support interfacing with SA's OPC server-both setting and retrieving values from the server's address space. These commands include:

- Set OPC DA Tag Value Double
- Get OPC DA Tag Value Double
- Set OPC DA Tag Value Integer
- Get OPC DA Tag Value Integer

These commands are detailed in the MP Command Reference. The "set" commands will create a double or integer in the server's address space under the specified tag name. This value can be retrieved from the address space using the corresponding "get" command, or can be updated (overwritten) by specifying another "set" command.

This Page Intentionally Left Blank.

Machine Calibration

SpatialAnalyzer has the unique ability to integrate portable metrology measurements for the calculation of true metrology-compensated robot and CNC machine calibrations.

SA Machine

SA Machine contains all of the features of SA Ultimate + Native CAD, but also allows interfacing with robots and CNC machines. This permits calibration and compensation of robots and large volume CNC machines to high degrees of accuracy. It also enables robotic scripting, teach pendant behavior, and linear or joint space robotic control.

Usually, robots are delivered by the manufacturer with default kinematic models that are accurate to on the order of about $1 / 2-1 / 4$ ". This depends on the manufacturer, product, calibration level, and other factors. Many manufacturers offer calibration packages that might improve this accuracy to perhaps 0.1". CNC machines (especially large-volume machines) can also encounter the same sorts of issues (although they are usually more accurate). Regardless, this default accuracy is nowhere near what's necessary for precision applications. There are several reasons for this. One might be that the manufacturer's kinematic model is not quite right or doesn't incorporate things like the stiffness of the linkages or the weights of tools on the machine very well (if at all).

SA's Robot and Machine calibration functions have a few purposes. The first benefit is that they can be used to calculate a significantly more accurate kinematic model than is provided by the manufacturer
by default. The following discussion will refer to robots, but it applies equally well to CNC machines.

To calculate a new kinematic model, a robot is commanded to go to a set of poses throughout the desired volume of use and whose positions in the robot controller's coordinates are known. For each pose, measurements are taken on the robot's end effector to determine the actual position of the tool compared to where it was "asked" to go. These measurements can be taken with a single measurement from a 6-DOF measurement device, or they can be taken by measuring 3 targets with a 3-DOF measurement device. (Any measurement method that results in 6-DOF information can be used, including photogrammetry).

Once a set of commanded positions and measured "actual" positions are determined, this data is run through a series of kinematic algorithms to determine an accurate kinematic model for the specific robot (machine) of interest. Using this kinematic model, any position that you'd like to send the robot to is first backed through this kinematic model to give the controller a new set of positions. In other words, based on the calculated kinematic model, SA Machine tells the controller where the robot ought to go (based on its kinematics) to end up where you want it to be. This results in a drastically improved result, (to accuracies of about 0.010 ", for example). Although this is a big improvement, it can be taken a step further.
Now that the robot has gone where we think it should go, the end-effector can be measured again, which tells us where the robot actually went compared to where we expected it to be. We can then iterate through the kinematic model to give a small correction to the robot, getting it even closer to the desired target. We have demonstrated accuracies to about $0.001^{\prime \prime}-0.002^{\prime \prime}$ using this method, which is quite accurate for a robot. Given the accuracy of the encoders on the robot's servos, this can't be beat without more accurate hardware encoders. This process is a great way to position tools and other items with very high accuracy/repeatability.

Robots in SA

There are two ways to add a robot to SA.

- To load an existing SA Robot use Analysis>SA Machine - Robots and Machines>Add Machine>Load .SAMachine File (kinematics and graphics).
- To create a new Robot use Analysis>SA Machine - Robots and Machines>Add Machine> Add Serial Robot>Using Kinematic Definition File.
Once a robot is added to the tree it is displayed under the Robots and

Machines category．

Robot Category

Figure 34－1．The properties of a Kuka KR 5 robot．

This category contains the specific Robot or Machine with the respec－ tive components and calibrations（Figure 34－1）．

SA TreeBar		\times
$\square k$ Frames \triangle 果 Robots and Machines		－
4果 Kuka KR 5 －果 Components		Show
		Show Link Frames
－Waist		Properties
－Ebow		Teach Pendant
－Roll		Edit Machine To World Transform
－Pitch		Command Controller Motion
－flange		Simulate Motion
－［ Tool］		
果Calibrations		Delete
\square Point Groups Lines		Make Frame at last end－effector update
4 Suraces		Add Graphical Entity
Database／Explor		Save to File

－Show．Show／Hide all components
－Show Link Frames．Show／Hide Link Frames
－Properties．Displays properties
－Teach Pendant．Displays teach pendant dialog in which user can control robot via several different methods．
－Edit Machine to World Transform．Displays machine base transform dialog allowing for the machine to be transformed with respect to the current frame．
－Command Controller Motion．Sends move commands to ma－ chine based on controller kinematics or SA kinematics．
－Simulate Motion．Simulates move commands to machine based on SA kinematics．
－Delete．Delete machine from SA TreeBar．
－Make Frame at last end－effector update．Creates a SA coordi－ nate frame at the last end－effector position．
－Add Graphical Entity．Adds a new component．
－Save to File．Saves current machine to ．SAMachine file．

Components

The Components sub－category contains each link of the robot with its respective graphical representations（Figure 34－2）．

Figure 34－2．The properties of the robot＇s waist joint．

Calibrations

Figure 34－3．A calibration in the tree．

－Properties．Displays the Manipulator Segment Properties－ Denavit－Hartenberg Dialog．Here the Segment Transform and Joint Variables can be modified．
－Set Kinematic Control Frame．Select the Link Frame for the component．
－Delete．Deletes the selected component．
－Add CAD to Component．Select surfaces to attach to compo－ nent at current location．
－Make Frame at current location．Creates a SA coordinate frame at the current component location．

SA TreeBar 4 A A －蒝 Instruments Point Groups Frames \triangle 果 Robots and Machines Δ 果 Kuka KR 5 －果 Components \triangle 果 Calibrations D NRK Lab Cal 1	\times
	Calibration Interface Trap Measurements from an Instrument Stop Trapping Measurements Delete Calibration Import Joint Poses and match to measurements Export Joint Poses
Database／埋 Explorer	

－Calibration Interface．Displays the Calibration Interface for the respective calibration set．
－Trap Measurements from an Instrument．Allows incoming measurements to be paired with current joint sets．
－Stop Trapping Measurements．Stops the trapping of incom－ ing measurements．
－Delete Calibration．Deletes selected calibration．

- Import Joint Poses and match to measurements. Imports Joint Poses and pairs with selected measurements. Often used when a live interface to a Robot is unavailable.
- Export Joint Poses. Exports the Joint Poses from the selected calibration set.

Controlling a Robot from SA

There are several ways to control a Robot from SA. The following sections will cover the various methods.

SA Teach Pendant

Figure 34-4. The Teach Pendant dialog.

The SA Teach Pendant (Figure 34-4) allows for Robot control from SA instead of the physical teach pendant. The SA Teach Pendant allows for individual actuator inputs, Cartesian moves and graphical input.

- Actuator Movement. Select the actuator to move and either enter the value or use the slider to increase/decrease the value. Select the Drive button to apply the movement to the Robot Controller.
- Cartesian Movement. Here the TCP can be moved in Cartesian space about either the Tool, Base or World frame. Simply slide the respective sliders and then click the Drive button to apply the movement to the Robot Controller.
- Graphical Movement. Allows the user to graphically move the Robot and then apply the movement to Robot Controller by clicking the Drive button.
- Command Machine. The Drive button sends over the specified movement in either Joint space or Cartesian space.
- Auto Drive. Automatically sends movement to the Robot Controller when values change.

Move to Frame

Figure 34-5. The Move to Frame commands.

The Move to Frame commands (Figure 34-5) allow robot movements to be calculated from the selection of Coordinate Frames in SA. When used, the user will be prompted to select a frame. From here, the robot will be moved to the selected position either in controller kinematics or SA Kinematics.

Measurement Plan
The SA Measurement Plan scripting language also includes several commands for controlling Robots. As the above section describes Move to Frame, similar commands are available in MP. MP is a great tool for automating data acquisition and robot movement.

- Move Robot/Machine to Frame
- Move Robot/Machine to Named Destination
- Set Robot/Machine Parameter
- Compute Robot/Machine Adjusted Goal Frame

Collecting Calibration Measurements

Collecting data for a Robot calibration only takes a few steps. Two scenarios exist: Collecting joint sets from a live robot or importing joint sets.

To Collect Measurements from a Live Robot

1. Ensure that SA and the Robot are connected via the SA Robot Driver.
2. Add a new calibration by right-clicking Calibrations and select Add Calibration.
3. Right-click the newly added calibration and select Trap Measurements from an Instrument.
4. Now the calibration set is ready to receive measurements and joint sets. As a measurement is received a corresponding joint set is recorded. Simply move the Robot to various poses and record measurements (Figure 34-6).

Figure 34-6. Pose data for a
calibration set.

To Import Measurements and Robot Poses

1. Ensure the proper Robot poses are formatted in a .txt or . csv file:
```
<name>,<j1>,<j2>,etc.
```

2. Collect measurements for each pose and ensure the point names match the respective pose names.
3. Add a new calibration by right-clicking Calibrations and selecting Add Calibration.
4. Right-click the newly-added calibration and select Import Joint Poses and match to measurements. You will be prompted to select the points and pose file.

The calibration interface is used to compute the new kinematic model for the robot based on the recorded poses and measurements (Fig-
ure 34-7).

Figure 34-7. The Machine Calibration dialog.

- Components. Displays the current components for the current Machine. Right-click a component to access properties.
- Pose Name and Errors. Displays each pose and corresponding positional and rotational errors. Uncheck a pose to remove from solution.
- Measured Point in Tool Coordinates. Used to define the measured target in the TCP frame when using single point measurements. Not needed when using a 6 degree of freedom target.
- Rough-fit tool tips to measurements. Performs a best-fit of the tool tip locations to the measurements to ensure a good initial condition for the optimization.
- Settings. Displays the tool orientation weighting factor.
- Generate Report. Generates a final report to Excel with solution results and kinematic properties.
- Degrees of Freedom. Degrees of freedom for the base, linkages and tool of Robot.
- Run Calibration. Executes the optimization.
- Solution. Displays current position and orientation errors and RMS values.

Best Practice for Running a Calibration

1. With measurements and poses captured, open the calibration interface by right-clicking the calibration set of interest and choosing Calibration Interface.
2. Ensure a good initial starting condition by pressing Rough-fit tool tips to measurements. The overall errors will reduce greatly as the measurements and tool tip positions are best-fit to one another.
3. The initial Degrees of Freedom (DOF) are to allow the base and tool to move freely while maintaining the nominal kinematics (Figure 34-8). The tool DOF should only be set to 6 DOF when 6 DOF measurements are present. Press Run Calibration to start the optimization.

Figure 34-8. The Degrees of Freedom box.

Figure 34-9. Choosing a partial
robot DOF solution.

4. Now, if desired, allow the Robot kinematics to vary by choosing Partial or Full (Figure 34-9). Press Run Calibration to start the optimization.

Degrees Of Freedom Base			
Reset Fixed	(-6DOF		
Robot			
Reset Fixed	- Full	(0) Partial	Custom
Tool			
Reset Fixed	6 DOF	(XYZ	
Reset All Offsets	\square Use Direct Search Solver		

5. At any time, make sure to validate any potential outliers and remove by un-checking the pose and re-running the optimization by pressing Run Calibration.
6. Once satisfied with optimization, generate a report for external sources and/or apply the new calibration to SA by pressing Apply.
7. This calibration will now be used when moving the robot with SA Kinematics.

Figure 34-10. The Move to Frame option.

Move to Frame (controller kinematics)
Move to Frame (SA kinematics)

Kuka Robot Deployment
Below are the necessary components to operate SA and SA Robot Driver with Kuka Robots.

XML Channel configuration and Data format files (C:\KRC\Roboter\INIT)

- RAC.xml
- RAC+.xml
- XmIApiConfig.xml (set tcp/ip address and port of remote access computer - secondary fixed ip on remote computer)
KRL Client Communication (C:\KRC\Roboter\KRC\R1\Program)
- SAKRL.dat
- SAKRL.src

KRL Client motion programs (called by SAKRL.SRC C:\KRC\Roboter\KRC\R1\Program)

- MoveToFrame.SRC and .DAT
- MoveToJointSet.SRC and .DAT
- HitEStop.SRC

VxWorks Communication Configuration (C:\Windows)

- vxWin.ini (robot controller VxWorks tcp/ip address modified under $\mathrm{e}=\{\ldots \ldots$.$\})$
Server application and data format files on remote computer
- SARobotDriver.exe
- EKX Server.exe
- RACData.xml
- Global Data (c:\KRC\Roboter\KRC\R1\System)
- \$config.dat

SA Robot Driver - Kuka Controller Requirements

- KR C2 Controller
- Kuka System Software
- KSS v.5.5
- Kuka Ethernet KRL XML
- v. 1.2
- 3COM Ethernet Card Option

Denavit-Hartenberg Notation ${ }^{1}$

The first step in calibrating a manipulator is to understand its nominal kinematic parameters, and the controller's ability to accept new, calibrated values for these parameters. This section will describe how to

1 For a more detailed description of Denavit-Hartenberg notation see Craig, J. J., 1989, Introduction to Robotics: Mechanisms and Control, Addison Wesley, New York.

Figure 34-11. A robot and its Denavit-Hartenberg (D\&H) table.
represent a robot's kinematics. Most manipulators are serial devices, meaning they are composed of a series of links and joints connected in an open chain. Denavit-Hartenberg notation is a standard means for specifying the kinematics of a manipulator. See the example table below, then a brief description of the meaning of the parameters.

Link	\mathbf{a}	\mathbf{a}	\mathbf{d}	$\boldsymbol{\theta}$	Type
1	0.0	0.0	0.0	0	Revolute
2	-90.0	0.0	0.0	0	Revolute
3	0	8.0	-4.8	0	Revolute
4	-90.0	0.0	8.0	0	Revolute
5	-90.0	0.0	0.0	0	Revolute
6	-90.0	0.0	0.0	0	Revolute

Links are rigid members; joints allow relative motion between the links. The chain starts at the base, or ground link, and ends at the working tool. Except for the tool link and the base, each individual link in the chain begins and ends with a joint. The tool may be a gripper, paint sprayer, welding tip, electro-magnet or any of a wide variety of devices. Common manipulators use only revolute (turning) or a prismatic (sliding) joints to connect links. More complicated forms of joints can always be modeled as a combination of these simple elements. The function of a link is merely to fix the relationship between the joints at either end of the link. As long as the two joints are held at the same relative position and orientation with respect to one another, the link serves only as a rigid connector. The actual physical shape of the link can be changed without altering the kinematic relationship between the two interconnected joints.
A kinematic description of the manipulator is generated by SpatialAnalyzer using the standard Denavit-Hartenberg notation. This remarkably simple representation uses only two values to describe each link, and two additional values to describe the joint connection between adjacent links. Links are described in terms of their length (a) and the twist they maintain between adjacent joints (a), as explained below.

- Twist Angle (a). The angle between the first and second joint axes on a link. This angle is measured in a right-hand sense when viewed directly along the common normal.
- Link Length (a). The distance between the two joint axes of a link. This distance must be measured along a line that is normal (i.e. perpendicular) to both joint axes. This line is referred to as the common normal between the joint axes. If the joint axes intersect (a common arrangement in industrial manipulators), the link will have zero length. The joint connection between adjacent links is described in terms of the offset (d) and the joint angle (θ), as explained below.
- Offset (d). The distance between the common normal of one link and the common normal of the next, measured along the axis of the joint connecting the two links.
- Joint Angle ($\boldsymbol{\theta}$). The angle between the common normal of one link and the common normal of the next, measured about the axis of the joint connecting the two links.

The four parameters a, a, d, and θ, when taken for each link and joint in the chain, provide a complete kinematic description of the manipulator. When taken together with a description of the physical shape of each link and limits on joint motion, an accurate simulation of robot motion and operating workspace can be developed.

In addition, there is usually a Joint Offset value computed during the calibration. This value represents the difference between the "kinematic zero" of a joint, and the mechanical zero based on how the encoder was set in the joint mechanism.

For a more detailed description of Denavit-Hartenberg notation see:
Craig, J. J., 1989, Introduction to Robotics: Mechanisms and Control, Addison Wesley, New York

Tutorials

The following tutorials are designed to guide you through various topics in SA and get you up and running as quickly as possible. After completing a tutorial, you should feel more comfortable with using the covered areas of the software in real-world use.

Working With Frames

- Skill Level. Beginner.
- Description. In this tutorial, we will explore working with different coordinate frames, and see how the working coordinate frame affects the values reported in SpatialAnalyzer.
- Areas Covered. Creating points and geometry, geometry fitting, frame construction/activation, transformations, and point/object queries.
- Time to Complete. Approximately 30 minutes.

Creating Entities to Work With

For this tutorial, we want to create some points and geometry to play around with, so we'll start out by creating those entities first.

1. In SA, start a new job file by selecting File $>$ New from the menu or choosing the New File Icon \square from the main toolbar.
2. Let's create a few points to work with in the workspace. To do this, go to Construct>Point(s)>Enter or press Ctrl+P.
3. In the Add Points to Model dialog (Figure 35-1), let's place

Figure 35-1. Adding a point.
\iint Note: Depending on how your copy of SA is set up, your active collection may not be named A.

Figure 35-2. The newly-added point.
the points into a collection called Nominal and a point group called NominalPoints. We'll give the first point a name of 1. Give the point an X coordinate of 15 , a Y coordinate of 10 , and a Z coordinate of 7 . We're entering these coordinates as Cartesian (XYZ) coordinates, so we'll leave that setting at the default:

4. Click the Add Point button, then click Done. In the graphical view, you should see a point created at the specified coordinate. If you don't see it, autoscale the view by clicking the Autoscale button \ddagger, pressing Alt+A, or choosing View $>$ Zoom $>$ Autoscale.
5. In the tree view, you should see that the Nominal collection now exists. Since it did not exist when you created the point, SA created this collection for you.
6. In the tree, (if necessary) click the disclosure triangle next to Nominal to expand the list of items in the Nominal collection. Note that there is an item in the list named Point Groups. SA sorts items in the tree based on their category. Expand the Point Groups category, and you'll see that SA created the NominalPoints point group, because it did not already exist.
7. Expand the NominalPoints point group to show all points contained within the point group, then click the triangle next to the single point to show the coordinate of the point named 1. You should see the coordinates that you just entered (Figure 35-2).

8. The default collection in your SA file is currently active, because it is depicted in bold blue font in the tree.

Figure 35-3. The list of recent commands.

Note: The Autoscale keyboard shortcut of Alt+A will only work if the graphical view has the focus, by clicking once on it.

Let's activate our new Nominal collection. Right-click on the Nominal text in the tree and, from the context menu, choose Make Active Default Collection. Now, any geometry that you create will be placed into the active Nominal collection.
9. Now let's create another point. SA saves a history of the most recently used commands so that you don't have to select them from the menu again if you're repeating a single command several times. To use this history, hold down Ctrl+Shift+Tab. In the upper-left corner of the graphical view, a menu should appear showing your recent commands since you started SA, with the most recent command at the top (Figure 35-3).

10. Choose the Construct>Point(s)>Enter item from the list. Notice that SA remembers the last collection and point group that was used for this command. Enter 2 for the point name, and give it a coordinate of $(20,20,20)$. Click the Add Point button.
11. After clicking the button, notice that SA automatically increments the point name by one. This behavior is found commonly in different parts of SA, and is intended to save time from typing, since incrementing names by one is so common. Change the coordinates to $(5,5,5)$ and click the Add Point button again to create the third point, then click the Done button to close the dialog.
12. Now let's create a plane to work with. From the menu, select Construct>Plane(s)>Enter. The Plane dialog will appear (see Figure 35-4 on page 860), allowing you to specify properties for the newly created plane.
13. Leave the plane's name at the default of Plane, and click the Transform button. Locate the plane at $(35,0,0)$ and assign it an $R x$ value of 90°. Click the Update button.
14. If necessary, autoscale or zoom out so you can see the newlycreated plane relative to the points.
15. With the plane in view, set the $R x$ value back to 0°, and change Ry to 90°. Again, hit the Update button to see the plane change

Figure 35-4. The Plane Position dialog.

Figure 35-5. The positive side of a plane is indicated with an arrow.

Figure 35-6. Selecting the option to draw a plane's normal vector.
orientation. Now, click the increment arrows next to the Ry field and notice how the plane is rotating around the active coordinate frame's Y axis. We'll set the Ry value to 160°. Click the Update button, then click the " X " in the corner of the Plane Position dialog to close the window.

16. In SA (as in mathematics), planes extend infinitely in two dimensions. So, the boundaries that are depicted in the graphical view are purely to give you an idea of the location and orientation of the plane--the actual plane is not bounded. Notice also that planes have an arrow drawn along their normal to indicate the direction of the plane. All geometry and surfaces have normal directions, which define the positiveside of the geometry. All measurements with offsets in SA are always compensated relative to this positive side:

17. The plane's normal direction can be reversed to face the opposite direction. In the Plane dialog, click the Reverse button.

Notice how the arrow flips to face the opposite direction. Turn off the plane's arrow so that it's no longer drawn in the graphical view by deselecting the Draw checkbox in the Plane dialog (Figure 35-6). Close the dialog by clicking the Close button or

Figure 35-7. The Circle Fit dialog.
the " X " in the corner of the window.
18. Finally, let's create a circle to work with. This time, rather than creating a circle and specifying its position and orientation, let's fit a circle to the three points that we created earlier. Orient your view so that you can see all three points. From the menus, choose Construct>Circle(s)>Fit to Points or press Ctrl+Alt+C. You will be prompted for the points that will define the circle fit. Hold down the Shift key, and click-drag to define a rectangle around the three points. In the bottomleft corner of the SA window, you should see a message saying "Picked 3 Points". If you look in the treebar, the selected points will highlight bold and blue, and they will change to a highlight color in the graphical view. Press Enter to accept the selection.
19. You will be presented with the Circle Fit dialog (Figure 35-7), which allows you to define the parameters and results of the fit operation. Above the box with the red background, you'll see your points (1-3) listed in a box, along with the resulting error of those points from the resulting circle. Since three points perfectly define a circle, our resulting circle will end up passing through all three points exactly. Notice that the Planar and Radial errors are zero, and the error magnitudes are also zero:

20. In the bottom-left corner of the Circle Fit dialog, ensure that only the Make Cardinal Points and Make Geometry options are selected, then click the 0K button. SA will ask you for the name of the group in which you'd like to place the cardinal points. Enter NominalPoints and click 0K.
21. The Circle dialog will appear. Give the circle a name of MyCircle. Notice the Draw checkbox again. Select it to see that circles have a normal direction as well, and notice that two points have been created from our circle fit: one on the circle's center, and another along the normal of the circle. These are the Cardinal Points. Turn the Draw checkbox back off, and click the

Close button.
In the next section, we'll create some coordinate frames using a few different methods.

Creating Frames

Figure 35-8. Creating a new frame.

Coordinate frames are crucial to many functions in SpatialAnalyzer and metrology in general. They define the locations and directions that are important to you or the features that you're measuring. SA has a number of powerful ways to create coordinate frames to meet all of the needs you might encounter on a day-to-day basis.

1. In the graphical view, note that the World frame is currently the working frame. The working frame is rendered with colored arrows representing each of the axis directions: red for X, green for Y , and blue for Z . In the tree, you will also notice that the working coordinate frame is rendered in a bold blue font.
2. Let's create a new coordinate system, offset it from the current World frame, and change its orientation. From the menu, choose Construct>Frame>Enter. Give the frame the name Offset Frame. This command creates a new coordinate frame with the same position and orientation as the working coordinate frame. We want to move our new frame. Click the Transform button to bring up the Frame Position dialog (Figure 35-8). Offset the frame by 10 units in X, Y, and Z, and also rotate the frame by $+45^{\circ}$ about the Z axis. Click the Update button to see the new frame move to the new position:

3. Close the Frame Position and Frame dialogs, and verify for yourself visually that the new frame's origin is located at (10, 10,10) in the active (World) frame's coordinate system. Verify also that your constructed frame is rotated 45° about the active coordinate frame's Z-axis. Notice that SA uses the righthand rule. If the thumb of your right hand is pointed along the axis of rotation, then curling your thumbs from one of the
remaining axes to the other will define the sense of positive rotation. Our newly-created frame is drawn as a set of 3 orthogonal lines. The thicker colored arrows are only drawn on the coordinate frame that is currently active.
4. Let's activate our newly-created coordinate frame. Click on the A::World button in the WCF Toolbar (your button may look slightly different depending on the name of your default collection):

Figure 35-9. The WCF Toolbar.

5. From the Object Selection dialog, double-click the Offset Frame frame. The button's title will immediately change to reflect the new working frame, and the new frame will be rendered as active.
6. Now let's construct a frame on our circle. Objects can have frames constructed on them. The specific behavior is dependent on the type of object, but for a circle, the frame will be built with its origin on the center of the circle and its Z-axis along the circle's normal. From the menu, select Construct>Frame>On an Object. When prompted for the object, double-click the MyCircle circle. Name our new frame Frame On Circle and close the Frame dialog.
7. Finally, let's create a coordinate frame whose origin is at one of our circle points, whose X-axis points directly to the second, and whose Z axis clocks along the point defining the circle's normal. From the menu, choose Construct>Frame >3 Points $>$ Origin, X axis $>$ Point on XZ Plane. For the origin point, double-click the point in the tree named Nominal::NominalPoints:: 1. Note that SA uses a convention to denote the "complete location" of an entity. For objects, it includes the collection, followed by two colons, then the object name. For points, it includes the collection, followedby two colons, followed by the group name, followed by two more colons, and finally followed by the point name.
8. Let's pick the Point along X axis by clicking on it visually in the graphical view. We want to pick the Nominal::NominalPoints:::2 point, but how do we know which is which? From the menu, choose View>Show Point Labels (or press Alt+L). This will toggle on and off the display of labels for the points. Ensure that the Point along X axis prompt is still displayed, and in the graphical view, double-click the point labeled 2.
9. When prompted for the Point along XZ plane, double-click the Point on Normal point. In the Frame dialog, give the frame
a name of Clocked Frame and close the dialog.

Activating Frames

Figure 35-10. Viewing the point coordinates.

When analysis values are reported by SpatialAnalyzer, they are almost always reported in the working coordinate frame, unless otherwise specified. For example, when you query two points to determine the distance between them, you will be presented with the magnitude of the distance (in the current units), which will remain the same regardless of the working frame. However, you'll also get delta values along each active frame axis (dX, dY, dZ). In some cases, you can explicitly specify the frame to report results in, regardless of which frame is currently active.

1. With the Offset Frame frame still active, right-click on the NominalPoints point group and choose Expand All Entries from the context menu. You should now be able to view the X/Y/Z coordinates for all of the point group's points (Figure 35-10).

2. In the tree, right-click on Clocked Frame and choose Make Working Frame from the context menu. Notice that the point coordinates change immediately to reflect the new coordinate frame's position and orientation.
3. Let's look at the point coordinates further. Point 1 is located at $(0,0,0)$ because we used it to define the origin of our working frame. Point 2 has Y and Z coordinates of 0 because the X axis points directly to it. Finally, the Point On Normal point has a Y coordinate of zero, since we defined the frame so that the point lies in the frame's XZ plane.
4. Next, activate the Frame on Circle frame. The Center point is at the origin, and the Point on Normal point is along the Z axis. In the tree, right-click on MyCircle and choose Properties
from the menu. In the Circle dialog, click the Transform button. Notice that the circle has position and orientation values of zero, since the active frame was created on the circle. (In other words, the frame was created at the circle's internal object origin). Close both dialogs.
5. Now we'll measure a few distances. From the menu, choose Query>Point to>Point (or press Ctrl+D). When prompted, dou-ble-click the Center point for the 1st point and Point on Normal for the second. In the Query Results dialog, the two points have $d X$ and $d Y$ values of zero (since they both lie along the Z axis of the active frame). If you were paying close attention (or have a photographic memory), you'll notice that the distance between the two points is the same as the circle radius.
6. This time, activate the Offset Frame frame and follow the instructions in the previous step to compare the two points again. This time, notice that the two points have nonzero dX, $d Y$, and $d Z$ values, since they do not lie along the direction of any of the active frame's axes.
7. Let's determine the distance of one of our points from our plane. From the menu, choose Query>Point to>Object. Doubleclick Point on Normal for the point, and Plane as the plane. The Query Results dialog will display the distance of the point from the plane along the active frame's X, Y, and Z axes.

Conclusion

In this tutorial, we saw ways to create different geometric entities such as points, circles, and planes. We also explored a few methods of frame construction, and saw how results reported from commands can be influenced by the working coordinate frame.

Construct and Modify Objects

- Skill Level. Beginner.
- Description. In this tutorial, we will cover how to construct and modify objects.
- Areas Covered. Construct simple geometry, move an object, change object color and rename.
- Time to Complete. Approximately 10 minutes.

Creating and Modifying a Sphere

In this tutorial we want to become familiar with the basic object operations in SpatialAnalyzer.

1. Let's construct a sphere by using Construct>Spheres>Enter. The Sphere properties dialog will appear (Figure 35-11). Change the name to MySphere, then close the dialog.

2. The newly-created sphere will display in the graphical view and the tree (Figure 35-12).

Figure 35-12. The newly-constructed sphere.

Figure 35-13. Moving the sphere.

3. Now let's change the shading from wireframe to solid. Go to the toolbar and click the solid render icon - . The sphere will now appear shaded.
4. Change the color of the sphere to green. Double-click MySphere in the tree. The sphere properties box will appear. Select the color button and choose a green color from the color palette, then press 0 K .

5. Let's move the sphere to 30 inches in X and 50 inches in Y. Right-click MySphere and select Move. Enter in the values for X and Y and press Update (Figure 35-13).
6. Now copy the sphere and move it to 50 inches in Z. Right-click

MySphere and select Copy. Enter 50 for the Z position.
7. Now rename the sphere to MySecondSphere. Right-click MySphere1 and select Properties. Change the name to MySecondSphere in the name field (Figure 35-14).
8. Now change the color to blue. This time change the active color to blue using the color icon \square. Once blue is selected use the color objects icon \downarrow and single-click the sphere in the graphical view.

Conclusion

After completing this tutorial you should feel comfortable with creating, moving, and editing objects. Remember that most properties can be accessed by right-clicking an object in the tree or the graphical view.

View Control

- Skill Level. Beginner.
- Description. In this tutorial, we will cover basic view control functions.
- Areas Covered. Hiding and Showing of objects, background color, panning, zooming and rotating.
- Time to Complete. Approximately 15 minutes.

Changing Render Settings

Here we will change the render mode for the SA graphics from wireframe to solid.

1. Open Query Points to Surface.xit from the Samples directory under Help>0pen Sample SA Files. When a file is opened, surfaces are by default rendered in wireframe mode in order to open the file as quickly as possible.
2. The Render settings can be changed with the render mode icons $\circledast \otimes$. Try each of the Render settings. Now render the model solid by using the Solid icon (Figure 35-15).

Figure 35-15. Rendering in solidshaded mode.

Change Background Color

Let's change the background color from a gradient to a solid color.
3. Access the background color options by using the Background button on the main toolbar.
4. In the Background dialog (Figure 35-16), select the Solid color radio button. Now select a solid color by clicking the current

Figure 35-16. Changing the background color.
solid color swatch. The color palette will display--choose a green color and press OK. Exit the background color dialog by pressing 0K. After your eyes adjust...go back and change the background color to white by using the shortcut for white.

Hide and Show

Let's experiment with the ways to hide and show points, objects, and other SA entities.

1. Hide the vector group called Boat Error_Vectors_Blotches. Expand the Vector Group category in the tree. Now right-click Boat Error_Vectors_Blotches and uncheck Show. The object name will be greyed out in the tree (Figure 35-17). To show a hidden item, simply select Show again.

Figure 35-17. Hiding the vector group in the tree.

Figure 35-18. Hiding the entire point group.

2. Now let's hide a few of the points. Choose View>Hide Points from the menu. Single-click a few points in the graphical view and press Enter. Now hide a single point in the Surface point group. Expand the Surface point group, right-click on a point and uncheck Show. Just like the above step for hiding the Vector Group, the point will be greyed out and the check box beside Show will be removed. Now hide all of the points by rightclicking the Point Groups category in the tree and selecting Hide All. Now all of the point groups in the collection are hidden (Figure 35-18).

3. Now let's hide the CAD model surface by using the menu item View $>$ Object Visibility>Hide Objects. Select the surface by pressing F2 and checking the surface category. Press 0K to exit the F2
selection dialog and press Enter to complete the command.
4. Hide the remaining items in the Hydro collection by rightclicking Hydro and selecting Hide All.
5. Now to show an object you can simply reverse any of the above steps. Let's show everything by right-clicking Hydro and selecting Show All.

Zoom, Pan and Rotate

Now that we can change colors, render, and hide/show objects, let's learn how to manipulate the graphical view. See the Graphical View section for more information regarding Zoom, Pan and Rotate.

Zoom

1. Zoom in on the graphical view by rolling the scroll wheel forward on your mouse.
2. Zoom out by using the Page Down key.
3. Zoom back in by holding down Ctrl and left-click dragging the mouse.
4. Zoom back out by using menu item View $>$ Zoom $>$ Out.
5. Now let's put all visible objects back in the view by using Autoscale $\ddagger+$.

Pan

1. Use the arrow keys on the keyboard to pan the view up, down, left and right.
2. Now pan the view by holding down the Shift key while pressing the left mouse button and dragging the mouse.
3. Now let's rotate the graphical view. Press and hold the right mouse button and drag the mouse. You will quickly notice that the view pivots about a particular point in space.
4. Let's change the rotation center by selecting the View Rotation Center button $\left(\begin{array}{|} & \text { from the toolbar. Select one of the }\end{array}\right.$ points at the corner of the model. Now rotate and you will see how the view pivots about the selected point.

Preset Views

Preset views are available which allow for quick orientation of the graphical view.

1. Press the drop down beside the icon and select Top. This will orient the view with respect to the World frame.
2. Saved presets can also be used. Now select the vector view preset view from the list.

Conclusion

We have now covered many ways to render objects, change background colors, show/hide objects and manipulate the graphics.

Basic Point Analysis

- Skill Level. Beginner.
- Description. In this tutorial, we will cover how to perform basic point analysis.
- Areas Covered. Query Point to Point, Query Point to Object and Query Points to Objects.
- Time to Complete. Approximately 20 minutes.

Creating Entities to Work With

For this tutorial, we want to create some points and geometry to play around with, so we'll start out by creating those entities first.

1. In SA, start a new job file by selecting File $>$ New from the menu or choosing the New File Icon \square from the main toolbar.
2. Create a set of random points by using Ctrl+Alt+Z or Constru ct>Point(s)>Layout>Random Points. Use the default settings.
3. Now create a plane by using Construct>Plane(s) $>$ Enter and accept the default settings.

Calculating Point to Point Distance

Calculating the distance between two points is a very common analysis operation and provides a good starting point for learning basic analysis in SA.

1. Using the points we created above, let's determine the distance between two points. Use Query>Point to>Point or Ctrl+D and select two points by single-clicking in the graphical view.
2. The distance between the two points will be reported in the Query Results dialog (Figure 35-19). The delta values for each component are expressed in the active coordinate frame. The point to point distance is calculated from the centers of the selected points. Any target offset, if present, will be ignored.

Figure 35-19. The query results dialog.

Figure 35-20. The query as an SA Event.
3. A record of the point to point query is stored in the SA tree in the form of an Event. This event can be viewed using the report bar or an SA report (Figure 35-20).

Calculating Point to Object Distance

Another common analysis operation is calculating the distance between a point and an object, which is reported as the closest distance between that point and the object. Let's calculate the distance between one of the random points and the plane we created earlier.

1. Select Query>Point to>Object from the menu. Select one of the random points and then the plane. The resulting distance between the point and the plane is displayed (Figure 35-21). Notice that the dx and dy values are zero. Since we're comparing a point to a plane, and the plane's normal is along the Z axis, there is no delta-x or delta-y component. (Said another way, the closest point on the plane to the selected point is directly below that selected point).

2. Like the Point to Point query, the results are stored in the tree as an event (Figure 35-22).

Figure 35-22. The Point to Object query as an event.

Calculating Multiple Points to Object Distances

During analysis operations it is often desireable to calculate the distance between multiple points and objects. To do this, a Points to Objects query can be performed. The output of this query is a vector group which gives a numerical and graphical representation of the point to object deviations.

1. Go to Query>Points to>Objects and select all of the random points. Then, select the plane when prompted for the objects. The Query Point to Surface Options dialog will appear (Figure 35-23). Here you can choose which direction the Vector should point and access general options. By default the vector (whisker) will point from the object to the point. Let's also create a point group with points that are offset toward the object by the target radius. (Think of these as the "contact points", or the points where the measurement tooling would have been touching the object being measured). Press OK.

Figure 35-23. The options for querying points to objects.

Figure 35-24. The vector group properties dialog.

2. A Vector Group will be created and the properties dialog will appear (Figure 35-24).

3. To change the appearance of the vectors, click the Display Settings button. Here you can change the magnification, size, and style of the vector. Change the magnification, vector style and blotch size to match Figure 35-25.

Figure 35-25. The Vector Group Display Options dialog.

Figure 35-26. Colorization options.

4. Now change the colorization of the vectors and apply a tolerance for colorization. There are four different colorization methods (Figure 35-26). Choose Toleranced (Go/No-Go).

Now the vector group reflects the display and colorization changes (Figure 35-27).

Figure 35-27. The result.

Best Fit Points to Points

- Skill Level. Beginner.
- Description. In this tutorial, we will explore the "best fit points to points" commands, a commonly-used functionality for relocating to an established coordinate system and aligning objects.
- Areas Covered. Renaming points using a name pattern, renaming points by auto-corresponding using inter-point distances, locating instruments using best-fit, fit weighting, and tolerance coloring zones.
- Time to Complete. Approximately 20 minutes.

Point Names Are Important

In this tutorial, we have a set of nominal points (fiducials), and we've measured those nominal points with a laser tracker. Our task here is to locate the instrument by fitting the measured points to the nominals.

1. We'll start by opening a tutorial file included with your installation of SA. In SA, choose Help>Open Sample SA Files. Choose the Best Fit Points to Points.xit file. This file contains a laser tracker which has measured a series of 7 points, each of which has a corresponding nominal point.
2. Our measured points currently match the names of the nominals, but in real life, you won't ordinarily be so lucky. Let's give random names to our measured points to simulate what you might encounter after a real survey. From the menu, choose Edit>Rename>Points Using a Name Pattern.
3. When prompted for the points, press F2. Check the Station 1 point group to select all points in the group, then click OK. Press Enter to accept the point selection.
4. For the Name Pattern field, enter \%d. Enter a starting value of 5, and click OK (Figure 35-28). The measured targets will be assigned names from 5 to 11 . Notice that the measured target names do not match the nominal point names.

Figure 35-28. Renaming using a pattern.

Pattern for Rename
Pattern \%d Starting Value 5 Pattern provides a base string in which \%d is substituted with an incrementing value beginning with the specified starting value. OK Cancel

Figure 35-29. Locating using Best Fit.
5. Let's locate our instrument to the nominal points. In the tree, right-click the tracker and choose Locate. From the Locate Instrument dialog, choose Best Fit and click OK (Figure 35-29).

6. You will be prompted to select the Nominals Group. Click one of the nominal points in the graphical view. Then click one of the instrument's points when prompted for the Measured Group. Nothing happens! The fit is not occurring because best fitting points requires that each nominal and corresponding measured point must have the same name.
7. You could rename each point manually, but there is a better way. We want to rename our measured points to match our nominal names. From the menus, choose Edit $>$ Rename $>$ Points by Auto-Corresponding 2 groups $>$ Inter-Point Distance. Think of this command as performing a best fit "under the hood", then renaming the points based on their proximity to the reference points. When prompted for the reference group, pick the Nominals group. For the group to be renamed, pick the Station1 group.
8. The default value of $0.1^{\prime \prime}$ (2.54 mm) works fine for our interpoint distance match tolerance. We know that each of our measured points should be within $0.1^{\prime \prime}(2.54 \mathrm{~mm})$ of our nominals after a best-fit it performed, so all of the points within this threshold will be renamed. (Note that this function would probably not work if the nominal points were symmetrical. In that case, SA wouldn't know how to orient the measured points, and the resulting points may not be named correctly).
9. You will be presented with the proposed name changes. Click Accept to make the changes. The Station 1 point names now match the Nominals point names. We're now set to do a points to points best fit.

Fitting the Points

Figure 35-30. The Best-Fit Transformation dialog.

1. We saw how to use best fit from the instrument's Locate menu. Let's look at how to do it from the main menu. Choose Instrument>Locate (Transform to Part)>Best Fit. As before, pick Nominals for the nominal group and Station1 for the measured group. The Best-Fit Transformation dialog will appear (Figure 35-30). At the top of this window, we're allowing 6 degrees of freedom for the fit: $X, Y, Z, R x, R y$, and $R z$, which is what we want in this case. Notice the table at the bottom, which is currently displaying the nominal coordinates and resulting deltas. Click the Actuals checkbox to display the coordinates of the measured points. Notice that the fit hasn't yet been performed, and as a result the deltas are quite large. That's why the Re-fit button (with the two chasing arrows) and the fit results are highlighted blue.

2. Click the Re-fit button to calculate the fit. Immediately, the results of the fit are displayed (Figure 35-31).

Figure 35-31. The fit results.

3. Notice that each field is color-coded based on the Tolerance Coloring Zones in the dialog. Deltas between 0.0000$0.0200^{\prime \prime}$ are not colored, deltas from 0.0200-0.0400" are yellow, 0.0400-0.0600" are blue, and $0.0600^{\prime \prime}$ and greater are red. Looking at the results of the fit, point M3 has a very large $d X$ value relative to the other points. This is highlighted by the red coloring. Click the " $d X$ " column header twice to sort the values, with the highest value in the top row.

It looks like our M3 point has a significantly higher dX error than the other points, so that point is suspect. Let's temporarily remove it from the fit to see how the solution is affected. Uncheck the checkbox in the Name column for point M3. Since this changes the fit, you again need to click the Re-fit button.
4. Immediately, the errors drop dramatically, which backs up our theory that the M3 point is not good. Let's give our tolerance warning indicators smaller values, for good measure. Click the ellipsis button.$^{. .}$in the Tolerance Coloring Zones section of the dialog. In the Tolerance Zone Coloring dialog (Figure 35-32), set the values to $0.005^{\prime \prime}, 0.010^{\prime \prime}$, and $0.020^{\prime \prime}$ respectively.

Figure 35-32. The Tolerance Zone Coloring dialog.

Figure 35-33. The Best-Fit Item dialog.

5. After the change, none of the rows are highlighted, so we know that all errors are within $0.005^{\prime \prime}$. In fact, we can easily see that the largest error is just under 0.002".
6. Now take a look at each of the individual components.The largest dX error is 0.0006 ", which we deem to be acceptable. The largest dZ error is 0.0004 ", which is also acceptable. But notice that two of the $d Y$ errors are $-0.0011^{\prime \prime}$ and $0.0016^{\prime \prime}$. These are at least double the largest errors of any of the other components. Suppose that we believe that the Y values from those two points might be unreliable. The best-fit dialog allows us to weight these individual components to zero, so that they do not affect the fit. Let's do that now, starting with the point with the larger error.
7. Check the Weights checkbox so that we can see the individual component weights being applied. Double-click the M2 row. In the Best-Fit Item dialog (Figure 35-33), click the 0 button under the Y component to set its component weight to zero and click the 0K button.

8. Click the Re-fit button. (Note that it's usually best to make

Figure 35-34. After the best fit.
small changes and re-fit, so you can gradually see how the changes affect the solution). Now that the new solution is calculated, the new largest dY is under 0.001 ", so we may consider this to be acceptable.
9. Click the Apply Transformation button. The instrument immediately snaps to the nominals (Figure 35-34). We've now performed a fairly complicated fitting operation with ease. We've removed a point from the fit operation, and weighted an individual component from another point to zero to exclude it from the fit. As a result, we brought our errors from over $0.030^{\prime \prime}$ to under $0.001^{\prime \prime}$. Since most of the points and components are still in the fit, we can still be confident that the fit is good.

1. Let's review the results of our fit. When the fit was completed, an event was created in the tree called Best Fit Transformation. Turn on the Report Bar by selecting Reports>Report Bar Visible from the menus (if necessary), and click the event in the tree to select it.
2. In the Report Bar, notice that you can view all of the results from the fit, including the points and components that were excluded from the fit or assigned special weights.

Best Fit Geometry from Points

- Skill Level. Beginner.
- Description. In this tutorial, we will explore how to best fit geometry to points.
- Areas Covered. Geometry Fitting.
- Time to Complete. Approximately 15 minutes.

A significant portion of metrology analysis involves fitting geometry to measured points. SA's interactive Geometry Fit Interface is able to fit a wide variety of geometric shapes to any set of measured, constructed, or cloud points. In this tutorial, you will learn how to best fit data to four of the most commonly created shapes: circles, cylinders, lines and planes.

1. To begin, open the tutorial file in SA included with your installation. Choose Help>Open Sample SA Files and select Geometry Fit.xit.

If you expand the items in the tree bar on the left, you will see that this file contains two separate instruments. The laser tracker measured points in the point groups Circle and Plane. The portable arm measured the points in the point group named Cylinder. These instruments were located to an established coordinate system using a best fit points to points transformation. This transformation was performed for visual purposes only and will not be demonstrated in this tutorial.

Best Fit a Plane to Points

There are several ways to fit geometry in SA. One is by selecting Construct>Geometry by Fitting (Ctrl+G), which is the general form of the command. If you already know the type of geometry you wish to create, a slightly faster method is to use Construct>[Geometry Type]>Fit to Points. This method will automatically select the proper geometry type for you. The keyboard shortcuts for geometry fitting are useful and easy to remember: Ctrl+Alt+[Letter], where [Letter] is typically the first letter in the geometry name (P for plane, C for circle, etc). If either of these methods are used, you must explicitly select the points to use in the fit. The simplest option is to right-click on the appropriate point group and select Fit Geometry from the context menu. If you've measured features into different point groups (as you should in SA), this will fit the geometry to the entire point group, which is almost certainly what you want.

Figure 35-35. The Geometry
Fit Interface.
2. Right-click the Plane point group and select Fit Geometry from the context menu.
3. The Geometry Fit Interface will appear. Here you can control the fit tolerance, points used in the calculation, output parameters, and everything else related to the fit. Select the Plane option from the dropdown (Figure 35-35).

Fit Tolerance

4. Click on the Point List button. This will display the Geometry Fit Point Listing dialog (Figure 35-36) which shows you the fit error for individual points and permits the application of Tolerance Coloring Zones.

Tolerance Coloring Zones can be defined with values of your choosing and help you gauge how well the plane fits the selected data. You may change the tolerance zones as well as their colors by selecting the ellipses icon ... In this example, one point lies outside of the $0.015^{\prime \prime}$ tolerance zone. Four points are highlighted yellow because their error lies in the Limit 1 tolerance zone. All other points that are not highlighted are considered completely in-tolerance.

Figure 35-36. A geometry fit's point listing.

5. Let's uncheck the out-of-tolerance point highlighted in pink to remove it from the fit. Once unchecked, the fit will need to be recomputed. Press the recompute button (Q, which will have a dark blue background indicating the currently displayed fit data is not reflective of the current settings. Evaluating the new fit results, all points are now considered in tolerance. Close out the point listing dialog box.

Controlling Probe Offset

By selecting which probe you are using while collecting data, you will allow for SA to automatically calculate the offset when fitting geometry. For this particular plane, a $1.5^{\prime \prime}$ SMR was used and as a result SA has already shifted the plane $0.75^{\prime \prime}$ to compensate for the probe radeus (Figure 35-37).

Figure 35-37. The plane is automatically offset from the measured points.

6. Click the Fit Details button. Among the statistics about the fit and the resulting geometry, the dialog also indicates that all points have offsets of $0.75^{\prime \prime}$. Close this window.
7. Check the Override checkbox (which overrides the target offsets to $0.0^{\prime \prime}$ by default) and notice how the plane now rests approximately on the measured points.

Figure 35-38. Overriding the offset to $0.0^{\prime \prime}$.

8. Uncheck the Override checkbox to again use the measured probe offset of 0.75".

In certain less common measurement situations (such as indirect measurement or when using a backing bar), you may wish to reverse the geometry offset direction or the direction of the resulting geometry. The Reverse checkbox in the Planar Offset Direction box and the Reverse Object Normal Vector checkbox are intended to be used for this purpose.

Creating Entities

It is sometimes desired to create probe compensated points-that is, points which represent the point of contact of the probe on the measured feature (instead of points representing the center of the probe). This can easily be accomplished by selecting the 0ffset Pts button.

Exercise

Now that you have discovered how simple it is to interact with the geometry fit interface when constructing a best fit plane to points, it's time to try an exercise utilizing three other geometric shapes with the remaining data on your own.

- Best fit a circle to its measured points.
- Best fit a cylinder to its measured points.
- Best fit a line to the cardinal points constructed from both the circle and cylinder.
If you need help or would like to check your work, follow the steps below.

Best Fit a Circle To Its Measured Points

1. All points for the circle fit were measured in the same point group. Right-click on the group in the tree and select Fit Geometry.
2. Click the Point List button. Several points are highlighted pink (Figure 35-39). Uncheck the point with the highest magnitude and recompute. Several points are still highlighted pink so uncheck the point with the highest magnitude once again and recompute. All points are now in tolerance (Figure 35-40).

Figure 35-39. The point list for the circle, showing many out of tolerance points.

Figure 35-40. The fit improves dramatically after removing a few stray points.

3. Since the final step requires us to best-fit a line using cardinal points, click the Cardinal Pts button. The point group Fitted CircleCardinal Points has been created.

4. Click OK to accept.

Best Fit a Cylinder To Its Measured Points

1. All points for the cylinder fit were measured in the same point
group, so right-click on the group and select Fit Geometry.
2. Since the tolerance box lets us know that 0 of 16 points are out-of-tolerance (assuming the defined tolerance is acceptable to us), we do not need to look at the point list.
3. Click the Cardinal Pts button to create the point group Fitted CylinderCardinal Points.
4. Click OK to accept.

Best Fit a Line To The Cardinal Points Constructed from both the circle and cylinder.

1. The cardinal points constructed from the circle and cylinder are located in separate point groups, so choose Construct>Lines>Fit to Points or use the keyboard shortcut Ctrl+Alt+L. This will bring up the Geometry Fit Interface.
2. Select all points in both cardinal points groups by using either the F2 command or graphically clicking on the points themselves.
3. Of the five points, one is out-of-tolerance. Uncheck the point with the largest amount of error from the Point List dialog and recompute.
4. Click OK to accept.

Conclusion

This tutorial has covered the basics of geometry creation and how to create a best fit plane. The interface we covered is generic for all the geometry fits which makes fitting geometries extremely simple.

Creating Callouts

- Skill Level. Beginner.
- Description. In this tutorial, we will cover how to create callout views with graphical annotations.
- Areas Covered. Creating a Callout View, Creating Callout Annotations and Locking the view.
- Time to Complete. Approximately 10 minutes.

Creating A Callout View

Figure 35-41. The newly-added
callout view.

1. In SA, start by opening the Blower Shroud.xit file from the Samples directory under Help>Open Sample SA Files.
2. Before we create a callout view, let's render the model in solid shaded mode by clicking the Solid icon .
3. Now create a callout view by clicking the Callout icon 包. Callout 1 view will be created in the tree and will be active (Figure 35-41).

Creating Callout Annotations

1. Let's create a callout annotation in the graphical view. Start by clicking the arrow by the 国icon. A series of annotation types will appear. Let's start with a simple Point Comparison. Select Point Comparison from the drop down and select two points to compare. An annotation will appear and you can now place the annotation accordingly by left-clicking and dragging (Figure 35-42).

Figure 35-42. The point comparison callout.

Figure 35-43. The Vector Callouts dialog.

2. Now let's create some annotations for a few of the vectors in the vector group. Start by clicking the arrow by the $\underset{\substack{\mathrm{O} \\ \mathrm{l} \\ \text { icon }}}{ }$ and select Vectors. When prompted select the vectors of interest. The Vector Callouts dialog will appear with view options (Figure 35-43). This dialog will allow you to select display options for the callouts. Once satisfied, press OK (keep callouts). Feel free to place the annotations accordingly by left-clicking and dragging (Figure 35-44).

Locking the Callout view

1. Right-click on Callout 1 in the tree and select Properties (Figure 35-45).

2. Select Lock in the Viewpoint section. When the viewpoint is locked, the view will be recalled when the callout is activated.
3. Double-click Callout 1 in the tree. This will deactivate the callout.
4. Rotate and zoom the view to be different than the callout.
5. Now double-click Callout 1 in the tree. This will activate the callout. Notice how the view returns to the locked position.

Inspection with GD\&T

Note: This tutorial requires SA Ultimate or greater.

- Skill Level. Beginner.
- Description. In this tutorial, we will cover how to perform a GD\&T inspection with nominal CAD and native GD\&T annotations.
- Areas Covered. Importing CAD with GD\&T annotations, creating Datums and Feature Checks, Associating/Trapping measurements and Reporting.
- Time to Complete. Approximately 15 minutes.

Importing CAD with GD\&T annotations

The first step for this tutorial is to import the nominal CAD model with GD\&T annotations. If your CAD models do not contain GD\&T annotations, please refer to the tutorial on creating GD\&T annotations.

1. In SA, start a new job file by selecting File $>$ New from the menu or choosing the New File Icon \square from the main toolbar.
2. Import the native CAD model with GD\&T annotations by selecting File>Import>Direct CAD Access or use the Auto Import ${ }^{\text {to }}$ button on the main toolbar.
3. Choose Sample CAD. CATPart from the Samples file folder in the SpatialAnalyzer install directory.
4. When the Direct CAD Access Settings dialog appears (Figure 35-46), make sure the Annotations option is selected and press OK.

Figure 35-46. The Direct CAD
Access settings.

Figure 35-47. Imported annota-
tions.

5. Once imported, you will find the Annotations category is created with the imported annotations (Figure 35-47).

SA TreeBar	\times
4 A	
- \llcorner Frames	
- Surfaces	
$\Delta \square$ Annotations	
- Datum. 1	
- Datum. 2	
- Datum. 4	
- Datum. 5	
- Geometrical Tolerance. 1	
- Geometrical Tolerance. 3	
- Geometrical Tolerance. 4	
- Geometrical Tolerance. 5	
- Geometrical Tolerance. 6	
- Dimension. 1	
- Dimension. 2	
- Linear Size. 1	
- Datum 3	
$\Delta 5$ 匀Feature Checks	
- Geometrical Tolerance. 1	
\triangle EAGI Datums	
- A	
- B	
- C	
Database Explorer	

Figure 35-48. Annotations in the graphical view.

Creating GD\&T Datums and Feature Checks

For this tutorial we will inspect only one of the GD\&T Features. Rightclick Geometrical Tolerance. 1 in the tree and choose Make Feature Check. You will notice two new categories are created, GD\&T Datums and Feature Checks. These two new categories act as bins for the respective measurements.

Inspecting GD\&T Datums and Feature Checks

1. The next step is to associate measured points to the respective GD\&T Datum or Feature Check. For this tutorial we will assume that an instrument is present. So let's add an instrument and run the interface. See the Instruments section for information regarding adding and running an instrument. For this example we will use a Faro Arm.
2. Now that the instrument is added and running, simply right-
click the collection containing the GD\&T Datums and Feature Checks and select Inspection>Inspect. In this case we will rightclick collection A (Figure 35-49).

Figure 35-49. Selecting Inspect.

3. A dialog will display prompting what feature to measure. As points are measured, they are immediately associated to the GD\&T Datum or Feature Check. Since an instrument is probably not available during this tutorial just use your imagination.
4. Once measurements are complete for a feature, press the next button $>$ to advance to the next feature and continue measuring. Once all measurements are made the inspection is complete.
5. Since we did not take any actual measurements, lets open GD\&T with Arm.xit from the Samples directory under Help>Open Sample SA Files.
6. In the GD\&T with arm.xit file, all the GD\&T Datums and Feature Checks have points associated.

Reporting the Results

1. To see the results of the Feature Checks evaluation, simply select the Feature Check of interest and the results will display in the Report Bar. If the report bar is not visible, turn it on using Reports>Report Bar Visible.

Figure 35-50. Feature check results for a surface profile check.

Figure 35-51. A composite quick report with GD\&T feature check results.

Report Bar			จ \times
ioil	0 .0100 A B C	CHECK PASSED 0.00720 .0000	
Geometrical Tolerance.1<GDT-Surface Profile> (8 meas)/			F \times

2. To report all results, right-click the Feature Checks category in the tree and select Composite Quick Report>Generate. All of the Feature Check results will be compiled into one report (Figure 35-51).

Conclusion

In this tutorial, we covered how to import CAD with GD\&T annotations and how to create, measure and report feature checks.

Reporting With SA Reports

- Skill Level. Beginner.
- Description. In this tutorial, we will cover how to create a report using the SA Report designer.
- Areas Covered. Creating an SA Report, dragging out items, changing report options.
- Time to Complete. Approximately 15 minutes.

Creating an SA Report

Note: This file contains data
that was measured with a portable CMM arm. The measurements were compared to the nominal model using Query> Points to> Objects.

Figure 35-52. The newly-added report.

In this tutorial, our goal is to create a report comparing measured data to CAD. We will use a sample file and create the report from that data.

1. In SA, start by opening the Query Points to Surface. xit file from the Samples directory under Help> Open Sample SA Files.
2. Before we start the report, let's render the model in solid shaded mode by clicking the Solid icon -
3. Create an SA report by selecting Report>Add SA Report. The SA Report editor will appear, and the report is automatically stored in the tree under the SA Reports category (Figure 3552).

4. Let's add an item to the SA Report. Click and drag the Boat Error_Vectors_Blotches vector group into the report (Figure

Figure 35-54. Adding a vector group to the report.

Figure 35-55. The screenshot has been added to the tree.

35-54).

5. Now let's change the reporting options for the vector group so that only the vector magnitude will be displayed. Rightclick anywhere on the vector group table and select Report 0ptions.
6. Uncheck the Point A, Point B and Delta components and press OK. The SA Report will update and reflect your changes.
7. Let's add an image of the current graphics view to the report. Orient the SA graphics as you'd like, and press the Picture icon 잉 in the toolbar. The picture will be stored in the tree, as pictured in Figure 35-55.

SA TreeBar	\times
\& Hydro 蒝 Instruments Point Groups Frames Surfaces Vector Groups - Boat Error_Vectors_Blotches Relationships SA Dynamic Reports Pictures - Photo	
Database Explorer	

8. Click the photo, drag it over a table in the SA Report, and release the mouse button. Immediately, the report will relocate your tables so that they do not overlap. This is a feature that is on by default, but if you do not want this behavior, select the Global Reporting Options button \triangle. In the Report Designer

Figure 35-56. Ensuring that report items don't overlap.

Figure 35-57. Arranging elements of the report.

Settings dialog, uncheck Auto Vertical Overlap Adjust. Now, the report will not automatically ensure that items do not overlap (Figure 35-56).

9. The photo will have the same aspect ratio (width to height ratio) as the graphical view when it was taken. If you need to resize the image, hold down Ctrl and drag over the image, or grab a corner of the image to resize it as necessary. Drag the tables around to rearrange the report as you'd like (Figure 35-57).

10. The report is automatically saved into the tree. If you'd like, you can print the report, send it to a PDF, or export to Excel.

Creating Relationships

- Skill Level. Intermediate.
- Description. In this tutorial, we will explore the advantages of relationships, and look at how to create them.
- Areas Covered. Points to Objects Relationships, Groups to Objects Relationships, Relationship Reports.
- Time to Complete. Approximately 20 minutes.

Building the Relationships

Relationships are an extremely powerful concept that enable realtime examination of the positions and/or orientations between entities in SA. Using relationships, you can get dynamically updated comparisons between measured and nominal points, points and geometry, coordinate frames, and other entities. There are two sides to relationships: the reporting side, and the relationship minimization side. Relationship minimization is available in SA Ultimate and higher, and will be explored in a different tutorial.

1. We'll start by opening a tutorial file included with your installation of SA. In SA, choose Help>Open Sample SA Files. Choose the Relationships.xit file.
2. This file contains a sample CAD model of a hydroplane, along with a series of measured points along different surfaces of the model (Figure 35-58). Since this sample file already has constructed relationships, let's delete them to create them from scratch. In the tree, right-click on the Relationships category and choose Delete All from the menu. Confirm the deletion.

Figure 35-58. The measured points have not yet been aligned to the model.

3. Currently, our measured points are not aligned to the model. That's OK--for the purposes of this demo, we'll ignore that fact. We now want to compare our measured points to the CAD surface, and see how our measured part deviates from nominal. We'll use a series of Groups to Objects relationships to extract this information. In the menu, select Relationships>Groups to Objects. For the relationship name, enter Canopy.
4. The Query Point to Surface Options dialog will appear (Figure 35-59). This dialog allows you to specify how you want the relationship to compare the measured points to the surface. The set of buttons at the top of this dialog allow you to specify how the resulting deviations will be depicted in the view. All four options give the same numeric result--they just control how the resulting deviation vectors are displayed, and the sense (positive or negative) of the deviation. We want to know the deviation from the CAD to the offset point (probe contact point). Leave all of the other options at their defaults and press Enter.

Figure 35-59. Query Point to Surface options.

5. When prompted for the groups, double-click the Canopy point group, then press Enter.
6. When prompted for the objects, double-click the HYDRODECK surface, then press Enter to complete the command.
7. Notice that the Canopy relationship has been added to the tree. If you expand the relationship, you'll see the absolute max error, RMS error, max signed error, and minimum signed error for the comparison of all of the points in the selected group to the selected surface.
8. Let's open up the Relationship Report so we can see this relationship's values update in real-time. Double-click the Relationships category. The Relationships Report dialog shows the desired relationship parameters for a given collection in real-time.
9. By default, only the relationship summary is displayed. Let's turn on more details. Right-click the Canopy relationship and choose Report Options from the menu. In the Report Options dialog (Figure 35-60), select the Single Line format:

Figure 35-60. Report Options for the relationship.
10. Click OK to accept the change. In the Relationship Report window, you can now see the deltas and resulting deviations for each point, as well as a summary for the relationship.
11. Let's move the instrument up in Z. Since measurements are "tied to" instruments, the resulting measured points will move up in Z as well. Expand the Instruments category and rightclick on the instrument. Choose Properties from the context menu. In the Instrument Properties dialog, click the Transform button. Click on the up arrow for the Z value to move the instrument up in Z, and watch as the Relationship Report updates all of the calculations. After moving the instrument up a little bit in Z, close the dialog and click OK in the Instrument Properties dialog. Notice now that our measured points are now well above the CAD surface.
12. Close the Relationship Report window by clicking the Done button. Let's create another relationship for the measurements of the sides of the Hydroplane. Choose Relationships>Groups to Objects and give the relationship the name Sides. Leave the projection options at the defaults and click 0K.
13. This time, let's assign the point group to the relationship AFTER we've created it. This illustrates the idea that you can set up relationships in a nominal file prior to measuring anything, then assign measured points later. (You can even automati-
cally assign them AS you measure by "Trapping Measurements"). Just press Enter to continue through the Groups prompt. As before, when prompted for the Objects, pick the HYDRODECK surface and press Enter to finish the command. Here, you've set the relationship up so that only the surface has been assigned--the groups involved in the relationship are not yet specified.
14. Expand the Sides relationship. Note that the tree indicates that there are No Points Specified. Let's fix that. Right-click on the collection, and in the context menu, choose Associate Data>Points>Groups. Double-click the Top group and press Enter.
15. Let's check to make sure that we've assigned the right objects to our relationship. Right-click the Sides relationship in the tree and choose Highlight Entities. The HYDRODECK surface will highlight, as well as the Top point group. We just made a mistake! We accidentally selected the Top group instead of the Sides group! No problem, we'll fix it. From the menu, select View>Clear All Highlights to remove the highlighting. Right-click the collection, and repeat step 14, only this time, select the Sides group.
16. The collection should now be set up correctly. Go ahead and set up a Groups to Objects relationship between the Top group and the HYDRODECK surface as well, and name it Top.
17. Notice the horizontal plane named Tabletop Plane. This part was surveyed on a flat tabletop, so it would be impossible to measure the bottom surface of the object. Instead, we created a nominal plane representing the top of the table, and measured a few points around the edges of the part to establish the table surface. Let's build a relationship between the Plane points and the Tabletop Plane plane, which we'll use in a later tutorial (Minimizing Relationships) to fit our measured data to the CAD model.
18. From the menu, select Relationships $>$ Points to Objects. Give the relationship a name of Tabletop, and accept the default projection options. When asked for the points, double-click the 6 green points around the edge of the model (the ones in the Plane group). We could have done this using a Groups to Objects relationship, but we wanted you to see a different way to create a relationship. Press Enter to accept the points.
19. When prompted for the objects, double-click the horizontal Tabletop Plane plane. Press Enter to complete the command.
20. We also measured a scribe line passing through our part

Figure 35-61. Overriding target
offsets to zero.
which indicates the part's centerline. We measured this line by placing the probe directly over the scribe line and measuring the points. Repeat steps 18 and 19 one final time to create a relationship between the Centerline points and the CL Plane plane. Give the relationship a name of Centerline. However, this time, in the projection options, override the target offset value to zero (Figure 35-61). Since we measured a centerline and want to compare it to a plane defining the centerline of the part, we do not want to account for a probe offset. In other words, we want to compare the center of the probe to the plane directly, as seen at right.

21. We've now set up 5 relationships that show the real-time deviation between selected features and the corresponding measured points. As the instrument that measured the points is moved around, the relationships immediately recalculate and update the deviation values. This real-time re-calculation is very useful, particularly with instrument alignment and re-al-time building/part mating processes.

Conclusion

In the next tutorial, Minimizing Relationships, we'll explore the power of Relationship Minimization and discover how it can be used to perform a variety of complex alignments with constraints.

Minimizing Relationships

Note: This tutorial requires SA Ultimate or greater.

- Skill Level. Intermediate
- Description. In this tutorial, we will explore relationship minimization, an extremely useful capability used for alignment, assembly, and a host of other applications. We'll use relationships to locate our measurements relative to a CAD part, using a series of different situations.
- Areas Covered. Moving objects by minimizing relationships, local minima, Standard vs. Direct Search optimization, and relationship weighting.
- Time to Complete. Approximately 25 minutes.

Relationship Minimization

One of the great advantages of relationships is their ability to define constraints and alignment parameters. In traditional metrology software, degree-of-freedom constraints for alignments are usually explicitly specified. For example, if a pin is constraining an assembly, one might explicitly lock a degree of freedom along the radial directions of the pin, so that the pin only allows travel along its length.
Relationships, by their very nature, automatically take care of constraints when they are created. Different geometric setups will result in different constraints. For example, if a relationship is set up between a set of points and a plane, the plane will by its very nature constrain distance from the plane, but will allow the points to rotate in the plane's surface. As a result, a plane introduces a positional constraint along its normal, and rotational constraints in the plane of the plane. The ability to set up these constraints "naturally", without explicitly defining further constraint parameters, is one of the significant advantages of relationships over other alignment methods.

1. We'll start by opening a tutorial file included with your installation of SA. In SA, choose Help>Open Sample SA Files. Choose the Relationships.xit file.
2. In this file, five relationships have been set up for you. Three of these relationships are between the CAD model and the measurements of specific features of interest. The last two (Tabletop and Centerline) relate measurements to a table surface and center plane, respectively. To see how these relationships were created, see the Creating Relationships tutorial. Notice also how the measurements have not yet been aligned to the CAD model. That's one of the tasks we'll be accomplishing in this tutorial.

Figure 35-62. The Minimize
Relationships dialog.

Figure 35-63. Excluding the Centerline and Tabletop relationships from the solution.
3. Let's align our measured data to the CAD model. From the menus, choose Relationships>Move Objects by Minimizing Relationships. In this case, we only want to move the instrument (and by association the targets measured by that instrument). So, when prompted for the Objects to Move, just press Enter. When prompted for the Instruments to Move, double-click the instrument and press Enter. The Minimize Relationships dialog will appear (Figure 35-62).

4. The process of relationship minimization finds the optimum position of the specified moving objects and instruments that results in the smallest RMS error. Let's first take a look at how our measured points fit to the CAD model, without including our tabletop or centerline in the solution. Uncheck the Centerline and Tabletop relationships to exclude them from the minimization process (Figure 35-63), then click the Run Optimization button. This is the "standard" method of minimizing relationships.

5. The instrument's position and orientation will be adjusted to arrive at a minimum error, which represents the ideal fit. Note that as the solution progresses, the RMS Objective value decreases

Figure 35-64. The objective progresses toward zero as the relationship solves.

Figure 35-65. Turning on the
Show Steps option.
toward zero (Figure 35-64).

6. The resulting absolute maximum and RMS errors are also displayed for each individual relationship in the Minimize Relationships window. The results look good, but we didn't get a good idea of what was going on. Let's move the instrument back up in Z. Click the Move Manually button, and in the Transform dialog, type 5 into the Z value and press Enter. Close the Transform dialog. Let's also choose an option so we can actually see the intermediate positions as the relationship is being solved. In the Minimize Relationships dialog, check the Show Steps checkbox (Figure 35-65).

7. Move the Minimize Relationships window to the side of the screen so that you can see the graphical view, then again click the Run Optimization button. Watch as SA solves the equations to minimize the error.

Local Minima

Under the hood, relationships are projecting measured points to the CAD surfaces and calculating the resulting deviations. If the measured points are too far from the CAD surfaces, or if the points are

Figure 35-66. Selecting the predefined Side view.

Figure 35-67. The instrument has been rotated about 180 degrees out.
flipped from their true orientation, then depending on the geometry of the setup and the surfaces, it is possible for the solution to reach a local minimum, and stop prematurely.

1. Again, click the Move Manually button. In the Transform dialog, enter 180 for Ry and -10 for Z. Notice that the measured data is now flipped upside-down relative to the CAD model. Close the Transform dialog, and again click the Run Optimization button.
2. The relationship solves and stops. Click the Apply Transformation button, and take a look at the graphical view. Clearly our points are flipped upside-down relative to the CAD model, and we have a large RMS error. What's going on here? What's happening is that the solution is getting caught in a local minimum. When minimizing relationships, you always want your measured points to have a "clean approach" to the geometry that you're relating to. This means that there shouldn't be any large rotations required that cause the relative orientation between the CAD and the measured data to "flip". Depending on the geometry of the setup, the solution could get caught up in the wrong minimum, as seen here.
3. Let's fix our local minimum problem so we can ensure that the relationship solves to the correct position. Click the Views button to go to the Side View (Figure 35-66).
π
Top
Front
Side
Oblique
4. From the menu, select Instrument>Drag Graphically. Hold down the right mouse button to rotate the instrument approximately 180 degrees (Figure 35-67).

\qquad
5. Again, choose Relationships>Move Objects by Minimizing Relationships. As before, don't move any objects, but move the instrument. Ensure that the Centerline and Tabletop relationships are still deselected. Click the Run Optimization button. You'll notice that, after a few seconds, the solution comes to an abrupt and premature end--the points remain in their original positions. Because the initial condition for the solution is so far from the CAD model, a local minimum is being encountered.
6. Instead, click the Run DirectSearch Optimization button. Direct Search Optimization is a more "brute-force" method of finding a minimum. It involves exploring the solution space more thoroughly to find a more optimized orientation, then moving to that intermediate position and checking again. This method is slower, and requires more time to solve (sometimes, significantly more time). Depending on the setup, it can also end up with a"flipped" result. However, it is less likely to get caught in a local minimum. After a few seconds of calculating--once the Objective value is under about $0.8^{\prime \prime}$--click the Cancel button.
7. Notice that, rather than returning to the original position and orientation, the instrument and points stopped in their current position. This is a helpful behavior, because we can now switch to the traditional optimization method to close up the fit the rest of the way. Click the Run Optimization button, and the solution should be reached relatively quickly. When finished, click the Apply Transformation button. If you notice that your solution has solved to the incorrect orientation, move and rotate the instrument for a better starting condition and try again.
8. What is the lesson from all of this? The fact is, you'll avoid all of these issues with reaching local minima if you start with a good initial condition. As long as you manually orient the instrument so that the points have a relatively clean approach to the surface, and as long as they aren't too far away from the surface, the solution can be approached with no trouble. Many people will do a rough orientation using Quick Align, then fit with more data using relationships. In a situation like that, you won't encounter problems with local minima.

Incorporating the Tabletop and Centerline

1. Suppose that we now wish to incorporate the measurements of the tabletop to our fit. If we assume that the bottom surface is flat, and that the tabletop is flat, then our measured tabletop points represent the bottom surface of the CAD part. Press Ctrl+Tab to reselect the last command, which should be the Move Objects by Minimizing Relationships command. As be-
fore, pick to move just the instrument.
2. This time, ensure that the Tabletop relationship is also selected, then click Run Optimization again. Our RMS error has increased from 0.0013" to 0.0022", but we've now allowed our measurements of the tabletop to influence the solution. Since the Tabletop Plane plane is facing directly along the Z axis, the relationship is only affecting the final solution's $R x, R y$, and Z results. X, Y, and Rz are not affected due to the geometry of the plane. (Rotating about Z or translating along X or Y will not affect the distance of the Plane points from the Tabletop Plane plane. Click the Apply Transformation button to accept the results.
3. Click the Views button in the toolbar to select the Top view, then zoom in on the CAD model and measured points. In the tree, right-click the Point Groups category header and choose Hide All from the context menu. Then, right-click the Centerline point group and choose Show from the menu (Figure 35-68).

4. We haven't yet incorporated our Centerline relationship into the solution. Let's say, for sake of this tutorial, that it is very important to us that the measured centerline points are aligned well to the centerline plane. We still want the measured points of the CAD surface to influence our fit, but we consider the centerline measurements to be much more important. We can weight the Centerline relationship to have a much stronger influence in the overall solution.
5. Press Ctrl+Shift+TAB and choose the Relationships>Move Objects by Minimizing Relationships command from the list, and specify to move just the instrument. In the Minimize Relationships dialog, ensure that all five relationships are checked so that we incorporate them all into the minimization process.
6. Single-click the row with the Centerline relationship so that it is selected. Then, single-click the Weight column. Give the

Figure 35-69. Setting the weight
of the Centerline relationship to 100 .

Centerline relationship a weight of 100 (Figure 35-69). This is equivalent to saying that we consider errors from the points in the Centerline relationship to be 100 times more important than errors from the points in the other relationships.

7. Click the Run Optimization button. It may be difficult to see, but the solution has been adjusted to try to minimize the centerline errors with more effort than the other relationships, due to the higher weight assigned to the Centerline relationship. Notice that the RMS errors have jumped way up. As you can see, the points measured on the centerline were not measured carefully. Uncheck the Centerline relationship to again remove it from the minimization process.
8. This time, let's give the Tabletop relationship a little less weight, since it's not a direct measurement of the bottom surface of the part. Give it a weight of 0.5 , and click the Run Optimization button. Now, the tabletop is still incorporated into the solution, but it is not considered to be as important.

Conclusion

We've seen here that it is important to give relationships a good "initial condition" to ensure that relationship minimization does not get caught up in a local minimum. We've also seen how relationship weighting can be used to assign more or less influence to different measured features when minimizing.

Geometry Relationships

- Skill Level. Intermediate
- Description. In this tutorial, we will cover how to create geometry relationships for reporting.
- Areas Covered. Creating Fit only, Compare only and Fit and Compare Relationships.
- Time to Complete. Approximately 20 minutes.

Fit and Compare Relationship

1. In SA, start by opening the Geometry Relationship.xit file from the Samples directory under Help>Open Sample SA Files.
2. We will first make a relationship that will take measured points, fit geometry to those points, and compare this geometry back to the nominal geometry. Navigate to Relationships>Geometry Comparison>Fit and Compare to Nominal. Select the nominal geometry and then select the points from the Measured Points point group that are above the red circle. Accept the default name for the relationship.
3. Double-click the Fit Circle-Big Hole relationship in the tree to expose the Geometry Relationship Report Options. Here you can control tolerance, fit constraint and geometry fit settings (Figure 35-70).

Figure 35-70. The Geometry Relationship Report options.

4. Let's change the Fit Settings so that circle is offset correctly. By default it was treated as an outside measured circle when in fact it was an inside measured circle (Figure 35-71).

Figure 35-71. Setting the circle fit options to offset outward.

Figure 35-72. Modifying the high and low tolerances for the X attribute.

5. Let's set a tolerance for the X and Y components of 0.001 ". Double-click the X column in the properties dialog. The Criteria Properties dialog will appear. Set the tolerance for both high and low tolerances (Figure 35-72).

6. Now uncheck the Z and MagXYZ rows. Press OK to accept and close the dialog.
7. Right-click Fit Circle - Big Hole and select Add Callout (Figure 3573).

Figure 35-73. Adding the relationship callout to the circle.

Figure 35-74. The callout automatically updates as the situation changes.

8. The best part about a Geometry Relationship is its ability to dynamically update--if the points change, the geometry and reported values will update accordingly. Select Instrument>Drag Graphically and move the instrument around in the graphical view. Notice how the geometry and callout update automatically (Figure 35-74). Press ESC to cancel and restore the instrument position.

1. Fit Only relationships are similar to Fit and Compare to nominal. Select Relationships>Geometry Comparison>Fit only and select the group of points that are rectangular in shape. You will be prompted to select a geometry to fit to the selected points--select Plane. Accept the default name.
2. Right-click Fit Plane and select Add Callout. Fit only relationships utilize the same Geometry Relationship Report Options as Fit and Compare to Nominal, although with different reported items (Figure 35-75 and Figure 35-76).

Figure 35-75. A fit-only relationship.

Compare Only Relationships

1. Now let's compare two circles. Select Relationships>Geometry Comparison>Compare Only and select the Nominal::Small Hole and Measurements::Small Hole Measured items from the tree and accept the default name.
2. Right-click Circle: Small Hole Measured - Small Hole and select Add Callout.
3. Compare only relationships utilize the same Geometry Relationship Options as well (Figure 35-77 and Figure 35-78).

Figure 35-77. Compare-only relationships.

Figure 35-78. Geometry Relationship report options for compareonly relationships.

Conclusion

Geometry Relationships provide a quick and powerful method for creating and comparing geometry dynamically.

Figure 35-79. Various geometry relationships in a job.

Designing a GD\&T Inspection

Note: This tutorial requires
SA Ultimate.

- Skill Level. Beginner
- Description. In this tutorial, we will cover how to design a GD\&T inspection routine for repeated use.
- Areas Covered. Importing CAD with GD\&T annotations, creating Datums and Feature Checks and assigning nominal points and views.
- Time to Complete. Approximately 15 minutes.

Importing CAD with GD\&T annotations

The first step for this tutorial is to import the nominal CAD model with GD\&T annotations. If your CAD models do not contain GD\&T annotations, please refer to the tutorial on creating GD\&T annotations.

1. In SA, start a new job file by selecting File>New from the menu or choosing the New File Icon \square from the main toolbar.
2. Import the native CAD model with GD\&T annotations by selecting File>Import>Direct CAD Access or use Auto Import from the main toolbar.
3. Choose Sample CAD. CATPart from the Samples file folder in the SpatialAnalyzer install directory. See Direct CAD Access for supported formats.
4. When the Direct CAD Access Settings dialog appears, make sure the Annotations option is selected and press OK (Figure 3580).

Figure 35-80. Ensuring that the Annotations option is selected in the Direct CAD Access import settings.

5. Once imported, you will find that the Annotations group is created with the imported annotations.

Creating GD\&T Datums and Feature Checks

For this tutorial we will inspect only one of the GD\&T Features.

1. Right-click Geometrical Tolerance. 1 in the tree and choose Make Feature Check. You will notice two new categories are created, GD\&T Datums and Feature Checks. These two new categories act as bins for the respective measurements.

Designing the Inspection Routine

Now that the feature checks have been made, the inspection routine can be designed which will set views and nominal points for each GD\&T Datum and Feature Check.

1. To design an inspection, simply right-click collection A and select Inspect>Design. A dialog will appear which contains options for the design of each GD\&T Datum or Feature Check (Figure 35-81).

Figure 35-81. Options for designing an inspection.

Figure 35-82. The options are now minimized.

2. The design dialog will guide you through the design of each GD\&T Datum or Feature Check. So for Datum A, orient the view how you would like the user to see Datum A during inspection. Now let's put some nominal inspection points on the surface by clicking the areas for inspection on Datum A. Use the minimize button to minimize the dialog so more of the graphical view is available (Figure 35-82).

3. Now that Datum A is designed, proceed to the next GD\&T Datum or Feature Check by clicking $\$$ to advance. Do the same for the remaining GD\&T Datums and Feature Checks. Once complete, close the dialog using \boldsymbol{X}.

Rehearsing a Designed Routine

Now that the inspection routine is designed, it can be rehearsed to check the work flow, nominal points and views.

1. To start Rehearse mode, right-click collection A and select Inspect>Rehearse. A dialog will appear with options regarding the rehearsal (Figure 35-83). During this rehearsal mode,

Figure 35-83. Rehearsing the inspection.
the mouse acts as an instrument. So with each mouse click, a measurement is simulated with some random error.

2. Now that the rehearse mode is started, let's click the dot for Datum A. With each click a measurement is simulated and the guiding dot will advance. Continue clicking the dots for Datum A. Once all the dots for Datum A are clicked, the inspection will advance to the next GD\&T Datum or Feature Check.
3. Do the same as above for the remaining GD\&T Datums and Feature Checks. Once complete, close the dialog using \boldsymbol{x}.

Conclusion

We have just designed a routine that can be used to guide a user through an inspection process. A user can now simply right-click the collection of interest and select Inspect.

CMM Arm Inspection

- Skill Level. Intermediate
- Description. In this tutorial, we will cover a basic part inspection without CAD while using a Portable CMM Arm.
- Areas Covered. Add and Run an Instrument, Watch Windows, Collecting Measurements, Fitting Geometry and SA Reporting.
- Time to Complete. Approximately 30 minutes.

General Part to Inspect

For this exercise we will use a generic part in which we would like to determine the size of the large and small bore and the angle between the top face and side face (Figure 35-84).

Figure 35-84. The part we'll be inspecting.

Adding and running the instrument interface

1. Start by adding the instrument. For this tutorial we will use an 8 ft Faro Quantum (7 dof) arm. Use the menu item Instrument>Add or the Add Instrument icon 禹. Navigate the instrument list, select FARO Arm USB 8ft \& Quantum (7 dof), and then click Add Instrument at the bottom of the dialog (Figure 3585).

Figure 35-85. Adding the arm to the job.

2. With the instrument added, let's run the instrument interface. Simply use Instrument>Run Interface Module and Connect or use the Run Instrument Interface icon $\not \boldsymbol{r}$.
3. Once connected the instrument interface will appear. Now we are ready to measure!

Establishing Control Points

A good rule of thumb is to always establish a set of control points that can be used as a reference. These control points can be used to check drift and relocate the instrument.

1. Lay out three or more control points to measure. For our case we will measure four holes on the table by placing the probe in the hole.
2. Let's set the group and target name in the instrument interface so the group is called Control and the target name is C1.
3. Activate the discrete measurement mode by pressing $\mathscr{\bullet}$.
4. Measure each of the four control points by placing the probe in the hole and pressing the green button on the arm. The target name in the instrument interface will automatically increment after each measurement.
5. Now check the measurements to for repeatability. Right-click the Control point group and select Add Watch Window. Move the probe to each measured point and note the deviation (Figure $35-86)$. The deviations should be extremely low-if not, the
control points should be re-measured.

6. Once measured, your graphical view should look similar to Figure 35-87.

Measuring the Bores

Let's start by measuring the Large and Small Bores. We will take a series of points in each bore and then fit cylinders to each set.

1. Set the group name to Large Bore and the target name to 1 .
2. Activate the discrete measurement mode by pressing $\mathscr{\&}$.
3. Measure points inside of the large bore by pressing the green button to trigger the measurement. Once complete, close the discrete measurement dialog.
4. Change the group name to Small Bore and the target name to 1 .
5. Activate the discrete measurement mode by pressing \mathscr{G}.
6. Measure points inside of the small bore by pressing the green button to trigger the measurement. Once complete, close the discrete measurement dialog.
7. Your SA job should look like Figure 35-88.

Figure 35-88. The large and small bores have been measured.

Measuring the Top and Side Face

1. Set the group name to Top Face and the target name to 1 .
2. Activate the Stream Points Mode by pressing $\because \circ$.
3. Place the probe on the Top Face and press the green button to start the scan. Move the probe over the surface. When finished, press the red button to stop. Close the Stream Points dialog.
4. Set the group name to Side Face and the target name to 1 .
5. For the Side Face we will use the Plane mode. Activate this mode by pressing \overbrace{i}.
6. Take several points on the Side Face. After three points are measured, the plane fit results will appear. Once you are satisfied with the plane measurements, press Accept Plane.
7. Your SA job should look like Figure 35-89.

Figure 35-89. After the plane fit.

Fitting Geometry to the measurements

Now that the data is collected, let's begin the analysis. We will start by fitting cylinders to the bores.

1. Fit a cylinder to the Large Bore point group by using Construct>Cylinder>Fit to Points. Refer to the Best Fit Geometry from Points tutorial or Geometry Fitting section for more information regarding Geometry Fitting. Name the cylinder Large Bore.
2. Repeat the above for the Small Bore point group.
3. Now fit a plane to the Top Face point group using Construct>Plane>Fit to Points. Name the cylinder Top Face.
4. Your SA job should look like Figure 35-90.

Figure 35-90. After the cylinder fits.

Reporting the results

With the geometry created we can now report the findings. For the report we will use SA Reporting.

1. Create an SA Report by selecting Reports>Add SA Report.
2. Orient the graphics to a view that would look good in the report.
3. Press to take a screenshot. This image will now be added to the tree. Click and drag the Photo into the SA report. Place the image so that it is centered at the top of the report.
4. Now drag the Large Bore cylinder onto the report. Right-click the cylinder and choose Report Options. Uncheck Show Normal Vector and Show Projected Angles on Working Frame. Repeat this for the Small Bore cylinder.
5. So far your report should look like Figure 35-91.

6. Now determine the angle between the Top Face and Side Face. Use Query>Plane>to Plane: Angle between normals. Select the
two measured planes. Once completed the results will display and an SA Event will be created.
7. Drag the SA Event into the SA Report.
8. We have now reported our findings. The report will be saved in the tree. If desired, the report can be printed or converted into PDF format using the following icons:

9. The final report will look like Figure 35-92.

Laser Tracker Inspection

- Skill Level. Intermediate
- Description. In this tutorial, we will cover basic inspection of simple geometries and look at their relationships
- Areas Covered. Add and Run an Instrument, Watch Windows, Collecting Measurements, Fitting Geometry and Dynamic Reporting.
- Time to Complete. Approximately 30 minutes.

General Part to Inspect

For this exercise we will perform a basic inspection of a desk and office. (Try to find one if you don't have one!) The office floor, walls and desk will serve as the measurement artifacts. We will calculate the angle between the walls and the floor and the height of the desk from the floor.

Adding and running the instrument interface

1. Start by adding the instrument. For this tutorial we will use a Faro Laser Tracker. Use the menu item Instrument>Add or click the Add Instrument icon 禺笜. Navigate the instrument list, select the FARO Laser Tracker, and then select Add Instrument at the bottom of the dialog (Figure 35-93).

2. With the instrument added, let's run the instrument interface.

Simply use Instrument>Run Interface Module and Connect or use the Run Instrument Interface icon $\ddot{\pi}^{\circ}$. Once connected the instrument interface will appear. Now we are ready to measure!

Establishing Control Points

A good rule of thumb is to always establish a set of control points that can be used as a reference. These control points can be used to check drift and relocate the instrument.

1. Layout three or more control points in the room. For our case, we secured four SMR nests in various locations in the room.
2. Set the group and target name in the instrument interface so the Group is called Control and the Target name is 1.
3. Make sure the correct targeting is selected in the Tracker interface. For our case we are using a $1.5^{\prime \prime}$ SMR. To change the active target, press and select the respective target (Figure 35-94).

Figure 35-94. Selecting the
proper target.

4. To acquire the points, select the Stable Pt. to SA measurement profile. By default, Quick Select 2 is set to Stable Pt. to SA.
5. Open the measurement profile parameters \& Once opened, change the Points value to the number of control points you plan to measure (Figure 35-95). In our case we are measuring only four points. When finished press the Save button at the top.

Figure 35-95. Specifying the number of points to measure in the profile.

Figure 35-96. The watch window.

6. Measure each of the control points, start the measurement mode by pressing the Measure button or F3. The measure dialog will prompt you when to move the target and when the target should be stable. The target name in the instrument interface will automatically increment after each measurement.
7. Now check the measurements for repeatability. Right-click the Control point group and select Add Watch Window. Now move the SMR to each nest and note the deviation. The deviations should be extremely low (Figure 35-96). If not, the control points should be re-measured.

Measuring the Room
Now that a control network is established, let's move onto measuring the features of the room. We will use measurement modes that will create geometry as we measure. This improves the work flow and reduces the amount of post analysis. However, feel free to take measurements and then construct the geometry afterwards. Consult the Best Fit Geometry from Points tutorial or Geometry Fitting section for more information regarding Geometry Fitting.

1. First start by measuring the floor. Measure enough points to establish a good plane for the floor. In our case, we measured five points. Select the Stable Pt. Plane measurement profile. Open the measurement profile parameters, change the number of points to five, and select the Show Fit Dialog and Send Measured Points options (Figure 35-97). This way we can review the fit and capture the points that created the plane.

2. Set the Group name to Floor and the Target to 1 .
3. Measure the floor by starting the measurement mode. The stable point acquisition mode will guide you as to when to move and will inform you when measuring. Once the five points are measured, the Plane Fit dialog will appear (Figure 35-98). Review the results and when satisfied press 0K.

Figure 35-98. The Best Fit dialog.

Figure 35-99. After the plane is created.

4. The plane will be created and automatically offset the correct amount and direction. Your SA job should look similar to Figure 35-99.

5. A good rule of thumb is to check instrument/part drift as often as possible. So at this point let's check to see if we have any drift. For these next steps we want the instrument to have drifted so we can practice relocating. So to simulate this, slightly bump or move the instrument.
6. Check the Control group by right-clicking the Control point group and selecting Add Watch Window. Now move the SMR to several of the SMR nests and note the deviation. It should be rather large since you bumped the instrument.
7. Now that we have established the need to relocate the instrument, right-click the instrument in the tree and choose Jump Instrument to new location. You will be prompted to choose a location method, select No Thanks and press OK. A new instrument has been added to the tree and the existing instrument has been hidden.
8. Set the Group to Station2 and the Target to 1. Now measure the control points using the same method as before.
9. With the control points measured, right-click the second instrument in the tree and select Locate. In this dialog select BestFit. You will be prompted to pick the nominal group and the measured group. Select the Control point group and the Station2 point group, respectively.
10. The best-fit interface will appear (Figure 35-100). Press to perform the best-fit computation. Once satisfied with the result, press Apply Transformation. The new instrument will now be located with respect to the first instrument.

11. Proceed to measure two walls of the room, naming them Wall1 and Wall2. Follow steps 1-3. When finished, your job should look similar to Figure 35-101.

Figure 35-101. All three walls are now measured.

12. With the walls and floor measured, let's scan the top of a desk. Select the Spatial Scan measurement profile from the dropdown. Open the parameters and set the Spatial Increment to 6 inches. Set the Group name to Desktop and the Target to 1 . With the SMR on the surface of the desk, start the measurement mode. By default the measurement mode will stop when the beam is broken.
13. Your SA job should look similar to Figure 35-102.

Figure 35-102. After the spatial scan.

Analyzing the data

With the data collected, we can now perform a few basic analysis functions. Let's determine the angle between the walls, the walls and floor and the maximum and minimum distance from the floor to the top of the desk.

1. To calculate the angle between Wall1 and Wall2, use Query>Plane>to Plane: Angle between normals. Select the two measured planes. Once completed the results will display and an SA Event will be created.
2. Now do the same for each wall to the floor using the same query command as above.
3. To calculate the maximum and minimum distances from the floor to the top of the desk, use Query>Points to>Objects. When prompted, select the Desktop points and then select the Floor_1 plane for the object. A vector group will be generated which will later be used in the SA Report.

Reporting the results

With the analysis complete, we can report the results using the SA Reporting functionality.

1. Create an SA Report by using Reports>Add SA Report.
2. Orient the graphics so that a screenshot can be taken and added to the report.
3. Press to take a screenshot image. This image will now be added to the tree. Click and drag the Photo onto the report. Place the image so that it is centered at the top of the report.
4. Now drag the three SA Events that were created for the Plane to Plane angle query. Click and drag each one onto the SA Report.
5. Now drag the vector group onto the SA report. Right-click the Vector Group table in the report and select Report Options. Uncheck all the components so that only magnitude is reported.
6. We have now reported our findings. The report will be saved in the tree. If desired, the report can be printed or converted into PDF format. Use the following icons:
7. Once complete the report should look similar to Figure 35103.

Figure 35-103. The final report.

Basic USMN

- Skill Level. Intermediate
- Description. In this tutorial, we will cover the basic process for performing a USMN network.
- Areas Covered. Unified Spatial Metrology Network.
- Time to Complete. Approximately 15 minutes.

USMN Sample File

Figure 35-104. Prior to the USMN bundle.

1. We'll start by opening a tutorial file included with your installation of SA. In SA, choose Help>Open Sample SA Files. Choose the USMN.xit file. This file contains four instruments with common measurements (Figure 35-104). The goal is to bring all of these instruments into one common network and create a point group that represent the network as a whole. Traditional methods use a best-fit approach, but unfortunately error stack-up affects the instrument positions greatly. USMN uses instrument uncertainty and advanced optimization algorithms to simultaneously solve for all instrument positions, ultimately removing the error stack up and increasing the accuracy of the instrument network. When more than two instrument locations are present, it is recommended to use USMN.

2. To start the USMN process, navigate to Analysis>Coordinate Uncertainty>Unified Spatial Metrology Network. You will be prompt-

Figure 35-106. Point details,
including Max Error and Ranking.
ed to select the instruments for the USMN network. Select the four instruments in the job. The USMN interface will be displayed (Figure 35-105), and you will have the controls and tools to create and analyze the measurement network. The next few steps will walk through this process.

3. Press the Best-Fit then Solve button. The instrument stations will be located to one another first by a best-fit. Their positions will then be optimized using an uncertainty model for each instrument.
4. Now note the Max Error and Ranking of each point (Figure 35-106). The ranking is an indication of the uncertainty of the point error in the network. Typically, points over 100\% ranking are removed from the solution.

Wei...	Point	Max Erf	Ranking	Ux	Uy	Uz	Umag	Meas
1.0000	13	0.00730	104\%					0123
1.0000	10	0.00855	93\%					0123
1.0000	4	0.00183	93\%					0123
1.0000	5	0.00212	84\%					0123
1.0000	7	0.00503	76\%					0123
1.0000	11	0.00366	71\%					0123
1.0000	2	0.00201	52\%					0123
1.0000	1	0.00192	52\%					0123
1.0000	6	0.00273	51\%					0123
1.0000	9	0.00120	27\%					0123
1.0000	12	0.00169	24\%					0123

5. Press the Trim Outliers button to remove points that exceed a specified ranking (Figure 35-107). In our case, we will remove any points over 100\%.

Figure 35-107. Trimming outliers.

Figure 35-108. New ranking values after outliers have been trimmed.

| USMN Outlier Trimming |
| :--- | :--- |
| Trimming Options |
| Ranking Threshold (\%) Trim individual measurements that exceed threshold |
| O Trim points if any of their measurements exceed threshold |
| Type of Trimming |
| O Weight outlier measurements or points to 0.0 |
| Oemove outlier measurements or points from USMN entirely |
| Trim Outliers |

6. Now press the Solve button to resolve the network for the remaining points. Now note the Max error and Ranking values (Figure 35-109). The rule of thumb is to only trim outliers one time, so we will leave point 10 with its new ranking of 110%.

Wei...	Point	Max Eit	Ranking	Ux	Uy	Uz_{2}	Umag	Meas
1.0000	10	0.00958	110\%					0123
1.0000	4	0.00187	91\%					0123
1.0000	7	0.00560	88\%					0123
1.0000	5	0.00193	81\%					0123
1.0000	11	0.00365	74\%					0123
1.0000	6	0.00273	56\%					0123
1.0000	2	0.00201	55\%					0123
1.0000	1	0.00171	49\%					0123
1.0000	12	0.00317	42\%					0123
1.0000	13	0.00229	35\%					-123
1.0000	9	0.00134	28\%					0123

7. Once the outliers have been trimmed, compute the uncertainties of the network by pressing the Begin button under the Uncertainty Field Analysis section. Once completed the uncertainties can now be reviewed (Figure 35-109).

Figure 35-109. Calculating composite point uncertainties.

Figure 35-110. After the USMN bundle.

| Wei... | Point | Max Eir | Ranking | Ux | Uy | Uz | Umag | Meas | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1.0000 | 10 | 0.00958 | 110% | 0.00069 | 0.00068 | 0.00098 | 0.00138 | 0123 | |
| 1.0000 | 4 | 0.00187 | 91% | 0.00020 | 0.00026 | 0.00028 | 0.00043 | 0123 | |
| 1.0000 | 7 | 0.00560 | 88% | 0.00057 | 0.00066 | 0.00092 | 0.00127 | 0123 | |
| 1.0000 | 5 | 0.00193 | 81% | 0.00028 | 0.00032 | 0.00030 | 0.00052 | 0123 | |
| 1.0000 | 11 | 0.00365 | 74% | 0.00045 | 0.00036 | 0.00050 | 0.00076 | 0123 | |
| 1.0000 | 6 | 0.00273 | 56% | 0.00036 | 0.00039 | 0.00046 | 0.00070 | 0123 | |
| 1.0000 | 2 | 0.00201 | 55% | 0.00032 | 0.00035 | 0.00042 | 0.00063 | 0123 | |
| 1.0000 | 1 | 0.00171 | 49% | 0.00043 | 0.00042 | 0.00050 | 0.00078 | 0123 | |
| 1.0000 | 12 | 0.00317 | 42% | 0.00067 | 0.00044 | 0.00084 | 0.00116 | 0123 | |
| 1.0000 | 13 | 0.00229 | 35% | 0.00067 | 0.00050 | 0.00086 | 0.00120 | -123 | |
| 1.0000 | 9 | 0.00134 | 28% | 0.00040 | 0.00046 | 0.00063 | 0.00088 | 0123 | |

8. Now apply the results of the USMN. Each of the four instruments should now be aligned (Figure 35-110).

9. A USMN Composite point group will be created. This point group will represent the optimized locations of the common points and represents the instrument network as a whole. Figure 35-111 is a close up look at a composite point versus the measured points.

Figure 35-111. The position of the USMN composite point relative to the measured points.

Conclusion

We have learned how to bring multiple instruments into one network easily and with more accuracy than best-fit methods alone. For more information on USMN, see the USMN section.

Running Multiple Laser Trackers

- Skill Level. Advanced
- Description. In this tutorial, we will cover how to run two laser trackers simultaneously.
- Areas Covered. Adding Instruments, Running Instrument Interfaces, IP Addresses, Watch Windows
- Time to Complete. Approximately 30 minutes.

Configuration Requirements

When running multiple instruments simultaneously, network configuration must be considered. For this exercise we will use two laser trackers which have different IP addresses. We will configure the PC with dual IP address to accommodate. Please refer to the IP Address Basics section for more information on setting multiple IP Addresses. For this example we used one PC with a network router connecting the two instruments to the PC.

Adding the Instruments

1. Select Instrument>Add or the Add Instrument icon 禹. Navigate the instrument list and select your Laser Tracker type, then select Add Instrument at the bottom of the dialog.
2. Repeat the above step and add a second Laser Tracker.
3. Now run the instrument interface by selecting Instrument>Run Interface Module and select Laser Tracker. The SA Network Browser will appear (Figure 35-112). Select the first laser tracker under your SA file name and press OK. Depending on your laser tracker type, you might be prompted to enter the respective IP address. If prompted, enter now. Now the instrument interface is up and running for the first instrument.

Figure 35-112. Selecting the appropriate instrument to connect to.

Figure 35-113. Starting a second interface.

4. Repeat the above step for the second laser tracker (Figure 35113).

Common Network

With both instruments running, we will need to bring the instruments into a common coordinate system.

1. With the first tracker, measure a set of common points that can be seen from both instruments, and name the group accordingly.
2. Repeat this process for the second instrument.

Figure 35-114. Fitting the two instruments together.
3. Now best-fit the second laser tracker to the first laser tracker. Right-click the second laser tracker in the tree and select Locate. Choose Best-Fit and choose the first tracker's control points as the Nominal Group and the second tracker's control points as the Measured group. Accept the best-fit and now the two laser trackers are located to one another (Figure 35114).

Working with both instruments simultaneously

To demonstrate working with multiple instruments simultaneously, let's measure a plane and then watch the deviation of the plane with both laser trackers.

1. Measure points on the floor with one of the laser trackers.
2. Create a plane from the measured points.
3. Now add a watch window using View>Watch Window>Add Point to>Objects. Select the first laser tracker and then select the plane. Accept the default projection options.

Figure 35-115. Watching two entities simultaneously.

4. Repeat step 3 for the second laser tracker (Figure 35-115).
5. Now we are monitoring the deviation with one single object using two instruments.

This Page Intentionally Left Blank.

Keyboard Shortcuts

The following page is a list of default keyboard shortcuts that ship with SpatialAnalyzer. To become a more efficient user of SA, it is recommended that you try to become familiar with as many of these shortcuts as possible.

Action	Shortcut
Renepeat Command	Ctrl + Tab
Command History	Ctrl + Shift + Tab
Graphical Selection Mode	F3 (During Selection)
List Selection	F2
Undo to Restore Point	Ctrl + Z
Create Restore Point	Alt + Space
Pick Working Frame	Alt + W
User Options	Ctrl + U

View

Action	Shortcut
Show Point Labels	Alt +L
Hover	Ctrl +H
Cloud Display Control	Ctrl +T
Refresh	F5

File

Action	Shortcut
Open File	Ctrl + O
Save File	Ctrl + S

Edit

Action	Shortcut
Object Properties	Alt + Q
Copy then Transform	Ctrl + C
Delete Objects	Delete
Delete Points	Alt + D
Add User Note	Ctrl + N

Geometry Fit	
Action	
Fit Geometry	Shortcut
Fit Line $+G$	
Fit Circle	Ctrl + Alt +L
Fit Plane	$\mathrm{Ctrl}+\mathrm{Alt}+\mathrm{C}$
Fit Cylinder	$\mathrm{Ctrl}+\mathrm{Alt}+\mathrm{P}$
Fit Sphere	$\mathrm{Ctrl}+\mathrm{Alt}+\mathrm{Y}$
	$\mathrm{Ctrl}+\mathrm{Alt}+\mathrm{S}$

Graphical View

Action	Shortcut
Rotate (Orbit)	(Drag)
Zoom In/Out	Pg Up/Pg Dn
	Scroll Up/Down
	Ctrl $+\checkmark+$ Drag Up/Down
Pan	$\uparrow \downarrow \leftarrow \rightarrow$
	Shift $+\bigcirc$ (Drag)
Zoom to Selection	(Click to Center)
Autoscale	Drag Rectangle
Clipping Planes	Alt+A
Previous View	Alt+X
Next View	Ctrl + Alt $+\leftarrow$
	Ctrl + Alt $+\rightarrow$

Queries

Action	Shortcut
Point to Point	Ctrl + D
Group to Group	Ctrl + W

Instruments

Action	Shortcut
Add Instrument	Alt + I
Point at a Point	(Double-click on point)

Geometry Construction

Action	Shortcut
Construct Points	Ctrl +P
Layout Random Points	$\mathrm{Ctrl}+\mathrm{Alt}+\mathrm{Z}$
Patch Normal Shift	$\mathrm{Ctrl}+\mathrm{M}$
Construct Line $\mathbf{2}$ Points	$\mathrm{Ctrl}+\mathrm{L}$

Analysis

Action	Shortcut
Best Fit Points to Points	Ctrl $+B$
USMN	Alt +U

Math Reference

Although not at all essential to get benefit out of the software, this section provides background knowledge on some of the math behind SpatialAnalyzer.

Linear Least Squares Adjustment

Least squares is a procedure for adjusting observations containing random errors. It was developed in the latter part of the eighteenth century by Karl Gauss. It was not used much until computers became commonplace because of the lengthy calculations required. SpatialAnalyzer uses it in many routines (transformations, best-fit lines-planes-circles etc), to provide the best and most consistent answer for fitting problems.

For a group of equally weighted observations (or measurements in our case), the basic condition that is enforced in least squares adjustments is that the sum of the squares of the residuals is minimized. Residual is another term for the difference between a measured value and its most probable (or "correct") value. For 3D coordinate metrology, one example of a residual would be the difference between the true X-coordinate for a point and the actual X-coordinate measurement.

The method of least squares is a criterion for fitting a specified model to observed data. In this case, the specified model is the reference set
of points (or expected values), and the observed data are typically your measurements of the reference set of points. Let's use a common use of the least squares adjustment as an example. The least squares line routine is a commonly used method for computing the best-fit line from a series of measurements of a linear function. The distance your car travels when you're driving at a particular speed is an example of a linear function. In this example, you are trying to drive your car at a constant speed and measure how far you have gone and the time it took you to get there. While driving, it is likely that a little error is going to creep into the process-you're not going to be able to . That error is generally referred to as random error. Least squares adjustment techniques are really good at dealing with this type of error and are able to produce a reasonable and consistent answer in spite of it. An example is shown in the figures. The time is plotted on the X -axis and the distance on the Y -axis.

The points are the paired measurements made of time verses the distance traveled, which is linear in this case because you were trying to maintain a constant speed. To find what is considered the "best line" through the data the least squares line routine is used. In this case, the residual that gets minimized is the difference (squared) from a measured point to the line that best describes the distance you traveled verses the time it took. The least squares line routine will find a line, such that the sum of the distances (squared) from the data points to the line is the minimized. The figure shows a line that best fits those points; it was solved for with the best-fit line routine in SpatialAnalyzer.

The slope of the best-fit line is actually the average speed that you traveled on your trip. This line is the most consistent way of determining where you probably where at any point in time during your trip.

The least square line adjustment was able to use this set of measurements even through each point had some error, and it produced a high-quality and reliable answer. This ability of dealing with measurements that have at least some component of random error and still being able to produce consistent and representative answers is why the technique is used in SpatialAnalyzer.

Basics of Spatial Transformations

Homogeneous transformations-transforms for short-can be used to represent the position and orientation of one coordinate frame (system) with respect to another coordinate frame. A general transformation matrix can be conveniently represented as a four by four matrix; however, only twelve of the sixteen numbers are typically
used in this application ${ }^{1}$. This representation is unique-i.e., there is only one transformation matrix that unambiguously describes a particular relative position and orientation. The problem with representing all transforms as a matrix is that this representation is overconstrained. We know, for example, that a rigid object in space has only six degrees-of-freedom-three positional and three rotational. You simply don't need all twelve numbers in the 4×4 matrix to represent the relative position and orientation. Let's look at other more compact representations.

First of all, we need to define which coordinate frame is described relative to the other. Let's assume we have frames \mathbf{A} and \mathbf{B}, and that we wish to describe frame B relative to A (Figure B-1).

Figure B-1. Two coordinate frames in space.

Position is easy-we simply describe the x, y, and z components of the origin of \boldsymbol{B}. Note these terms are the distances along the x, y, and z axes of frame \mathbf{A}. Also note the position of \mathbf{A} relative to \mathbf{B} would not, in general, be the negative of these values. (This would only be the case if the corresponding axes for the two frames were all parallel). Rotation is not as easy as position. To describe rotations, certain standard conventions have been adopted. These are by no means the only possible methods. The following sections will discuss different viewpoints that are commonly used to discuss transforms, then we will discuss simple unit rotations, and go on to develop compound rotation methods.

The old viewpoint debate: Are we describing or transforming?

This section only becomes necessary because of the language that individuals use to discuss transforms. This is one of the most common sources of errors in dealing with spatial transformations. Transforms can be used in two different ways:

- As a descriptor. This is the way we will always talk about transforms in SpatialAnalyzer. This is the description of one frame

1 The four-by-four matrix is typically used because it is symmetric. Numerical routines can generally be made more efficient when the numerical pieces are symmetric.
relative to another. For example, frame \mathbf{B} relative to frame \mathbf{A}.

- As a transform operator. In this case we ask the question: what operations we do to frame A to rotate and translate it to the position and orientation of \mathbf{B} ? In some cases, it's natural to think about transforms in this way. For example, if you want to describe the position of a box as it moves, it's natural to think about the rotations and translations that it is subjected to over time.

The final result is a little counter-intuitive-but essentially, it doesn't matter which view point you use-they both produce the exact same results. You just need to be aware of the fact that despite the language used, the math is the same. Many people incorrectly interpret one as the inverse of the other.

Unit Rotation Matrices

Before we can discuss compound rotations, we need to develop the building blocks of unit rotations. These are simply rotations that occur about any given principal coordinate axis (X, Y, or Z). They are as follows:

$$
R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \quad R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \quad R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Or, for the particular example of an X rotation of 30°, a Y rotation of 60°, and a Z rotation of 90° :

$$
R x\left(30^{\circ}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.866 & -0.500 \\
0 & 0.500 & 0.866
\end{array}\right] R y\left(60^{\circ}\right)=\left[\begin{array}{ccc}
0.500 & 0 & 0.866 \\
0 & 1 & 0 \\
-0.866 & 0 & 0.500
\end{array}\right] R z\left(90^{\circ}\right)=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Compound Rotations

Using the building blocks of the above unit rotations, we can now proceed to develop more complex compound rotations. As we stated earlier, a rotation matrix is unique. However, the descriptive methods we often use to describe a rotation are not. The same physical orientation can be described in an infinite number of ways. We'll explore the most common below.

Fixed Angle XYZ
In this case, we will start with frame A and B coincident. We will then rotate frame \mathbf{B} about the X -axis of $\mathbf{A}\left(\mathrm{X}_{\mathrm{A}}\right)$, then about the Y -axis of \mathbf{A} $\left(Y_{A}\right)$, then about the Z-axis of $A\left(Z_{A}\right)$. We can express this as:

$$
R_{x y z}\left(30^{\circ}, 60^{\circ}, 90^{\circ}\right)=R_{z}\left(90^{\circ}\right) R_{y}\left(60^{\circ}\right) R_{x}\left(30^{\circ}\right)=\left[\begin{array}{ccc}
0.000 & -0.866 & 0.500 \\
0.500 & 0.433 & 0.750 \\
-0.866 & 0.250 & 0.433
\end{array}\right]
$$

In this case, we again start with frame \mathbf{A} and \mathbf{B} coincident. We then rotate frame \mathbf{B} about the Z-axis of $\mathbf{A}\left(Z_{A}\right)$, then about the Y-axis of $\mathbf{A}\left(Y_{A}\right)$, then about the X-axis of $A\left(X_{A}\right)$. We can express this as:

$$
R_{z y x}\left(90^{\circ}, 60^{\circ}, 30^{\circ}\right)=R_{x}\left(30^{\circ}\right) R_{y}\left(60^{\circ}\right) R_{z}\left(90^{\circ}\right)=\left[\begin{array}{ccc}
0.000 & -0.500 & 0.866 \\
0.866 & -0.433 & -0.250 \\
0.500 & 0.750 & 0.433
\end{array}\right]
$$

Euler Angle XYZ

In this case, we will start with frame \mathbf{A} and \mathbf{B} coincident. We will then rotate frame \mathbf{B} about the X-axis of $B\left(X_{B}\right)$, then about the Y-axis of B $\left(Y_{B}\right)$, then about the Z-axis of $\mathbf{B}\left(Z_{B}\right)$. Note that the axes of frame \mathbf{B} rotate during the operations. We can express this as:

$$
R_{x^{\prime} y^{\prime} z^{\prime}}\left(30^{\circ}, 60^{\circ}, 90^{\circ}\right)=R_{x}\left(30^{\circ}\right) R_{y}\left(60^{\circ}\right) R_{z}\left(90^{\circ}\right)=\left[\begin{array}{ccc}
0.000 & -0.500 & 0.866 \\
0.866 & -0.433 & -0.250 \\
0.500 & 0.750 & 0.433
\end{array}\right]
$$

Euler Angle ZYX

In this case, we will start with frame A and B coincident. We will then rotate frame \mathbf{B} about the Z-axis of $B\left(Z_{B}\right)$, then about the Y-axis of B $\left(Y_{B}\right)$, then about the X-axis of $\mathbf{B}\left(X_{B}\right)$. Note that the axes of frame \mathbf{B} rotate during the operations. We can express this as:

$$
R_{z^{\prime} y^{\prime} x^{\prime}}\left(90^{\circ}, 60^{\circ}, 30^{\circ}\right)=R_{z}\left(90^{\circ}\right) R_{y}\left(60^{\circ}\right) R_{x}\left(30^{\circ}\right)=\left[\begin{array}{ccc}
0.000 & -0.866 & 0.500 \\
0.500 & 0.433 & 0.750 \\
-0.866 & 0.250 & 0.433
\end{array}\right]
$$

Euler Angle ZYZ

In this case, we will start with frame A and B coincident. We will then rotate frame \mathbf{B} about the Z-axis of $\mathbf{B}\left(Z_{B}\right)$, then about the Y-axis of \mathbf{B} $\left(Y_{B}\right)$, then again about the Z-axis of $B\left(Z_{B}\right)$. Note that the axes of frame \mathbf{B} rotate during the operations. We can express this as:

$$
R_{z^{\prime} y^{\prime} z^{\prime}}\left(90^{\circ}, 60^{\circ}, 90^{\circ}\right)=R_{z}\left(90^{\circ}\right) R_{y}\left(60^{\circ}\right) R_{z}\left(90^{\circ}\right)=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -0.500 & 0.866 \\
0 & 0.866 & 0.500
\end{array}\right]
$$

Equivalent Angle Axis

This representation is a little different from the others given in that it does not result from the combination of unit rotations. This convention stems from the fact that for any given rotation there exists a unique axis of rotation and magnitude of rotation. If we rotate about a unit vector K and amount θ we find that the following matrix results:

$$
R(K, \theta)=\left[\begin{array}{ccc}
K_{x} K_{x} v_{\theta}+\cos \theta & K_{x} K_{y} v_{\theta}-K_{z} \sin \theta & K_{x} K_{z} v_{\theta}+K_{y} \sin \theta \\
K_{x} K_{y} v_{\theta}+K_{z} \sin \theta & K_{y} K_{y} v_{\theta}+\cos \theta & K_{y} K_{z} v_{\theta}-K_{x} \sin \theta \\
K_{x} K_{z} v_{\theta}-K_{y} \sin \theta & K_{z} K_{y} v_{\theta}+K_{x} \sin \theta & K_{z} K_{z} v_{\theta}+\cos \theta
\end{array}\right]
$$

where $v_{\theta}=(1-\cos \theta)$ and $\mathrm{K}_{\mathrm{x}^{\prime}} \mathrm{K}_{\mathrm{y}^{\prime}} \mathrm{K}_{\mathrm{z}}$ are the components of unit vector K. Through an inverse analysis we can extract the (K, θ) for any rotation matrix.

Quaternions (also known as Euler Parameters)

A Quaternion is simply another way of expressing the information that is inherent in the equivalent angle-axis representation. Namely,

$$
\varepsilon_{1}=K_{x} \sin \left(\frac{\theta}{2}\right) \quad \varepsilon_{2}=K_{y} \sin \left(\frac{\theta}{2}\right) \quad \varepsilon_{3}=K_{z} \sin \left(\frac{\theta}{2}\right) \quad \varepsilon_{4}=\cos \left(\frac{\theta}{2}\right)
$$

End User License Agreement

SOFTWARE LICENSE AGREEMENT OF NEW RIVER KINEMATICS, INC. ("MANUFACTURER")
NOTICE-- READ BEFORE INSTALLING THIS PACKAGE

CAREFULLY READ THE TERMS AND CONDITIONS OF THIS AGREEMENT BEFORE INSTALLING THIS PACKAGE. INSTALLING THIS PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THE TERMS AND CONDITIONS OF THIS AGREEMENT, PROMPTLY RETURN THIS PACKAGE TO THE PLACE OF PURCHASE FOR REFUND IN THE AMOUNT YOU PAID.

THIS AGREEMENT, entered into by and between NEW RIVER KINEMATICS, INC. ("Licensor"), a Virginia corporation having principal offices at 436 McLaws Circle, Williamsburg, Virginia 23185, and the undersigned customer ("Licensee") determines, the rights and licenses granted to Licensee in the Licensed Software (hereinafter defined) supplied by the Licensor.

Definitions

As used in this agreement, the following definitions, not in alphabetical order, apply:

- Activated Software. Software for which Licensee has paid applicable license fees and charges and for which Licensor has delivered a Security Device.
- Effective Date. Date of execution of this Agreement by Licensee or in the absence of any other ascertainable date or, at the option of Licensor, means the date of installation of the Software by Licensee.
- Licensed Software or Software. Licensor's software, selected by Licensee, in executable code only, as licensed under this Agreement.
- Licensed Documentation. means all the documentation, in printed or electronic form, that is delivered from Licensor to Licensee and related to the Licensed Software.
- Licensed Product. Licensed Software and the Licensed Documentation, collectively, including the Security Device when provided by Licensor with Activated Software.
- Maintenance Fees. Fees payable for Software Maintenance of Activated Software.
- Security Device. Device issued by Licensor and licensed to Licensee to enable Licensee's Use of Activated Software to achieve functionality for which Licensee has paid Licensor applicable license fees and charges.
- Software Maintenance. Corrections, revisions, patches, service packs, updates, and subsequent releases of the Licensed Product made available by Licensor from time to time.
- Unactivated Software. Software for which no license fees and charges have been paid by Licensee and for which no Security Device has been issued, thus limiting authorized use of the Software to Viewer Mode.
- Use. Licensee's right to install, use, access, run, or otherwise read the Software into and out of memory in strict accordance with the Licensed Documentation and all the terms of this license granted from Licensor to Licensee pursuant to this Agreement.
- Viewer Mode. Use of Software only for purposes of evaluating the Software or viewing a file or other work product not created by the Unactivated Software.

License Grant

Subject to the payment of the license fees and charges to Licensor, Licensor grants to Licensee a limited, nonexclusive and nontransferable license for Use of the Licensed Product during the Agreement's term defined in Section 4. Licensee agrees that it has no right, power or authority to make any modifications to or unauthorized copies of the Licensed Product.

At Licensor's request upon the expiration or other termination of Licensee's authorized Use of the Software, Licensee will return to Licensor all Licensed Documentation, including the Security Device.

License Fees, Charges and Taxes

Licensee shall pay Licensor's license fees and charges for the Licensed Product in effect at the time of Licensee's acceptance of this Agreement. No license fees and charges apply when the Licensed Software is Unactivated Software.

The license fees and charges, taxes and other applicable charges are due and payable upon installation of the Activated Software unless separate arrangements for deferred payment are made with Licensor prior to installation.

Term

Unless otherwise terminated or cancelled as provided by this Agreement, the term of Licensee's Use of Activated Software shall commence upon first Use of the Software and shall continue for five (5) years from the most recent version of Activated Software delivered to Licensee. Licensee acknowledges that if Licensee at any time fails to extend the term of Software Maintenance by payment of applicable Maintenance Fees, no versions of Activated Software will be obtained following the expiration of the latest period for which Software Maintenance has been purchased. Notwithstanding the foregoing, Licensor will have the right prior to the end of any term for which Software Maintenance has been purchased to notify Licensee that Licensor will not provide Software Maintenance after that term, and in that event, the term of Licensee's Use of Activated Software will extend five years from the date of the latest version of Activated Software delivered to Licensee prior to expiration of the then term of Software Maintenance.

Unless otherwise terminated or cancelled, the Term of Licensee's Use of Unactivated Software is five (5) years from the date of first Use of Unactivated Software.

Protection of Licensed Product

Licensee acknowledges and agrees that the Licensed Product and all permitted copies are Licensor's exclusive property and a valuable trade secret of Licensor. Licensee will not disclose or make available to third parties the Licensed Product or any portion or any information from Licensor marked "confidential" without Licensor's prior written approval. Licensor reserves title to, ownership of, and all proprietary rights to the Licensed Product, as well as any related work product and major or minor releases of the Software, if any. Licensee
shall promptly and in good faith take all action reasonably necessary, advisable, or requested by Licensor to assure compliance with this Section 5 by all employees and agents of Licensee.

Upon reasonable notice during the Agreement's term and within six (6) months after termination or expiration of the Agreement, Licensor may arrange for the inspection and review of Licensee's computer systems to assure compliance with all terms and provisions of this Agreement during Licensee's normal business hours and in such a manner as not to interfere unreasonably with Licensee's operations. In the event such audit discloses that the number of permitted copies has been exceeded, Licensee shall promptly pay to Licensor the appropriate license fees and charges for the additional computers or users.

Prohibited Uses

Licensee shall not:

- At any one time, use, share, or use concurrently more than one installation or copy of the Software on any one computer, including but not limited to a workstation, terminal, or other digital electronic device, except that Unactivated Software is not subject to such restrictions;
- Modify, translate, reverse engineer, decompile, disassemble, reduce the Software to a humanly perceivable form, or create derivative works based upon the Licensed Product, or cause or permit another to do so;
- Remove any proprietary notices, labels, copyright marks, or trademarks on the Licensed Product;
- Modify, adapt, rent, lease, commercially host, sublicense, redistribute, or lend the Software;
- Copy or attempt to copy the Software for any purpose whatsoever, except as expressly permitted by the terms of this Agreement.
- Attempt to access or use Activated Software, except by means of the Security Device licensed by Licensor to Licensee.
- Attempt to alter, modify, reprogram or otherwise tamper with any Security Device issued by Licensor, regardless of whether the Security Device has been licensed to Licensee.

Support Services and Updates

For Activated Software Licensor will provide Licensee with all Software Maintenance made available by Licensor for the Software during the period of time for which Licensee has purchased and paid for Software Maintenance. Initially, Licensor will provide Licensee Software Maintenance through the expiration date of the Security Device first provided by Licensor to enable functionality of the Activated Software. Subject to the provisions of Section 4, Licensee's right to receive Software Maintenance can be extended for succeeding periods of time upon payment of then applicable Maintenance Fees. If Licensee allows Software Maintenance to lapse, Licensor may, but need not, reinstate and continue Software Maintenance upon Licensee's payment of any and all Maintenance Fees for the period or periods of time during which Software Maintenance lapsed, plus a reinstatement fee of 25% of such previously unpaid Maintenance Fees.

As part of Software Maintenance purchased by Licensee, Licensor shall provide support services to attempt to correct any error, malfunction or defect in the Activated Software's functionality or provide an alternative process, provided that Licensee gives Licensor prompt notice of the problem and sufficient information to either diagnose or recreate such problems. Licensee acknowledges that the Licensed Software is complex and may not be error free and that all errors, if any, may not be correctable or avoidable.

Warranty

Licensor warrants that, for a period of sixty (60) days after delivery the Licensed Product to Licensee:

- Under normal Use and service, the media on which the Licensed Software is delivered (if so delivered otherwise than electronically) shall be free from defects in material and workmanship, and
- The Licensed Product will meet Licensor's then current published specifications for the Software.
If If the Licensed Product fails to meet the media warranty of Paragraph 9(a)(1) and Licensee gives Licensor written notice thereof during the applicable warranty period, Licensor shall replace such media. If the Licensed Product fails to meet the warranty of Paragraph 9(a)(2) and Licensee gives Licensor written notice thereof during the applicable warranty period, Licensor's sole obligation shall be to provide technical services to attempt to correct the failure, provided that Licensee gives Licensor detailed information regarding the failure and Licensor is able to duplicate or view the same. Licensee acknowledg-
es that the Licensed Product is complex, may not be error free, and that all errors, if any, may not be correctable or avoidable.

EXCEPT AND TO THE EXTENT EXPRESSLY PROVIDED IN PARAGRAPH 9 AND IN LIEU OF ALL OTHER WARRANTIES, THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTIES OF MERCHANTABILITY, INFORMATIONAL CONTENT, FITNESS FOR A PARTICULAR PURPOSE OR SYSTEM INTEGRATION, OR NON-INFRINGEMENT OF THIRD PARTY RIGHTS RELATING TO THE LICENSED PRODUCT. Some jurisdictions do not permit the exclusion of implied warranties or limitations on applicable statutory rights of the consumer, and, as such, some portion of the above limitation may not apply to Licensee. In such jurisdictions, Licensor's liability is limited to the greatest extent permitted by law.

Licensee shall be solely responsible for the selection, Use, efficiency, and suitability of the Licensed Product and Licensor shall have no liability thereof.

The warranty provision of this Paragraph 9 do not apply if the Software has been subject to modification by other than Licensor or on Licensor's instruction, has not been installed, operated, repaired, or maintained in accordance with instructions supplied by Licensor, is subject to accident or abuse, or is used in ultra hazardous activities.

Licensor warrants that the Software is date compliant. The duration of this warranty and remedies available to the Licensee for breach of this warranty shall be limited to repair or replacement of the Software where such non-compliance is discovered and made known to Licensor in writing within ninety (90) days after acceptance. Nothing in this warranty shall be construed to limit any rights or remedies Licensee may otherwise have under this Agreement with respect to other defects.

Despite any other provision hereof to the contrary, Licensor's liability of any kind shall never exceed the amount of the license fees, charges and taxes described in Section 3, and the Licensor's liability expressly excludes incidental or consequential damages to Licensee, including lost profits, even if Licensor is on notice of, and has express knowledge of, the potential loss or damage.
Despite any other provision hereof to the contrary "UNACTIVATED SOFTWARE", AS HEREIN DEFINED, IS SUBJECT TO NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTIES OF MERCHANTABILITY, INFORMATIONAL CONTENT, FITNESS FOR A PARTICULAR PURPOSE OR SYSTEM INTEGRATION, OR NONINFRINGEMENT OF THIRD PARTY RIGHTS RELATING TO THE LICENSED PRODUCT.

Negation of Proprietary Rights Indemnity

THERE IS NO WARRANTY AGAINST INTERFERENCE WITH LICENSEE'S QUIET ENJOYMENT OF THE LICENSED PRODUCT OR AGAINST INFRINGEMENT, AND LICENSOR HAS NO LIABILITYTO LICENSEE FOR THE INFRINGEMENT OF PROPRIETARY RIGHTS BYTHE LICENSED PRODUCT OR ANY PORTION THEREOF.

Termination/Cancellation

Licensor has the right to terminate or cancel this Agreement in accordance with other provisions of this Agreement and also if:

- Licensee fails to pay Licensor any license fee or charges when due; or
- Licensee is in default of any other provision hereof and such default has not been cured within ten (10) days after Licensor learns of the default and gives Licensee written notice thereof; or
- Licensee becomes insolvent or seeks protection, voluntarily or involuntarily, under any bankruptcy law; or
- Licensee attempts to assign or sublicense its rights under this license.
In the event of any termination or cancellation, Licensor may:
- Declare all amounts owed hereunder to Licensor to be immediately due and payable;
- Require that Licensee cease any further use of the Licensed Product or any portion thereof and immediately destroy, erase from any temporary RAM and permanent memory, and return to Licensor all copies of the Licensed Product, including the Security Device; Upon Licensor's request, an authorized representative of Licensee shall provide a written certification that warrants compliance with this requirement.
- Cease performance of all of Licensor's obligations hereunder without liability to Licensee; and
- Electronically render the Software of no further Use by Licensee.
UPON ANY TERMINATION, EXPIRATION, OR CANCELLATION OF THIS AGREEMENT, DUE TO BREACH OR OTHERWISE, LICENSOR SHALL IN ALL EVENTS HAVE ALL RIGHTS, POWER AND AUTHORITYTO EXERCISE ELECTRONIC SELF-HELP AND TO EXERCISE ALL RIGHTS, REMEDIES AND RECOURSE TO WHICH IT MAY BE ENTITLED, WHICH SELF-HELP

SHALL INCLUDE WITHOUT LIMITATION, ALL ELECTRONIC MEANS AVAILABLE TO LICENSOR.

Limitation of Liability

Abstract

IN NO EVENT SHALL LICENSOR BE LIABLE TO LICENSEE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, REGARDLESS OF THE FORM OF THE ACTION, ARISING OUT OF OR RELATED TOTHIS LICENSE AGREEMENT OR THE PERFORMANCE OR BREACH THEREOF, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY THEREOF. LICENSOR'S LIABILITYTO LICENSEE HEREUNDER, IF ANY, SHALL IN NO EVENT EXCEED THE TOTAL OF THE LICENSE FEES PAID TO LICENSOR HEREUNDER BY LICENSEE. IN NO EVENT SHALL LICENSOR BE LIABLE TO LICENSEE FOR ANY DAMAGES RESULTING FROM OR RELATED TO ANY FAILURE OF THE SOFTWARE PRODUCTS, INCLUDING, BUT NOT LIMITED TO, LOST DATA TIME, PROFITS, DELIVERY DELAY OR LICENSOR'S PERFORMANCE OF SERVICES UNDER THIS LICENSE AGREEMENT. SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OF LIABILITY FOR PERSONAL INJURY, OR OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THIS LIMITATION MAY NOT APPLICABLE TO LICENSEE. Some jurisdictions do not permit the exclusion of limitation of liability for consequential or incidental damages, and, as such, some portion of the above limitation may not apply to Licensee. In such jurisdictions, Licensor's liability is limited to the greatest extent permitted by law.

General

Any claim arising out of or related to this Agreement must be brought no later than one (1) year after it has accrued.

This Agreement is the sole agreement between the parties relating to the subject matter and supersedes all prior understandings, writings, proposals, representations, or communications, written or oral, of either party. Only a writing executed by the authorized representatives of both parties may amend this Agreement.
No Assignability. This Agreement and the licenses granted hereunder cannot be transferred or assigned by Licensee without the prior written consent of Licensor. Any attempted assignment or sublicense by Licensee.

Severability and Survivability. If any part of this Agreement is held invalid or unenforceable, that portion will be construed consistent with applicable law as nearly as possible to reflect the original intention of the parties and all other portions of this Agreement remain in full
force and effect. In the event of any expiration, termination or cancellation of this Agreement, provisions that are intended to continue and survive shall do so.

This Agreement is binding upon the Licensor's and Licensee's successors and assigns.

Failure of either party to enforce any provision of this Agreement will not be deemed a waiver of the provision or the right to enforce that provision.

Licensee shall not export or re-export, or allow the export or re-export of the Software or any copy, portion or direct product of the foregoing, in violation of any export laws, restrictions, national security controls or regulations of the United States or any other applicable foreign agency or authority. By accepting this license Agreement, Licensee represents and warrants that it is not located in, under control of, or a national or resident in a United States embargoed country, or on the United States Treasury Department's list of Specially Designated Nationals or the United States Commerce Denied Person's List or Entity List.

This Agreement shall be interpreted in accordance with the substantive laws of the Commonwealth of Virginia. In an action arising out of or relating to this Agreement or the Licensed Product, both parties consent to the nonexclusive jurisdiction of the federal and state courts located in the City of Roanoke, Virginia. The prevailing party of any dispute shall recover its reasonable attorneys' fees and costs incurred in litigating, arbitrating, or otherwise settling or resolving such dispute.

During the Agreement's term, Licensee agrees to regularly back-up its Licensed Computer on a separate medium. Licensee acknowledges that any failure to do so may significantly decrease its ability to mitigate any harm or damage arising from any problem or error in the Licensed Products or the provision of services under the Agreement.

NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS AGREEMENT, IT IS SPECIFICALLY ACKNOWLEDGED AND AGREED THAT NO REPRESENTATION, WARRANTY OR OTHER ASSURANCE IS MADE, DIRECTLY OR INDIRECTLY, THAT (I) ALL OR ANY PORTION OF THE LICENSED PRODUCT COMPLIES WITH ANY FEDERAL, STATE OR LOCAL LAWS, RULES, REGULATIONS OR ORDINANCES, AS THE SAME MAY BE CHANGED FROM TIME TO TIME, OR (II) LICENSEE'S USE OF THE LICENSED PRODUCT WILL RESULT IN LICENSEE'S COMPLIANCE WITH ANY FEDERAL, STATE OR LOCAL LAWS, RULES, REGULATIONS, OR ORDINANCES, AS THE SAME MAY BE CHANGED FROM TIME TO TIME.

The Software is a "commercial item," as defined at 48 C.F.R. § 2.101, consisting of "commercial computer software" and/or "commercial
computer software documentation," as defined in 48 C.F.R. § 12.212 or 48 C.F.R. § 227.7202 , as applicable. Any use, modification, reproduction, release, performance, display, disclosure or distribution of the Software by the United States government, its agencies or instrumentalities shall be governed solely by the terms of this Agreement and shall be prohibited except to the extent expressly permitted herein.

Licensee's Acceptance

Licensee will be deemed to accept the terms of this Agreement and agree to perform obligations of Licensee under this Agreement upon installation of the Software or Use of the Software or by any other means, electronic or otherwise, prescribed by Licensor and accepted by Licensee.

[^0]: 1
 NIST Policy on Metrological Traceability.

[^1]: Note: For some instruments, you may need to put the instrument interface into a mode that sends updates to see an update in the view.

[^2]: Note: If you release the Shift
 key prior to releasing the mouse button, you will define an autoscale region, not an entity selection.

 Note: To remove selected
 items from the selection, hold down both the Shift and Alt keys.

[^3]: Tip: The accuracy of the ョ Trans-Track operation is limited to the accuracy of the network, so try to tie instruments to-

 Tip: Be careful to place tar* gets such that they will be visible throughout the range of motion of the moving object.

[^4]: Note: Some items, such as polygonized surfaces, surfaces, and relationships, do not have associated notes.

[^5]: the target coordinate.

[^6]: This Page Intentionally Left Blank.

[^7]: Alarms
 The Alarm button allows you to set a number of thresholds that will trigger an alarm while measuring. An alarm is intended to notify you that a measurement may not be trustworthy. High and low threshold alarms can be set for the following parameters:

 - Air Temperature. If the specified air temperature range is violated, the alarm will trigger.
 - Air Pressure. If the specified pressures are violated, the alarm will trigger.
 - Humidity. If the ambient humidity exceeds the specified thresholds, the alarm will trigger.
 - Part Temperature. If the part temperature (if the instrument is equipped) exceeds the specified threshold, the alarm will trigger.
 - Level. If the specified level range is violated (if the instrument is equipped with an inclinometer), the alarm will trigger.
 - RMS. Turning on the Discrete Point RMS Monitor checkbox will display a warning if the Warning threshold is exceeded. The point will not be measured if the Out Level value is exceeded.

 When an alarm is triggered, the alarm button will turn red and a blinking exclamation mark will appear.

 ## Operational Checks

 Clicking the Operational Checks button will take you to the manufacturer's operational checks.

[^8]: Tip: Double letter datum en\geqslant try in the Feature Check reference is currently not supported. To add Feature Checks that reference double letter datums go to GD\&T >> Make Annotation for GD\&T Feature Check to build a Feature check.

